
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
European Laboratory for Particle Physics

The SixDesk Run Environment for SixTrack

F. McIntosh, R. De Maria

Abstract

This document replaces the “Run Environment for SixTrack” [1], and describes how massive tracking
campaigns can be performed with “SixTrack” [2] starting from a MAD-X input file of the LHC lattice,
the so called mask file. It describes a new set of UNIX BASH or Korn shell scripts which allow the use
of the Berkeley Open Infrastructure for Network Computing, BOINC [?]) as an alternative to the Linux
LSF batch system.

Administrative Secretariat
LHC Division
CERN
CH-1211 Geneva 23
Switzerland

Geneva, September 5, 2012

Version 10 20th August, 2012.

1 Objectives
The principal objective of the SixDesk run environment was to allow a physicist to run

a tracking campaign, on either the CERN LSF batch system or BOINC, using the familiar
SixTrack run environment on Linux. At the same time, the opportunity was taken to group
all user modifiable parameters into two files, sixdeskenv and sysenv, and to speed up
run mad6t, the madX to SixTrack conversion, by running in parallel in batch. The specifi-
cation of tune scans, fractional amplitude ranges and steps, and various other physics options
were also added to the run six script/command. All SixDesk scripts report activity to the
sixdesk.log file and exit with an error code if an unrecoverable error is detected. The mes-
sages are optionally sent to STDOUT, your screen in an interactive session.

2 Getting Started
All the user modifiable parameters have been collected into the two scripts sixdeskenv,

sysenv obviating the need to look through all scripts and make matching changes, simplifying
the usage of the scripts, and limiting the risk of error.

It is assumed that there is a large amount (at least 1GB) of disk space available on AFS to
be used as a workspace which we shall call w1 for illustration. The w1 directory is normally a
link in $HOME to a directory with the same name on an AFS scratch disk (scratch0, scratch1,
etc). Note that by default access to all files will be limited; it is useful to do a fs setacl w1
system:anyuser rl so that everything in the workspace can be read by support.

A workspace is created by e.g.

cd $HOME
mkdir scratch0/w1
ln -s ˜/scratch0/w1 w1
cd w1
fs setacl . system:anyuser rl

and the SixDesk environment is created by

cd w1
svn checkout https://svn.cern.ch/reps/sixdesk

or

cd w1
gtar xvzf /afs/cern.ch/user/f/frs/public_html/\
SixTrack_run_environment/SixDesk_run_environment.20August2012.tgz

where the first method will get the latest SVN committed version and the second tar file will be
updated (and the name changed) in parallel with the SVN commits.

This will create a directory subtree starting with the directory sixjobs. All the scripts
are stored here and the user should always do a cd w1/sixjobs before executing any
commands. It may be necessary to prefix any typed commands with a ./ if the shell PATH
does not include the current directory .. (The source version of each script can be found in
sixjobs/scripts as will be discussed later.)

Other older and newer versions and updates can be found in the same public html direc-
tory.

1

3 Setting up a Study
To facilitate the description of the various procedures we use this workspace w1 and a

study job tracking as an illustration using the mask file job tracking.mask included
in the release. Note that the name of the study is contained in the variable LHCDescrip i.e. if
we have a study called lhc nob1 then we must define it with export LHCDescrip=lhc nob1.
It should also be noted that amplitudes and amplitude ranges are specified in beam σ. There
are several supported types of study, short studies using SixTrack and possibly Sussix, long
tracking studies using SixTrack, and DA map production using the SixTrack DA version. Per-
forming a tracking study involves running many jobs for an LHC configuration with many
different initial phase space amplitudes and angles and linear tunes. The LHC configuration is
defined by a mask file in the sixjobs/mask sub-directory and the initial conditions in the
sixdeskenv, sysenv files.

The first step is to edit the sixdeskenv script and, if necessary, the sysenv script.
NOTA BENE:It is strongly recommended to issue a set env command after any mod-

ification to these files so that they are saved in the studies/study directory as described
later. Note also, that as shown for the variable LHCDescrip, all values must be exported.
export LHCDescrip=job tracking the name of the study and of the mask file
basedir=/afs/cern.ch/user/$initial/$LOGNAME
scratchdir=/afs/cern.ch/user/$initial/$LOGNAME/scratch0
trackdir=$scratchdir/$workspace
sixtrack input=$scratchdir/sixtrack input/$workspace/$LHCDescrip but may also be changed

to use an existing set of sixtrack input files.
The above defaults, apart from the name of the study, are usually satisfactory but, once chosen,
cannot be changed easily. Other parameters of the run can be decided later.

At this point:

cd ˜/w1/sixjobs
set_env

will create the full directory structure of the environment. As already mentioned this command
should also be used to save modified versions of the sixdeskenv, sysenv files before
doing anything else. The command also reports and logs changes. (Remember to do a set env
as mentioned earlier after any modification of these two files.)

While it is recommended to run one study per workspace, most users have multiple stud-
ies in the workspace. The command ls studies can be used to list them and set env
"name of the study" to switch between studies. This switch copies the sixdeskenv,
sysenv files from the studies directory to sixdekhome i.e. the current sixjobs direc-
tory.

An important new feature is that it is possible to execute many commands on a specific
study without switching. This facilitates running multiple studies in the same workspace and
using commands in batch jobs. Thus, instead of switching, a command can be suffixed with an
optional ”study” and/or ”platform”. Examples are shown later. This option is NOT available for
the backup or recall, study or workspace, commands described in section 19.

The print env command reports the complete environment to the screen; the command
mywhich reports a few important values.

Finally note that it is vital that the same versions of SixTrack and madX are used for all
cases in a study. Ideally the madX run mad6t jobs should be run on the same type of computer

2

to avoid small numeric differences. Compatible versions of these programs for LSF and BOINC
are specified in sysenv, the so-called ”pro” versions. Any changes will be notified.

4 Overview of the Data Structure
The set env will have created the sixtrack input, studies/study,track

and work directories, as well as various logfile links and directories. The files sixtrack input,
study, track, work are in fact links to the actual directories. An empty file with the name
of the study is also created to facilitate SHELL command completion.

The sixtrack input directory will later (after a successful mad6t run) hold all the
SixTrack input mother files fort.3.mother1 and fort.3.mother2 derived from the
mother files in the control files directory as well as a fort.3.mad and a fort.3.aux
and one fort.2 "seedno".gz, fort.8 "seedno".gz, fort.16 "seedno".gz for
each seed in the range istamad to iendmad as defined in sixdeskenv. In addition it will
hold one mad.dorun mad6t* directory for each run mad6t command, with one mad6t
LSF job mad6t "seedno".lsf, one input file "study"."seedno", one LSF job log
"study" mad6t "seedno".log and one mad6t output file "study".out."seedno"
for each seed.

The studies directory will hold one directory for each study, in turn containing the
sixdeskenv, sysenv files for that study.

The track directory will become a hierarchy containing all the SixTrack data and results
as follows:
Level 1 Seed typically 1 to 60
general input containing normalised emittance and gamma

Level 2 simul for long tracking and/or
trans momen for short/sussix runs

Level 3 tunex tuney e.g. 64.31 59.32
Level 4 amplitude range e.g. 18 20 and 18-22 after post-processing
Level 5 turns exponent e.g. e5 for 105 turns
Level 6 the phase space angle e.g. 67.5
Level 7 input(links), fort.2,3,8,16.gz and the result fort.10.gz as well as the LSF jobs and logs
A typical lowest level structure (after the study has been completed), for workspace w1, study
job tracking, long run (simul), seed 1, tunes 64.28 59.31, amplitude range 10 12, 105 turns,
phase space angle 1.5, is:

˜/w1/sixjobs/track/1/simul/64.28_59.31/10_12/e5/1.5
fort.10.gz
fort.16.gz ->
˜mcintosh/scratch0/sixtrack_input/w1/job_tracking/fort.16_1.gz
fort.2.gz ->
˜mcintosh/scratch0/sixtrack_input/w1/job_tracking/fort.2_1.gz
fort.3.gz
fort.8.gz ->
˜mcintosh/scratch0/sixtrack_input/w1/job_tracking/fort.8_1.gz
job_tracking%1%s%64.28_59.31%10_12%5%1.5.log
job_tracking%1%s%64.28_59.31%10_12%5%1.5.lsf

Note that input files are in fact links to sixtrack input, in order to save disk space, apart from
the fort.3.gz which is of course different for each job. The result file is fort.10.gz described in

3

section 9. The .lsf and .log files are the LSF job file and the LSF job log file for the particular
case.

It should be noted that there is a one to one mapping between the name of a case and the
directory where the input and output files are stored. The general form of the name of a case in
a long run is

study%seed%s%tune_range%amplitude_range%turns_exponent%angle

. In the workspace this case would be found in the directory
track/’seed’/simul/’tune_range’/’amplitude_range’/e’turns_exponent’/’angle’

. To give a specific example, a case named
job_tracking%1%s%62.31_60.32%10_12%5%18

would be found in the w1/sixjobs/track directory for this study in the sub-directory
sixjobs/track/1/simul/62.31_60.32/10_12/e5/18

this particular case being for seed number 1, tunex and tuney 62.31 and 60.32, amplitude range
10 to 12, 105 turns, angle 18. (The directory simul could also be instead trans or momen for
short/sussix runs and the letter ’s’ in the name being replaced by ’t’ or ’m’.)

This case name is used in the database, to name the LSF jobs and logs, and is also included
in the SixTrack fort.6 output. Note that as warned in a comment in the sixdeskenv file
this name must NOT have a % character nor two consecutive underscores.

The work directory will contain the database flat files for reporting and managing all the
tasks and jobs of a particular study. The most interesting files are work/taskids, work/completed cases,
work/incomplete cases and the sub-directory work/lsfjobs (or boincjobs).
The master file is called taskids and contains one line for every case of a study with the case
name followed by one or more LSF or BOINC taskids. The run status command reports on
the status of the study as described in section 8.

There are also the other directories:
bin containing links to various utility programs used by run join10 and run post
control files the SixTrack mother files for the collision/injection/beam 2 cases which are used

to generate the SixTrack input files
inc other mask files and the prepare fort.3 script
mask the LHC description mask files for madX
plot the plotting mask files and any plots produced by the post processing
sixdeskTaskIds the study TaskIds for BOINC
scripts the source and copies of the commands
utilities the various LSF job masks for run mad6t and run six
(Here we will add a picture of the hierarchy and perhaps a screen shot.)

5 Running mad6t to produce the basic SixTrack input files
NOTA BENE: It is essential to have a $LHCDescrip.mask file in the subdirectory mask

in order to run madX to produce the SixTrack input files. This mask file in turn references many
LHC Database files and this often requires some checking. Sample mask files can be found in
the directory mask:

jobref503_withbb_coll.mask jobrefslhc_withbb_coll.mask
jobref503_withbb_inj.mask jobref503_inj.mask
jobrefslhc_inj.mask jobrefslhc_withbb_inj.mask

4

jobref503_coll.mask jobrefslhc_coll.mask
job_tracking.mask

The file job tracking.mask is copied from /afs/cern.ch/eng/lhc/optics/SLHCV3.01 and all the
others from /afs/cern.ch/eng/lhc/optics/SLHCV2.0 ??.

In order to investigate a series of random seeds the particular seed number in the MAD
input file has to be replaced by a variable name:

Set, SEEDSYS , 1 ;
Set, SEEDRAN , 1 ;

becomes
Set, SEEDSYS , %SEEDSYS ;
Set, SEEDRAN , %SEEDRAN ;

The place keepers %SEEDSYS and %SEEDRAN will be replaced automatically by a proper
seed number by run mad6t based on the current seed number based on the istamad and
iendmad variables defined in sixdeskenv.

Please note that the MAD-X sixtrack command takes its information from the last
Twiss, save commmand. It is a sensible precaution to put these commands consecutively
in the MAD script and mask files.

The version of madX to be used for the conversion runs is defined in sysenv and defaults
to the current production version. At this point it is also necessary to specify in sixdeskenv
pmass=938.272046 The mass of the proton [4] which can be reset to 938.271998 for back-

wards compatibility with earlier studies.
bunch charge=1.1500e+11 New bunch charge variable for fort.3.mother1 [col/inj]
runtype= inj or coll for injection/collision for an LHC lattice. For more information on how to

define runtypes for either the LHC or other machines please see section ??.
beam= null or b1 or B1 for Beam1, b2 or B2 for Beam2
CORR TEST= 0 or 1 if check mad6t is to copy the corrector strengths for each seed into one

file in sixtrack input
fort 34= If null the fort.34 files will not be copied to the sixtrack inputdir. These files define

the multipole strengths for the linear lattice when doing Second Order Detuning and
Distortion (SODD) analysis in expert mode.

istamad=1 first seed for madX
iendmad= normally 60 (maximum 64) but it is recommended to use iendmad=1 until the re-

sults of the run mad6t are considered satisfactory
madclass= 8nm for 8 normalised CPU minutes, or 1nh for 1 normalised hour for the run mad6t

LSF jobs where 8nm is often enough but 1nh may be necessary.
After a set env, a run mad6t or run mad6t -i may be performed. The -i option means
run interactively and get the output to the screen or redirected to a file and can be useful for
testing the mask file and mad6t run. The platform option is ignored as mad6t runs are ei-
ther performed on the desktop or on LSF. For reasons of numerical compatibility all the mad6t
runs should be performed on the same type of machine. Subsequently, LSF jobs may be used
by run mad6t, one per seed, and they will run in parallel. In the case of multiple studies in a
workspace, either a set env "study" can be performed or the study can be specified on
the command as run mad6t ”study”. In all cases, the success/failure/correctness of these runs
should be verified. The script check mad6t checks what it can but it is essential to have a look
at the madX output. This output can be found in the most recent sixtrack input/mad.run mad6t*

5

directory. Once the madX run has completed successfully for one seed, iendmad can be set
to the desired value (typically 60/64) and a new run mad6t command performed. Every
run six, see later, starts with an internal check mad6t.

6 Problems, cleaning up, and support
There are often problems at this initial stage: at any time the command rm -r work/*

track/* sixtrack input/* will completely clean up and allow a restart from the be-
ginning. Help and diagnostics and error messages will be found in the sixdesk.log file, one
per study 1).

7 run six - Launching SixTrack Runs
It is usual to commence a study with some short runs or a few long runs using LSF,

perhaps with just a few seeds.
The script run six is used after setting the various variables as explained below. It

will automatically launch tracking jobs into the LSF batch system using the batch scripts in the
directory utilities or into the BOINC job submission buffer. It is recommended to use LSF
batch for short runs and for exploratory studies, or when the binary files are required for detailed
examination. BOINC is recommended for production runs and for large studies of more than a
few thousand jobs. Note that BOINC does not produce the fort.20 graphics nor return any binary
files. Only the fort.10 resultt file is returned which is enough for the subsequent post-processing.
In addition note that the platforms LSF and BOINC should not both be used in a single study;
rather, once the preliminary investigations are complete using LSF, a new study can be cloned
to run full scale production with BOINC using the same sixtrack input files thus
avoiding another redundant run mad6t. The experienced user is free to modify the script as
explained later. The following variables, all exported, as specified in the sixdeskenv file are
used by this and subsequent scripts.
tunex & tuney The required horizontal and vertical tunes. These may be different for collision

and injection as shown later.
emit The normalised LHC emittance.
e0 Energy of reference particle depending on runtype
dpini & dpmax At injection the initial relative momentum deviation is set to ‘dpini=0.00075’

and at top energy it is set to ‘dpini=0.00027’. For the determination of the (non-linear)
chromaticity a wider range is used: ‘dpmax=0.002’ (see below).

kstep Used to define the step width of the phase space angle. For further information see section
7.1. The phase space angle is related to the emittance ratio via φ = arctan

(√
εy/εx

)
,

where the emittance is defined as εz = Az ∗ Az/βz, for z=x,y.
dimen The dimensionality of phase space can be chosen between 4 and 6. In the latter case the

full six–dimensional tracking is done including cavities.
chrom To correct for slight differences between MAD and SixTrack the chromaticity is rou-

tinely corrected by setting ‘chrom’ to 1 and using
chrom eps=0.0000001 This operation will not be performed for ‘chrom=0’ but chromx chromy

will be used instead.
1) Help with these procedures is always available from Eric.McIntosh@cern.ch, by telephone, or by SKYPE

to mcintosh94. Accelerator Physics issues should be initially addressed to Massimo.Giovannozzi@cern.ch or
Riccardo.de.Maria@cern.ch.

6

chromx=2. and
chromy=2. being the values used when ‘chrom=0’.
sussix To determine precise values for the detuning calculation this switch should be set to:

‘sussix=1’. It uses the sussix program [?]. This option is only valid for the short run
configuration (see section 7.1). (Problems have been found when using sussix in the
6D case.)
run six can handle three different modes of tracking: Normally initial investigations

are carried out with short runs (and possibly sussix).
1. Short run — This run mode is used to find chromaticity and detuning as a function of
δ and amplitude respectively. Typically this is done with just 1,000 turns (activate with
short=1 in sixdeskenv). The other variables in sixdeskenv for this run are de-
scribed in section 7.1.

2. Long run — This mode is meant for the dynamic aperture determination proper (activate
with long=1 in sixdeskenv). The other variables for this run are described in section
7.2.

3. Differential Algebra (DA) run — If high order Taylor maps are needed this is the mode to
use (activate with da=1). This mode is mostly for expert use. Please ask the author (FS)
how to make best use of it. In this case run six calls the porgrams readda, dalie4 and
dalie6 in the directory bin.
Note that only one type of run may be chosen at any one time; one and only one of the

sixdeskenv variables short, long, da may be set to 1.
The short/long runs both use seeds as specified by

ista=$istamad Start seed
iend=$iendmad End seed
As shown above, the default seed range ista, iend for run six is the same as that used
for run mad6t, namely istamad, iendmad. These values may be changed at any time,
for example to submit jobs for a limited range of seeds, but must clearly be a subset of the
run mad6t values.

7.1 Short Run
ns1s & ns2s Lower and upper amplitude range in beam σ.
nss Amplitude step in beam σ.
turnss Number of turns which is usually set to 1,000 in this mode.
turnsse This variable should be set to the number of zeros of ‘turnss’, i.e. ‘3’ in our example, it

becomes part of the data directory structure. Therefore, if one decides to redo this analysis
at say 10,000 turns one specifies ‘turnsse=4’ and subsequently the data are stored separate
from those produced with ‘turnsse=3’.

writebins This defines after how many turns data are written to output files. In this mode it
should always be set to: ‘writebins=1’ since all turns are needed to find the tunes as a
function of amplitude.

kini & kend Initial and end angle in phase space. Typically set from ‘1’ to ‘kmax=5’ (see next
variable). By specifying ‘kini=0’ the nonlinear chromaticity is calculated as well (which
uses the ‘dpmax’ setting) and thereafter the initial angle is set back to: ‘kini=1’. Note that
the variation from ‘kini’ to ‘kend’ is done in steps defined by ‘kstep’.

kmax This defines the number of phase space angles, e.g. ‘kmax=5’ means that each step
kstep is of: 90◦/(kmax+ 1) = 15◦.

7

reson=0 switch for Guignard resonance calculation

7.2 Long Run
ns1l & ns2l Lower and upper amplitude range in beam σ. This range is sub–divided into ranges

of nsincl σ. In each job 30 pairs of particles are evenly distributed in each subrange.
The close–by pairs are used to find the onset of chaos. Typically we find that a variation
2 σ is sufficiently dense to find the minimum dynamic aperture with a precision of 0.5 σ.

nsincl 2 σ is standard. A smaller step, of 0.5 say, can give better results.
turnsl For the long term tracking we usually track for 100,000 turns or more.
turnsle This variable should be set to the number of zeros of ‘turnsl’, i.e. ‘5’ in our example.
writebinl This defines after how many turns data are written to output files.

Important : make sure that writebinl is large enough otherwise huge amounts of data
will be created. Occasionally that may be of use, however in most cases make sure that
no more than a total of 1,000 turns are recorded. This implies that for ‘turnsl=100000’ the
variable should be set to at least ‘writebinl=100’. When running on BOINC, rather than
LSF, the binary files are not returned but SixTrack is checkpointed every writebinl
turns. It is recommended to set writebinl to 10000 for BOINC runs.

kinil & kendl Initial and end angle in phase space. As in the ‘short run’ mode the variation
from ‘kinil’ to ‘kendl’ is done in steps defined by ‘kstep’.

kmaxl This defines the number of phase space angles, e.g. ‘kmaxl=5’ means that each steps
amounts to: 90◦/(kmaxl + 1) = 15◦. Thus the actual angles are computed by dividing
90 by kmaxl+1, so 5, 19, 59 for example are reasonable choices. The choice of kmaxl is
discussed in Ref. [?].
Now the other physics and system parameters must be defined in the sixdeskenv file

if the defaults are not suitable. When the platform is defined as LSF, LSF job class definitions
will be required:
platform=LSF or may be set to BOINC.
longlsfq=1nd sufficient for 100,000 turns, 60 particles
classs=sixmedium for short runs.
classda=sixda for the sixda jobs requiring large memory
sixdeskforce=0 Should normally be left at 0 but may be set to 1 or 2 (see later)
The LSF job class defaults are normally satisfactory, but longlsfq should be set to 2nd or to
1nw if performing more than 105 turns.
ibtype=0 or 1 to use the Erskine/McIntosh optimised error function of a complex number
idfor=1 the closed orbit is added, if set to 0 the initial co-ordinates are unchanged
sixdeskpairs=30 Normal value for 60 particles

Then we have, depending on the runtyp:

if test $runtype = "inj"
then

e0=450000. (energy)
gamma=479.6 (gamma)
dpini=0.00075 (initial relative momentum deviation)

elif test $runtype = "col"
then

e0=7000000.

8

gamma=7460.5
dpini=0.00027

fi

dpmax=0.002 maximum momentum deviation for a short term run
Next we have the tunes again depending on the runtype:

tune=0
In this case the run six will make a special local LSF run to compute the tunes. Alternatively
the tunes may be specified and in particular a tunescan can be performed where the tunes will be
computed on a straight line from (tunex,tuney) with gradient deltay/deltax up to and including
(tunex1,tuney1). The tunes must be 10 .le. tune .lt. 100 in format dd.dd[d][d]. The folowing
example specifies the tunes (64.28,59.31) with no scan.

if test $runtype = "inj"
then

tunex=64.28 Start value
tuney=59.31 Start value
deltax=0.001 Increment to tunex
deltay=0.001 Increment to tuney
tunex1=64.28 End value
tuney1=59.31 End value
Similarly for collision we have:

elif test $runtype = "col"
then

tunex=64.31
tuney=59.32
deltax=0.001
deltay=0.001
tunex1=64.31
tuney1=59.32

The total number of jobs/cases can be computed as the product of the number of seeds,
the number of tune values, the number of amplitude intervals and the number of angles. The
total number of cases and progress is reported in the work directory and can be examined with
the run query or run status commands.

Each batch job returns a result file fort.10.gz to the track tree/hierarchy. For LSF
studies, if the CASTOR switch is on in the sysenv file, all the result files, including the binary
files and the fort.6 output, are compressed in a tar file and written to $CASTOR HOME/direct track/*
where the direct track tree matches the track tree in AFS.

It is not recommended to run a study of more than 30,000 jobs/cases in a single workspace
but up to 100,000 still works. A study can be split over two or more workspaces, perhaps by
seed number, and the results combined.

Problems may, indeed often, arise when it is necessary to run the script more than once,
either because of a system crash, batch daemon not responding, jobs lost, or some other er-
ror. The script run six can be rerun as often as necessary, but by default will not re-submit
jobs. The run six can either be submitted as a batch job and/or with a different seed range
(ista, iend). However, the run six script now maintains a copy of each LSF job in

9

$sixdeskwork/jobs directory and a file $sixdeskwork/JobIds containing one line
for each case. Each line contains the JobName, the directory for the input files, and the fort.10.gz
output, and the associated LSF job ID(s). If run six is called more than once, it ignores
cases where a non-zero fort.10.gz exists, but otherwise deletes the tracking input files and re-
generates them. Even simpler recovery is available with the run missing jobs command.
It is essential to wait for existing LSF jobs to complete, or to cancel them, and do at least two
run status commands before invoking run missing jobs. This procedure has proven
to be extremely effective. In the worst of all cases wait for, or cancel, outstanding batch jobs
with the bkill 0 command, and delete everything except the sixtrack input with a rm
track/* work/* command and restart.

With BOINC the situation is simpler; near the end of a study a run incomplete cases
command will re–submit jobs for those cases where no results are available.

8 Monitoring the progress of the study.
The script run status looks into the database work directory and updates and sum-

marises the status of the study. The run query command gives a quick look without any
updating. It first counts the number of cases in $sixdeskwork/JobIds. It reports the num-
ber of LSF batch jobs generated, possibly more than one per case, and does an LSF bjobs
to report on job status. Finally it performs a rather time-consuming search to find the number
of unfinished cases. It also produces the files completed jobs, incomplete jobs and
possibly missing jobs in the $sixdeskwork directory. When all cases are complete the
run join10 procedure can be initiated. While the run status command may take some time,
many minutes for 50,000 cases, it makes it very easy indeed to recover from LSF failures. For
example, in a recent study with 43,100 jobs over 800 jobs failed. One run missing jobs
command re-submitted them automatically to successfully complete the tracking. As an alterna-
tive, the run six command can be re-issued and will not re-submit jobs if sixdeskforce
= 0, will not re-submit jobs which have been completed successfully if sixdeskforce =
1 AND a fort.10.gz result file has been created.

There are also cases of database corruption. These are cleaned up, after all running LSF
jobs have terminated, by the correct cases command. Overall the environment has been
proven to be rather robust and almost all errors can be recovered.

9 The fort.10 File
The structure of the fort.10 files is shown in Tables 1 and 2, which have been taken

from the official SixTrack manual [2] and updated with recent additions. All values are double-
precision numbers, values encoded if necessary. There is one (very long) line per particle.

10 The Other SixTrack Output Files and What the Run Environment Does With
Them.
By default the scripts automatically tar all output files and store them directly to CAS-

TOR. In order to view these files they have to be copied from CASTOR using the standard
CASTOR tools like rfcp, rfrm and nsls, nsrm, nsmkdir etc. The option --help is
availble for each of these commands.

Although the full description of all output files is beyond the scope of this note; an ascii
file worth looking at is the fort.6.gz which gives an explicit description of all operations
and possible failures of the SixTrack run as seen by the program. Also one finds the tracking

10

Table 1: Post-processing data of the fort.10 file

of Column Description
1 Maximum turn number
2 Stability Flag (0=stable, 1=lost)
3 Horizontal Tune
4 Vertical Tune
5 Horizontal β–function
6 Vertical β–function
7 Horizontal amplitude 1st particle
8 Vertical amplitude 1st particle
9 Relative momentum deviation ∆p

po

10 Final distance in phase space
11 Maximum slope of distance in phase space
12 Horizontal detuning
13 Spread of horizontal detuning
14 Vertical detuning
15 Spread of vertical detuning
16 Horizontal factor to nearest resonance
17 Vertical factor to nearest resonance
18 Order of nearest resonance
19 Horizontal smear
20 Vertical smear
21 Transverse smear
22 Survived turns 1st particle
23 Survived turns 2nd particle
24 Starting seed for random generator
25 Synchrotron tune
26 Horizontal amplitude 2nd particle
27 Vertical amplitude 2nd particle

11

Table 2: Post-processing data of the fort.10 file continued

of Column Description
28 Minimum horizontal amplitude
29 Mean horizontal amplitude
30 Maximum horizontal amplitude
31 Minimum vertical amplitude
32 Mean vertical amplitude
33 Maximum vertical amplitude
34 Minimum horizontal amplitude (linear decoupled)
35 Mean horizontal amplitude (linear decoupled)
36 Maximum horizontal amplitude (linear decoupled)
37 Minimum vertical amplitude (linear decoupled)
38 Mean vertical amplitude (linear decoupled)
39 Maximum vertical amplitude (linear decoupled)
40 Minimum horizontal amplitude (nonlinear decoupled)
41 Mean horizontal amplitude (nonlinear decoupled)
42 Maximum horizontal amplitude (nonlinear decoupled)
43 Minimum vertical amplitude (nonlinear decoupled)
44 Mean vertical amplitude (nonlinear decoupled)
45 Maximum vertical amplitude (nonlinear decoupled)
46 Emittance Mode I
47 Emittance Mode II
48 Secondary horizontal β–function
49 Secondary vertical β–function
50 Q′x
51 Q′y
52 SixTrack Version (encoded in double precision)

53 – 58 Closed Orbit
59 Total turns all particles
60 Tracking CPU time in seconds

12

data in the binary files fort.90.gz down to fort.61.gz, which may be useful for further
analysis. These and other files are all described in the SixTrack manual [2]. Note that these files
are not available from BOINC runs which are for full scale production; LSF should be used for
testing and debugging.

11 Post-processing with run join10
run join10 gathers the results of completed jobs and produces combined output files

at level 4 in the track tree. It also deletes any results of previous run join10 commands.
The result directory is named $ns1l-$ns2l e.g. 14-20 as compared to the other amplitude
directories e.g. 14 16, 16 18, etc. There is one additional parameter for run join10 namely
turnsemaxwhich is set automatically by sixdeskenv to $turnsle or $turnsse for long/short
studies. Missing files are reported to sixdesk.log but even incomplete results may be useful.
This procedure makes use of the utility program joinf10 in the directory bin.

12 Post-processing with run post
After possibly joining the fort.10 files they can be postprocessed to find chaotic

boundaries and particle losses by using the script run post, which in turn uses the program
read10b in the directory bin.

There are a couple of options for plotting. The sixdeskenv variables iplot and kvar
specific to run post are used. If iplot=1 a plot is produced for each seed and the results
can be found in the plot directory. Note that setting iplot to 1 will produce a possibly huge
amount of data, even if it is compressed with gzip. The variable kvar should be set to 1 to
obtain the DA as a function of angles for a long study, and the DA over ALL seeds and angles
is plotted for each angle even if iplot=0.

The following variables are used, almost certainly with the same values as used by
run six and run join10:
kinil & kendl Initial and end angle in phase space. The variation from ‘kinil’ to ‘kendl’ is done

in steps defined by ‘kstep’ (see below).
kmaxl This defines the number of phase space angles, e.g. ‘kmaxl=5’ means that each step is

of: 90◦/(kmaxl + 1) = 15◦.
kstep Used to define the step width of the phase space angle.
Ampl The amplitude range in sigma. To distinguish the original amplitudes ranges from the

joined ranges a hyphen is used ‘–’ instead of an underscore ‘ ’. Ampl is set automatically
using ns1s/ns2s or ns1l/ns2l.

turnse This variable should be set to the number of zeros of number of turns processed, i.e. ‘5’
in our example, it is part of the data directory structure.

short In the example ‘short=0’ means that the mode short run is not activated.
long In the example ‘long=1’ means that the mode long run is activated.
iplot No plotting for each seed if ‘iplot=0’. If this flag is set to ‘1’ or ’2’ the following graphics

are produced:
– Short run

• Chromaticity, i.e. the tune versus δ.
• Horizontal and vertical detuning each in one plot for all tracked phase space

angles.
• Tune foot print, i.e. vertical tune versus horizontal tune with the amplitude as

a parameter.

13

– Long run
• End value of the distance in phase space ‘d(turns)’ of 2 initially close–by par-

ticles as a function of initial amplitude.
• Fitted slope of log d(turns) versus log (turns) of the distance in phase space

of 2 initially close–by particles as a function of initial amplitude. For details
of the meaning of these two chaotic definitions please refer to reference [?].

• Survival plot, i.e. survival time versus initial amplitude.
• Horizontal and vertical smear as a function of initial amplitude.
• Phase space averaged amplitude versus initial amplitude.

For ‘iplot=2’ these plots are automatically printed using your normal Linux $PRINT CMD.
Obviously, great care has to be taken to avoid a swamping the printer. The graphics are
stored as files like test.ps.gz in the directory sixjobs/plot/"study" with the
same tree structure as the track tree.
The result files from run post in long mode are called DAres*, one per angle, and are

stored in the sixjobs directory itself. The contents and format are defined in the next section
13 Here it should be noted that setting kvar=1 causes run post to take a long time, even a
very long time of many hours, for a large number of angles. If both iplot and kvar are set
to 0 the DAres* files are produced anyway and can be processed with run awk or your own
procedures.

13 The DAres files
These files contain the following columns:

– Run name for particular seed.
– “Strict” chaotic boundary via slope method [?].
– “Certain” chaotic boundary via large distance in phase space method [?].
– Dynamic aperture concerning the phase space averaged amplitude (preferred value).
– Raw dynamic aperture concerning initial amplitude (to be used with care).
– Lower bound of tracked amplitude range.
– Upper bound of tracked amplitude range.
run awk uses the DAres..... files from run post, reports to the screen, and produces a

simple plot file named DAres.........plot.

14 Running studies in batch and/or parallel
In summary a study can be run in the following steps:

1. Create a study by set env and after creating the mask file in the mask directory do
a run mad6t. Repeat as often as necessary until check mad6t is successful and the
mad6t output has been verified.

2. For a large study use run six in a batch job by:
bsub -q1nd ’cd w1/sixjobs;run_six job_tracking LSF’

to submit all cases of the study job tracking in workspace w1 using LSF. The progress
of the command can be monitored by e.g. tail -f sixdesk.log or bpeek "LSFJobID".

3. Use run status or run status job tracking, as frequently as convenient until
all cases are complete or all batch jobs have terminated. The command correct cases
can be used if the database appears to be inconsistent (but only after all LSF jobs have ter-
minated). It checks each case and updates the complete/incomplete status. If there are in-
complete cases with LSF do a run missing jobs. With BOINC use a run incomplete cases

14

to speed up the completion of the study or to handle the tail of incomplete cases. When
all cases have been completed do a

4. run join10 or bsub -q1nd ’cd w1/sixjobs;run join10 job tracking’
followed by a

5. run post or bsub -q1nd ’cd w1/sixjobs;run post job tracking’

15 Lockfiles
It is necessary to use locks in order to avoid conflicting modifications to a file. A directory

is locked if it contains a file sixdesklock in read only mode (444). If a script fails or dies for some
reason or a batch job is killed , this lock file may be left behind. The script check locks re-
ports lock status for the current study; check all locks for the workspace. If the study
itself is locked, it will be reported first as such a lock inhibits further checking. unlock
"directory" frees the lock. The unlock all unlocks all locks but is deprecated. If in
doubt about a lock, and the information shown by the check commands, simply do a check lock
"directory" or cat sixdesklock and ls -l sixdesklock in the relevant direc-
tory, to see which script, process and machine are holding the lock and since when. The general
philosophy is to lock the study so that only one operation at a time is permitted. Most command
wait for the study to be unlcoked but the run results command for BOINC just exits on the
grounds that it will be run periodically, nornally as an acrontab entry.

16 BOINC
The sixdesk environment was designed to make it as transparent as possible to use LSF

(or the now obsolete in house CPSS Windows desktop system) and later the Berkeley Open
Infrastructure for Network Computing BOINC [?]. This has made over 100,000 PCs available
for tracking studies. There is one additional step required, namely run results, to retrieve
result files from the BOINC Web server and move the fort.10.gz to the appropriate directory.
Only this file is returned, no fort.6 or binary or graphics files and nothing is written to
CASTOR. To use BOINC the sixdeskenv file is modified to
platform=BOINC
and that is all.

1. run mad6t operates identically as for LSF.
2. check mad6t as for LSF.
3. run six as for LSF.
4. run status as for LSF.
5. run results must now be called to get the fort.10.gz file from the BOINC server. It

can be called regularly, automatically, by using an acrontab entry in AFS, and there is an
example acrontab.entry in the sixjobs directory. In addition a run incomplete cases
script has been implemented to allow the use of multiple tasks for a case. This is partic-
ularly useful towards the end of a run, when say 90% of the cases are complete, in order
to speed up completion of the study.
Unlike LSF which returns all result files directly to the track tree with no checking
and over-writing existing results, BOINC compares the results file fort.10.gz with any
existing result and reports any differences to sixdesk.log.

6. when all cases are complete the run join10 and run post procedures are used as with
LSF.

15

17 Modifying the scripts/commands
All modifications should be made to the scripts in the directory scripts. The source

script beginning with the characters ”my” should be modified when it exists rather than the de-
rived script e.g. modify myrun six and NOT run six. The script domyseds, which operates
on all the files/scripts in the file allscripts, should then be executed to expand macros in
scripts named ”my....” to produce the actual command scripts, and tocopy all the commands to
../sixjobs.

Here is a more or less alphabetic list of the ”my” scripts:

[my]backup_study
[my]backup_workspace
[my]check_all_locks
[my]check_lock
[my]check_locks
[my]check_mad6t
[my]correct_cases
[my]delete_study
[my]dorun_mad6t called by run_mad6t
[my]get_all_betavalues
[my]mywhich
[my]recall_study
[my]recall_workspace
[my]rerun_all_cases
[my]run_awk
[my]run_incomplete_cases
[my]run_incomplete_tasks
[my]run_join10
[my]run_missing_jobs
[my]run_post
[my]run_query
[my]run_results
[my]run_six
[my]run_status
[my]set_env
[my]unlock
[my]unlock_all

and here is a list of some other useful scripts/commands without macros.

bresume_all
bstop_all
exec_env
get_wpro
minav.awk called by run_awk
print_env
query_all
sub_wpro

16

18 The Subroutines
These subroutines are all defined in the file mydot profile and may therefore use macros

themselves. A . ./dot profile statement is issued when starting a script in order to make
them available. (Parameters need to be documented.) They are called by the corresponding ”my”
macros as shown.

sixdeskmess() mymess
sixdeskmktmp() mymktmp
sixdeskmktmpdir() mymktmpdir
sixdeskexit() myexit
sixdeskunlock() myunlock
sixdesklock() mylock
sixdesktunes() mytunes
sixdeskinttunes() myinttunes
sixdeskamps() myamps
sixdeskrundir() myrundir

The scripts:

[my]dot_boinc
[my]dot_bsub

are effectively subroutines used by run six. The scripts

[my]dot_env
[my]dot_profile

are called by almost everyone to establish the environment and make the subroutines available.

19 Backing up the workspace
The scratch disks at CERN are not backed up (unlike your $HOME) for the time being.

It is recommended that you periodically run a backup so that data can be recovered in case of a
scratch disk failure. It is also recommended to a backup study [job tracking] when
a study job tracking is complete. The study may then be deleted safely.

These backups can be done rather simply in a batch job. First is shown an example of
backing up your scratch disks and then the rather more sophisticated facilities available for
SixDesk tracking studies and workspaces.

NOTA BENE: all castor backups save the logs in your /castor/logs. Although these are
gzipped and might be useful if you forget the contents of a backup you may also just want to
delete them to save space in your HOME directory. The contents of backups can be always
be determined from the backups themselves. Note also that for all backups, links are NOT
followed. Further a link to a non-existent file is NOT backed up.

1. Backing up scratch disks Everyone has a CASTOR account and a default $CAS-
TOR HOME directory /castor/cern.ch/user/$INITIAL/$LOGNAME. All the ns commands like
nsls, nsrm, nsmkdir etc use this by default. In this example all the backups are in the CAS-
TOR directory scratch backups. In the examples below ”date” is of the form yyyy-mm-dd (and
mydate is just -yyyy-mm-dd). The batch job script, which must have execute permission, is as
follows:

#!/bin/sh
Do a dated (by day) backup of all scratch disks to

17

$CASTOR_HOME/scratch_backups
and log the reports in ˜/backup_scratch.reports
#
cd $HOME
mydate="-‘date -Idate‘"
echo "" >> backup_scratch.reports
echo "Scratch backup reports$mydate" >> backup_scratch.reports
echo "Scratch backup reports$mydate"
echo "" >> backup_scratch.reports
for i in ‘ls -d scratch*‘
do

echo "Backing up $i to scratch_backups/$i$mydate" >> backup_scratch.reports
echo "Backing up $i to scratch_backups/$i$mydate"
castor_backup $i scratch_backups/$i$mydate
nsls -l scratch_backups/imydate >> backup_scratch.reports
nsls -l scratch_backups/imydate

done

If the job runs to completion (as can be checked in the LSF STDOUT or the backup scratch reports)
a lost disk, scratch0 say, can be restored with a

cd $HOME
castor_recall scratch_backups/scratch0"mydate"/scratch0

where ”mydate” identifies the backup to be used. nsls scratch backups will show all avail-
able backups. Clearly this can also be done in a batch job. To recall to a different place

cd $HOME/scratch99
castor_recall scratch_backups/scratch0"date"/scratch0 .

2. Backing up SixDesk workspaces and directories. The intended usage is that in order to
free up disk space a study can be backed up and then deleted. It may later be recalled to exactly
the same workspace or to a new different workspace. The backup workspace might be used to
backup a complete set of studies. A study may be recalled from either a workspace backup or a
study backup.

Deleted studies are never backed up; a non-deleted study cannot be recalled to the same
workspace. Deleting a study does NOT delete sixjobs and all sixdeskenv/sysenv files are kept
in the studies directory. All DAres* files are also preserved.

All backup/recall commands should be issued from the sixjobs directory as usual except
for recall workspace where you must be in the workspace itself.

In these examples ”date” is of the form ddmmyy. So, normally, for example:

cd ˜w1/sixjobs
set_env job_tracking
backup_study
delete_study

and subsequently

cd ˜w1/sixjobs
set_env job_tracking
recall_study w1%job_tracking%"date"

18

or

cd ˜w1/sixjobs
set_env job_tracking
recall_study w1%job_tracking%"date" w99

In the latter case the sixdeskenv files are edited to reflect the new workspace. In all recalls
an existing sixjobs directory is never overwritten, but in all cases the sixtrack input, track, work,
and plot data are recalled along with logfiles if possible.

To recall several studies to a new workspace, the first recall will recall sixjobs as well as
the data; afterwards, cd to the workspace to recall other studies.

As mentioned a study can be similarly recalled from a workspace backup by

set_env job_tracking
recall_study w1%"date" to restore it to w1

or

set_env job_tracking
recall_study w1%"date" w99 to a new empty workspace.

Finally a complete workspace can be recalled to the same workspace or a different one.
To backup a workspace

cd ˜/w1/sixjobs
backup_workspace

and to recall

cd ˜/w1
recall_workspace w1%"date"

or

cd ˜/w99
cp SOMEWHERE/recall_workspace .
./recall_workspace w1%"date"

All backups can be found in $CASTOR HOME/workspace backups with names like
w1%job tracking%”date” for a study backup
or
w1%”date” for a workspace backup.
nsls workspace backups will list them all.
All backups are automatically restartable from checkpoints as they may take some time

and are subject to the usual system failures. A file backup study.list or backup workspace.list
is used for restarting from the point of failure. Thus a backup must be completed before a new
backup is started in the same workspace (or the file backup study.list or backup workspace.list
must be deleted). The workspace is locked to ensure only one backup at a time and no switching
of studies.

These procedures may seem complicated but the simple backup, delete, recall are easy
to perform and the complications are necessary to avoid destroying data and to recover from
system failures. Details of the CASTOR backups/ recalls can be found in the castor backup.log
or castor recall.log.

19

20 Additional Notes
The scripts dot env, dot errmess, and dot exit are called by the others to obtain

the lock and set the environment, issue error messages and log them, and to exit freeing the
lock.

The scripts dot bsub and dot boinc are called by run six to submit a batch job to
LSF, or a task to BOINC.

21 Other lattices
Clearly any lattice file may be processed by the run environment not just the LHC. The

mask file has to be changed as appropriate. Other changes are described in the main part of
this note, including aesthetic name changes. Also required are definitions of the runtype (see
section 5). This variable and the variable beam specify which of the fort.3.mother1 and
fort.3.mother2 from the directory

sixjobs/control_files

to use. The value of the runtype and beam variables simply specify the suffix of the files
to be used from this directory. For how these files are constructed the user is refered to the
SixTrack manual [2].

22 Acknowledgements
Thanks to R. Demaria, M. Giovannozzi and T. Risselada for acting as guinea pigs and

for many helpful suggestions.

References
[1] M. Hayes and F. Schmidt, “Run Environment for SixTrack”, LHC Project Note 300,

(see also http://wwwslap.cern.ch/frs/SixTrack run environment/manual.ps).
[2] F. Schmidt, “SixTrack: Version 3, Single Particle Tracking Code Treating Transverse Mo-

tion with Synchrotron Oscillations in a Symplectic Manner, User’s Reference Manua”,
CERN/SL/94–56 (AP)
(see also http://wwwslap.cern.ch/frs/Documentation/doc.htmlx).

[3] H. Grote, “Statistical significance of dynamic aperture calculations”, Beam Physics Note
34.

[4] http://physics.nist.gov/cuu/Constants/index.html http://physics.nist.gov/cuu/Constants/index.html.
[5] R. Bartolini and F. Schmidt, “SUSSIX: A Computer Code for Frequency Anal-

ysis of Non–Linear Betatron Motion”, presented at the workshop “Nonlinear
and Stochastic Beam Dynamics in Accelerators – A Challenge to Theoreti-
cal and Computational Physics”, Lüneburg, September 29 – October 3, 1997,
CERN SL/Note 98–017 (AP), http://wwwslap.cern.ch/frs/report/sussix manual sl.ps.gz
http://wwwslap.cern.ch/frs/report/sussix manual sl.ps.gz.

[6] M. Giovannozzi and E. McIntosh, “Parameter scans and accuracy estimates of the dynam-
ical aperture of the CERN LHC”, EPAC’06, June 2006, Edinburgh.

[7] M. Böge and F. Schmidt, “Data Organisation for the LHC Tracking Studies with SIX-
TRACK”, LHC Project Note 99,
http://wwwslap.cern.ch/frs/report/lhc pro note99.ps.Z http://wwwslap.cern.ch/frs/report/lhc pro note99.ps.Z.

[8] M. Böge and F. Schmidt, “Estimates for Long–Term Stability for the
LHC”, LHC Project Report 114, presented in part at the Particle Ac-
celerator Conference, Vancouver, 12–16 May, (1997), AIP Conference

20

Proceedings 405 (1996), http://wwwslap.cern.ch/frs/report/conj97lhc.ps.Z
http://wwwslap.cern.ch/frs/report/conj97lhc.ps.Z,
the poster version: http://wwwslap.cern.ch/frs/report/conj97post.ps.Z
http://wwwslap.cern.ch/frs/report/conj97post.ps.Z
and contribution to the workshop on “New Ideas for Particle Accelerators”, Santa Barbara,
November 1996.

[9] “Berkeley Open Infrastructure for Network Computing”, http://boinc.berkeley.edu

21

