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Figure 1: Moving reference frame (x̂, ŷ, ẑ) parametrized by s(t). The trajectory
of a particle Q can be described by the coordinates (x, y, s, t).

1 Introduction

These notes give a short self-contained exposition of the physical assumptions
and models implemented in SixTrack. Emphasis is given on the physical con-
cepts rather then delving in to the details of the implementation. The content
is meant to complement the SixTrack user guide (see [1]).

SixTrack is a 6D single particle symplectic tracking code used to compute the
trajectories of individual relativistic charged particles in circular accelerators.
It has been developed based on the 4D tracking code RaceTrack [2] by adding
the third degree of freedom, introducing beam-beam forces and extending the
pre- and post- processing capabilities.

The physical models are collected from the main references [3�9], which
contain more details of the derivation of the maps.

2 Basic Principles and Hamiltonian formalism and

notation

The speed, momentum, energy, rest mass, charge of a particle are indicated by
v, P , E, m and q, respectively. These quantities are related by the following
equations:

v = βc E2 − P 2c2 = m2c4 E = γmc2 Pc = βE (1)

where β and γ are the relativistic factors.
In a curvilinear reference frame de�ned by a constant curvature hx in the

X̂, Ẑ plane and parameterized by s (see Fig. 1), the position of the particle at
a time t can be written as:

~Q(t) = ~r(s) + x x̂(s) + y ŷ(s), (2)
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and therefore identi�ed by the coordinates s, x, y, t in the reference frame de-
�ned by x̂(s) and ŷ(s). In particle tracking, s is normally used as independent
parameter and t as a coordinate.

The electromagnetic �elds E and B can be derived in a curvilinear reference
frame from the potentials V (x, y, s, t) and A(x, y, s, t), where

A(x, y, s, t) = Ax(x, y, s, t)x̂(s) +Ay(x, y, s, t)ŷ(s) +As(x, y, s, t)ẑ(s) (3)

and for which:

E = −∇V − ∂A

∂t
= −∂xV x̂− ∂yV ŷ −

1

1 + hx
∂sV ẑ − ∂tA (4)

B = ∇×A =

(
∂yAs −

∂sAy
1 + hx

)
x̂+ · · · (5)

· · ·+
(
∂sAx

1 + hx
− hAs

1 + hx
− ∂xAs

)
ŷ + (∂xAy − ∂yAx) ẑ. (6)

In this reference frame the canonical momenta are:

Px = mγẋ+ qAx, Py = mγẏ + qAy, Ps = mγṡ(1 + hx)2 + q(1 + hx)As.
(7)

If s(t) is monotonically increasing, it is possible to derive the equations of motion
using s as the independent parameter and t as a coordinate with −E as the
conjugate momentum. Since in accelerators the orbits of the particles are often
a perturbation of the reference trajectory followed by a particle with rest mass
m0, charge q0, speed β0c and momentum P0, one could use the following derived
quantities that usually assume small values:

∆s = s− βct c∆t = s/β0 − ct σ = s− β0ct (8)

δ =
P − P0

P0
pt =

E − E0

P0c
pσ =

E − E0

β0P0c
. (9)

and rescale the momenta according to:

px = Px/P0 py = Py/P0 ps = Ps/P0 (10)

ax = qAx/P0 ay = qAy/P0 as = qAs/P0. (11)

The corresponding Hamiltonians, kept implicit for brevity, are:

H (x, px, y, py, σ, pσ; s) = pσ − ps (12)

H (x, px, y, py, c∆t, pt; s) =
pt
β0
− ps (13)

H (x, px, y, py,∆s, δ; s) = δ − ps, (14)
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where

ps = (1 + hx)

(√
(1 + δ)2 − (px − ax)2 − (py − ay)2 + as

)
(15)

P

P0
= 1 + δ =

√(
E

P0c

)2

−
(
mc

P0

)2

=

√
p2
t +

2pt
β0

+
1

β2
0

(
1− m2

m2
0

)
+ 1 (16)

E

P0c
=

1

β0
+ pt =

√(
P

P0

)2

+

(
mc

P0

)2

=

√
(1 + δ)

2
+

(
m

m0

)2(
1

β0γ0

)2

(17)

(1 + δ)
2

= β2
0p

2
σ + 2pσ + 1 β =

Pc

E
=

1 + δ

1/β0 + pt
(18)

(19)

In addition the following derivatives and approximations can be derived:

δ ' pσ −
1

γ2
0

· 1

2
p2
σ

dδ

dpσ
=
β0

β
' 1− pσ

γ2
0

d2δ

dp2
σ

= − 1

γ2
0

·
(
p0

p

)3

(20)

δ ' pt
β0
− 1

β2
0γ

2
0

· 1

2
p2
t

dδ

dpt
=

1

β
' 1

β0
− pt
β2

0γ
2
0

d2δ

dp2
t

= − 1

β2
0γ

2
0

·
(
p0

p

)3

(21)

3 Beam-line elements tracking maps

Each beam line elements is often characterized by a speci�c �eld con�guration
which determine the way the equation of motions are solved. The solutions of
the equation of motion are typically explicit and derived by solving exactly the
Hamilton equations for arbitrary initial conditions of an approximated Hamil-
tonian.

The following section illustrates the tracking maps used by SixTrack, labelled
by the beam line elements that the maps approximately represent. The map is
the solution of the equations of motion for a step L in the independent parameter
s with a given set of initial conditions in the canonical coordinates. For brevity,
when a coordinate is left unchanged by the map, the corresponding equation is
omitted. High order integrators for single beam line elements can be built by
combining simpler maps (e.g. thin kick and drifts).

The following maps use the canonical conjugate pairs (x, px), (y, py) and
(σ, pσ). It should be noted that SixTrack compute x′ and y′ during tracking
instead of the momentum coordinates px and py and (E, E0), (P , P0) instead
of pσ. The canonical variables are used instead for the generation of linear and
higher order symplectic maps needed for action-angle variable transformations
and Twiss parameter extraction.
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3.1 Drift

A drift is a straight, �eld-free region (hx,y = 0, V = 0 and A = 0). The exact
and expanded Hamiltonian for a drift space are

H = pσ −
√

(1 + δ)2 − p2
x − p2

y ≈ pσ − δ +
1

2

p2
x + p2

y

1 + δ
. (22)

With the help of the following de�nitions:

xp =
Px

P0(1 + δ)
' px
pz

= x′, yp =
Py

P0(1 + δ)
' py
pz

= y′, (23)

the map relative to the expanded Hamiltonian is (eq. 3.49 in [5])

x→ x+ xpL y → y + ypL (24)

c∆t→ c∆t+
L

β0
− L

β

(
1 +

x2
p + y2

p

2

)
∆s→ ∆s− x2

p + y2
p

2
(25)

σ → σ + L− β0
L

β

(
1 +

x2
p + y2

p

2

)
. (26)

With the additional de�nitions:

pz =
Pz
P0

(27)

pz =
√

(1 + δ)2 − p2
x − p2

y =
√
β2

0p
2
σ + 2pσ + 1− p2

x − p2
y, (28)

βz = β
Pz
P

=
pz

1 + δ
=

pz
1/β0 + pt

=
pz

1/β0 + β0pσ
, (29)

the map of the exact Hamiltonian (eq. A.6a in [6]) is

x→ x+ x′L y → y + y′L (30)

c∆t→ c∆t+

(
1

β0
− 1

βz

)
· L ∆s→ ∆s+

pz − 1− δ
pz

· L (31)

σ → σ +

(
1− β0

βz

)
· L σ → σ +

pz − 1− β2
0pσ

pz
· L. (32)

It is possible to de�ne a �polar� drift that has the e�ect of rotating the
reference frame [10] for instance in the x-z plane:

px → px cos θ + pz sin θ pz → −px sin θ + pz cos θ (33)

z = −x sin θ x′ = px/pz y′ = py/pz (34)

x→ x cos θ − x′z y → y − x′z (35)

∆s→ ∆s+
1 + δ

pz
z σ → σ +

β0

βz
z. (36)

where θ is the angle bringing the new x̂ towards the old ẑ. The map can be also
generated by combining a rotation with a −x sin(θ)-length drift. This map is
not used in SixTrack.
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3.2 Dipole

In a curvilinear reference system with a constant curvature hx in the horizontal
plane or hy in the vertical plane (but not both, i.e. hx · hy = 0) a uniform
magnetic �eld can be derived by the vector potential:

Ax = 0, Ay = 0, As = −Byx
(

1− hxx

2(1 + hxx)

)
, (37)

where we have chosen hy = 0. Often the bending radius of the dipole corre-
spond to hx,y = q0

p Bx,y, where q0 is the charge of the reference particle, which
simplify the Hamiltonian further. In these conditions the exact and expanded
Hamiltonian for a horizontal bending magnet is (eq. 2.12 in [4])

H = pσ − ps + q · hxx
(

1 +
hxx

2

)
(38)

≈ pσ +
1

2

p2
x + p2

y

1 + δ
− hxx(1 + δ) +

q

q0
hxx

(
1 +

hxx

2

)
(39)

3.2.1 Thick dipole

De�ning the following quantities,

Gx =
q

q0
· h2

x

1 + δ
, Gy =

q

q0
· h2

y

1 + δ
(40)

Cx,y = cos(
√
Gx,yL), Sx,y = sin(

√
Gx,yL) (41)

the map relative to the expanded Hamiltonian is (eq. 4.11 in [4])

x→ Cx · x+
Sx√
Gx

1

1 + δ
· px +

δ

hx
(1− Cx)

px → −
√
Gx(1 + δ) · Sx · x+ Cx · px + δ

√
1 + δ · Sx

y → Cy · y +
Sy√
Gy

1

1 + δ
· py +

δ

hy
(1− Cy)

py → −
√
Gy(1 + δ) · Sy · y + Cy · py + δ

√
1 + δ · Sy

σ → σ + L

(
1− β0

β

)

− β0

β

[
hxSx√
Gx
· x+

1− Cx
hx

· px +
hySy√
Gy
· y +

1− Cy
hy

· py + δ

(
2L− Sx√

Gx
− Sy√

Gy

)]

− 1

4

β0

β

[
Gx

(
L− CxSx√

Gx

)(
x− δ

hx

)2

+

(
L+

CxSx√
Gx

)
p2
x

(1 + δ)2
−
(
x− δ

hx

)
2S2

x

1 + δ
· px

+Gy

(
L− CySy√

Gy

)(
y − δ

hy

)2

+

(
L+

CySy√
Gy

)
p2
y

(1 + δ)2
−
(
y − δ

hy

)
2S2

y

1 + δ
· py
]
.
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An alternative version of the ideal sector bend (eq. 12.18 in [10]) with arbitrary
bending �eld b1 = q0

PO
By and reference radius ρ is

α(s) = sin−1


 px(s)√

(1 + δ2)− p2
y


 (42)

pz(s) =
√

(1 + δ)2 − p2
x(s)− p2

y (43)

x→ ρ

b1

(
1

ρ
pz(L)− p′x(L)− b1

)
(44)

px → px cos(θ) + (pz(0)− b1(ρ+ x)) sin(θ) (45)

y → y +
pyL

b1ρ
+
py
b1

(α(0)− α(L)) (46)

ct→ ct+
(1 + δ)L

b1ρ
+

(1 + δ)

b1
(α(0)− α(L)) (47)

where θ = hL is the bending angle. This map is numerically unstable for L→ 0,
b1 → 0, ρ→∞. This map is not used in SixTrack.

3.2.2 Thin dipole

The map for a thin dipole kick (horizontal or vertical) from the expanded Hamil-
tonian is (eq. 4.12 in [6]):

px → px −
q

q0
· (hxL)(1 + hxx) + (hxL)(1 + δ) (48)

py → py −
q

q0
· (hyL)(1 + hyy) + (hyL)(1 + δ) (49)

σ → σ − β0

β
(hxx+ hyy)L. (50)

The map for a horizontal (hy = 0) thin dipole with the exact Hamiltonian
can be expressed as (eq. 3.21 in [7]) TII(L/2) ◦ TI(L) ◦ TII(L/2) where TII(L)
is given by

px →
1

1 + (hxL)2


px + (hxL)(1 + δ)



√

1− p2
x + p2

y − C
(1 + δ)2

− 1




 (51)

x→ x+ (hxL) · x · px
pz

(52)

y → y + (hxL) · x · py
pz

(53)

σ → σ + (hxL) · x ·
(
β0

β
− β0

βz

)
, (54)
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with C = −(hxL)2p2
y + 2(hxL)(1 + δ)px and TI(L) is given by

px → px − h2
xLx+ (hxL) · δ (55)

σ → σ − (hxL)x · β0

β
. (56)

In order to represent a dipole of length L this map is to be combined with two
surrounding drift spaces using the exact Hamiltonian, each of half the length of
the dipole.

The exact thin dipole could be also generated by the composition of

D(−L/2) ◦Dp(θ/2) ◦K(L) ◦Dp(θ/2) ◦D(L/2) (57)

for which D is a drift, Dp a polar drift and K the map generated by K =
by(x+ hx

2 x
2). This map is not used in SixTrack.

3.2.3 Dipole Edge e�ects

The dipole edge e�ects from a dipole of length L and bending angle θ can be
approximated by the map:

px → px +
1 + δ

ρ
tan(α) · x (58)

py → py −
1 + δ

ρ
tan(α) · y, (59)

where the bending radius ρ and α are de�ned as

ρ−1 =
hx√
1 + δ

α =
1

2

L

ρ
=
θ

2
. (60)

.

3.3 Quadrupole

A quadrupole is characterized by the vector potential

ax = 0 ay = 0 as = −1

2
k1(y2 − x2). (61)

The expanded Hamiltonian for a particle in a quadrupole is

H = pσ − δ +
1

2

p2
x + p2

y

1 + δ
+

1

2
k1(x2 − y2). (62)

3.3.1 Thick quadrupole

By de�ning the following quantities

g = q · g0

1 + δ
(63)
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we have the following two cases

C =

{
cos(
√
gL) g > 0

cosh(
√−gL) g < 0

S =

{
sin(
√
gL) g > 0

sinh(
√−gL) g < 0

(64)

Ĉ =

{
cosh(

√
gL) g > 0

cos(
√−gL) g < 0

Ŝ =

{
sinh(

√
gL) g > 0

sin(
√−gL) g < 0

(65)

Using the above de�nitions the map of a thick quadrupole is (eq. 4.2 in [4])

x→ C · x+
S√
|g|

px
1 + δ

(66)

px → −(1 + δ)
√
|g|S · x+ C · px (67)

y → Ĉ · y +
Ŝ√
|g|

py
1 + δ

(68)

py → (1 + δ)
√
|g|Ŝ · y + Ĉ · py (69)

σ → σ + L

(
1− β0

β

)
− |g|

4

β0

β

[(
L− C · S√

|g|

)
· x2 −

(
L− Ĉ · Ŝ√

|g|

)
· y2

]
(70)

− 1

4

β0

β

[(
L+

C · S√
|g|

)
· p2

x

(1 + δ)2
+

(
L+

Ĉ · Ŝ√
|g|

)
p2
y

(1 + δ)2

]
(71)

− 1

2

β0

β

[
− x · px

1 + δ
· S2 + y · py

1 + δ
Ŝ2

]
. (72)

3.3.2 Thick skew quadrupole

The Hamiltonian for a skew quadrupole

H = pσ − δ +
1

2

p2
x + p2

y

1 + δ
−N · xy, (73)
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where N = 1
2
q
E0

(
∂Bx

∂x −
∂By

∂y

)
x=y=0

. For a thick skew quadrupole the map is

(eq. 3.19, 3.20 in [3])

x→ C+ · x+ S+ · px − C− · y − S− · py (74)

px → −Ŝ− · x+ C+ · px + Ŝ+ · y − C− · py (75)

y → −C− · x− S− · px + C+ · y + S+ · py (76)

py → Ŝ+ · x− C− · px − Ŝ− · y + C+ · py (77)

σ → σ +
1

8
(x2 + y2)

(
C+Ŝ− + C−Ŝ+

)
(78)

− 1

8

p2
x + p2

y

(1 + δ)2

[
L+ C+S+ + C−S−

]
(79)

+
1

2
Nxy

[
L− C+S+ − C−S−

]
+

1

2

pxpy
(1 + δ)2

[
C+S− + C−C+

]
(80)

+
xpx + ypy

1 + δ
S+Ŝ− − xpy + pxy

1 + δ

1

2

[
S+Ŝ− + S−Ŝ+

]
(81)

where

C− =
cos
√
NL− cosh

√
NL

2
C+ =

cos
√
NL+ cosh

√
NL

2
(82)

S− =
sin
√
NL− sinh

√
NL

2
√
N

S+ =
sin
√
NL+ sinh

√
NL

2
√
N

(83)

Ŝ− =

√
N

2
(sin
√
NL− sinh

√
NL) Ŝ+ =

√
N

2
(sin
√
NL+ sinh

√
NL) (84)

3.4 Combined function magnet

3.4.1 Thin combined function magnet

The map is the combination of the map for the thin dipole and for a thin
quadrupole using the thin multipole expansion (eq. 3.12 in [5])

px → px −G1L · x+ (1 + δ)hxL− q · hxL (85)

py → py −G2L · y + (1 + δ)hyL− q · hyL (86)

σ → σ − β0

β
(hxx+ hyy)L, (87)

where G1 = q · h2
x + k1 and G2 = q · h2

y − k1.
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3.5 Thin Multipole

A longitudinally uniform static magnetic �eld can be described by the following
equations

Az = −<
∑

n=1

1

n
(Bn + iAn)

(x+ iy)n

rn−1
0

(88)

By + iBx =
∑

n=1

(Bn + iAn)
(x+ iy)n−1

rn−1
0

. (89)

A thin multiple idealize the e�ect of the �eld by taking the limit of the integra-
tion length going to zero while keeping constant the integrated strength. The
Hamiltonian is:

H = −δ(s)Lq
p
Az. (90)

The corresponding map is:

px → px − L · <
[∑

n=0

1

n!
(kn + ik̂n)(x+ iy)n

]
, (91)

py → py + L · =
[∑

n=0

1

n!
(kn + ik̂n)(x+ iy)n

]
, (92)

for which

kn =
q

p

∂nBy
∂xn

=
q

p

n!

rn0
Bn+1 Bn+1 =

rn0
n!

∂nBy
∂xn

(93)

k̂n =
q

p

∂nBx
∂xn

=
q

p

n!

rn0
An+1 An+1 =

rn0
n!

∂nBx
∂xn

(94)

For instance, the map for a normal quadrupole, sextupole and octupole are :

px → px − L · k1 · x py → py + L · k1 · y, (95)

px → px − L ·
k2

2
· (x2 − y2) py → py + L · k2 · xy, (96)

px → px − L ·
k3

6
· (x3 − 3xy2) py → py + L · k3

6
· (3x2y − y3). (97)

3.6 RF-cavity

The expanded Hamiltonian for a RF-cavity is (eq. 2.30 in [5])

H = pσ +
1

β2
0

C

2πha

qV (s)

E0
cos

(
ha

2π

C
σ + ϕ

)
, (98)
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where ha is the harmonic number, ϕ is the phase angle, V is the voltage and
C is the design circumference length. The thin lens transfer map is (eq. 3.44
in [5])

pσ → pσ +
1

β2
0

qV (s0)

E0
· sin

(
ha

2π

C
σ + ϕ

)
. (99)

Using the relation between pσ and the energy E, the map can be expressed as
the change in energy of the tracked particle

E → E + q · V sin

(
ha

2π

C
σ + ϕ

)
. (100)

This is how Sixtrack performs the calculation.

3.7 Solenoid

The expanded Hamiltonian for a particle in a solenoid is

H = pσ +
1

2

(px +R · y)2 + (py −R · x)

1 + δ
, (101)

where R = 1
2

q
P0c

B(0, 0, s). The map for a solenoid of length L in the thin lens
approximation with the expanded Hamiltonian (eq. 4.35 in [6])

x→ C · x+ S · y (102)

px → −θR · C · x+ C · px − θR · S · y + S · py (103)

y → −S · x+ C · y (104)

py → θR · S · x− S · px − θR · C · y + C · py (105)

σ → σ − β0

β

θ

1 + δ

(
1

2
R(x2 + y2) + (pxy − pyx)

)
(106)

where R ≡ R(s0), θ = R
1+δ , C = cos(θ) and S = sin(θ).

The map for a thick solenoid is (eq. 3.47, 3.48 in [3])

x→ C2 · x+
1

R
· S · C · px + S · C · y +

1

R
· S2 · py (107)

px → −R · S · C · x+ C2 · px −R · S2 · y + S · C · py (108)

y → −S · C · x− 1

R
· S2 · px + C2 · y +

1

R
· S · C · py (109)

py → R · S2 · x− S · C · px −R · S · C · y + C2 · py (110)

σ → σ − L

2

[
R2(x2 + y2) + 2R

(
px

1 + δ
y − py

1 + δ
x

)
+
p2
x + p2

y

(1 + δ)2

]
(111)

where θ = R · L, C = cos θ and S = sin θ.
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3.8 Beam-beam lens

In order to study beam-beam interactions the strong bunch can be split longi-
tudinally into several slices, each slice described by an electrostatic potential of
the form (eq. 2.1 in [8])

Û(x, y; Σ̂11, Σ̂33; θ) ≡ U(x̂, ŷ; Σ̂11, Σ̂33) = − rp
γ0

∫ ∞

0

exp
(
− x̂2

2Σ̂11+u
− ŷ2

2Σ̂33+u

)

√
2Σ̂11 + u

√
2Σ̂33 + u

du,

(112)

where Σij are the elements of the 6×6 phase-space envelope matrix of the strong
bunch.

To evaluate the e�ect of the beam-beam interaction on a test particle two
sets of transformations need to be considered. The �rst is a transformation of
Cartesian to accelerator coordinates and a Lorentz boost making the collision
between the bunches head-on, this is accomplished by the Lorentz transforma-
tion given by (eq. 2.21 in [8])

L =




1
cosφ − cosα sinφ − tanφ sinφ − sinα sinφ

− cosα tanφ 1 cosα tanφ 0
0 − cosα sinφ cosφ − sinα sinφ

− sinα tanφ 0 sinα tanφ 1


 , (113)

where α is the crossing plane angle and 2φ is the total crossing angle. The second
set of transformations is called the Synchro-Beam Mapping (SBM). In the SBM
the test particle at the interaction point (IP) is brought to the collision point
by a drift, then the beam-beam interaction is applied and �nally the position
of the test particle is brought back to the IP.

For a test particle with Lorentz transformed coordinates (x∗, p∗x, y
∗, p∗y, z

∗, p∗z)
the explicit form for the SBM is (eq. 2.65 in [8])

x∗ → x∗ + Sn∗F ∗x (114)

p∗x → p∗x − n∗F ∗x (115)

y∗ → y∗ + Sn∗F ∗y (116)

p∗y → p∗y − n∗F ∗y (117)

p∗z → p∗z − n∗F ∗z −
1

2

[
n∗F ∗x (p∗x −

1

2
n∗F ∗x ) + n∗F ∗y (p∗y −

1

2
n∗F ∗y )

]
, (118)

where n∗ is the number of particles in the slice S is the distance between a test
particle and the strong bunch and

F ∗x =
∂

∂x̄∗
Û(x̄∗, ȳ∗; Σ̂11(ϕ), Σ̂33(ϕ); θ(ϕ)) (119)

F ∗y =
∂

∂ȳ∗
Û(x̄∗, ȳ∗; Σ̂11(ϕ), Σ̂33(ϕ); θ(ϕ)) (120)

F ∗z =
∂

∂z̄∗
Û(x̄∗, ȳ∗; Σ̂11(ϕ), Σ̂33(ϕ); θ(ϕ)), (121)
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which are calculated from the expression for Û given above. Finally the inverse
Lorentz transformation L−1 is applied to the SBM transformed coordinates.

3.9 Beam-beam element

In the following, re is the classical electron radius and S is the strength ratio
with respect to the nominal beam-beam kick strength. The maps below assumes
no linear coupling between the transverse planes.

3.9.1 Round beam

De�nitions

rx = x− xco + xsep, (122)

ry = y − yco + ysep, (123)

r2 = r2
x + r2

y. (124)

The kick is

px → px + re · S ·
rx
r2

[
1− exp

(
r2

2σ2

)]
− beamo�(4), (125)

py → py + re · S ·
ry
r2

[
1− exp

(
r2

2σ2

)]
− beamo�(5). (126)

3.9.2 Elliptical beam

For this map, it is assumed that x > y (i.e. the horizontal extension of the beam
is larger than the vertical extension.) For the reverse case, y > x, interchange
x and y in the map.

rx = x− xco + xsep, (127)

ry = y − yco + ysep, (128)

σ̄ =
√

2(σ2
x − σ2

y). (129)

The kick is

px → px + sgn(rx)

[
re · S

√
π

σ̄

(
erf

( |ry|
σ̄

)
− exp

(
−1

2

[
r2
x

σ2
x

+
r2
y

σ2
y

])
erf

(
σx
σy

|ry|
σ̄

))]
− beamo�(4),

(130)

py → py + sgn(ry)

[
re · S

√
π

σ̄

(
erf

( |rx|
σ̄

)
− exp

(
−1

2

[
r2
x

σ2
x

+
r2
y

σ2
y

])
erf

(
σy
σx

|rx|
σ̄

))]
− beamo�(5).

(131)
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3.10 Hirata's beam-beam element

Initial transformation of coordinates.

xi → (x+ dx)− xco (132)

px,i → px − px,co (133)

yi → (y + dy)− yco (134)

py,i → py − py,co (135)

σi → σ − σco (136)

δi → δ − δco. (137)

Lorentz boost. φ is the crossing plane angle and α is the half crossing
angle. The particle has initial coordinates (xi, pix, y

i, piy, σ
i, δi). We de�ne h =

(1+δi)−
√

(1 + δi)2 − (pix)2 − (piy)2. pz is computed with the most recent values

of δ, px and py.

δ → δi − cosα tanφ · pix − sinα tanφ · piy + h · tan2 φ (138)

px → pix
1

cosφ

(
pix − tanφ cosα · h

)
(139)

py → piy
1

cosφ

(
piy − tanφ sinα · h

)
(140)

σ → σi

cosφ
+

(
1− 1 + δ

pz

)(
sinφ cosα · xi + sinφ sinα · yi

)
(141)

x→ cosα tanφ · σ +

(
1 + cosα sinφ

px
pz

)
· xi + sinα sinφ

px
pz
· yi (142)

y → sinα tanφ · σ +

(
1 + sinα sinφ

py
pz

)
· yi + cosα sinφ

py
pz
· xi (143)

Inverse Lorentz boost. We de�ne the determinat of the inverse Lorentz
transformation matrix as

D =
1

cosφ
+ tanφ

[
pix
pz

cosα+
piy
pz

sinα−
(

1− 1 + δi

pz

)
sinφ

]
. (144)
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x→ 1

D

[
x

(
1

cosφ
+ sinα tanφ

(
py
pz
− sinα sinφ

(
1− 1 + δ

pz

)))
(145)

+ y sinα tanφ

((
1− 1 + δ

pz

)
cosα sinφ− px

pz

)
(146)

− σ tanφ

(
cosα+ sinφ cosα sinα

py
pz
− sin2 α sinφ

px
pz

)]
(147)

y → 1

D

[
y

(
1

cosφ
+ cosα tanφ

(
px
pz
− cosα sinφ

(
1− 1 + δ

pz

)))
(148)

+ y cosα tanφ

((
1− 1 + δ

pz

)
sinα sinφ− py

pz

)
(149)

− σ tanφ

(
sinα+ sinφ cosα sinα

px
pz
− cos2 α sinφ

py
pz

)]
(150)

σ → 1

D

[
σ

(
1 +

px
pz

cosα sinφ+
py
pz

sinα sinφ

)
− x

(
1 +

1 + δ

pz

)
cosα sinφ

(151)

− y
(

1− 1 + δ

pz

)
sinα sinφ

]
(152)

δ → δ + cosα sinφ · px + sinα sinφ · py (153)

px → px + cosα sinφ cos3 φ
[
(1 + δ)− piz

]
(154)

py → py + sinα sinφ cos3 φ
[
(1 + δ)− piz

]
(155)

3.11 RF multipole

The Hamiltonian for a thin RF multipole is

H = δ

(
s− L

2

){
− 1

kRF

qVRF

psc
cos(ϑRF − kRFz) + · · · (156)

· · ·+
N∑

n=0

1

(n+ 1)!
<
[
(KN,nL cos(ϑn − kRFz) + iKS,nL cos(ϕn − kRFz))(x+ iy)n+1

]}

(157)

where the n-th order normal- and skew- multipole magnetic strengths are

KN,n =
q

ps

∂nBy
∂xn

, KS,n =
q

ps

∂nBx
∂xn

, (158)

respectively. The multipolar expansion is done similar as for a static magnetic
�eld, but to account for the oscillatory behaviour the multipolar coe�cients are
expressed as

B̃n(z) = <[Bne
j(ϑn−kRFz)] = Bn cos(ϑn − kRFz) (159)

Ãn(z) = <[Ane
j(ϕn−kRFz)] = An cos(ϕn − kRFz), (160)
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where ϑn and ϕn are the phases for the normal and skew coe�cients, B̃n(z)
and Ãn(z), respectively, kRF is the RF wave number of the generating �eld
(kRFz = ωRFt).

The kick experienced by an arbitrary particle in (x, y, z) can be expressed
as (eq. 16 in [9])

∆px = −
N∑

n=0

1

n!
< [(KN,nL cos(ϑn − kRFz) + iKS,nL cos(ϕn − kRFz))(x+ iy)n] ,

(161)

∆py =

N∑

n=0

1

n!
= [(KN,nL cos(ϑn − kRFz) + iKS,nL cos(ϕn − kRFz))(x+ iy)n] ,

(162)

∆pt =
qVRF

psc
sin(ϑRF − kRFz) + · · · (163)

· · · − kRF

N∑

n=0

< [(KN,nL sin(ϑn − kRFz) + iKS,nL sin(ϕn − kRFz))(x+ iy)n] .

(164)

In Sixtrack the following equations are used:

∆x′ =
b2 x cos (φ+ k z)

1 + δ
(165)

∆y′ =
−b2 y cos (φ+ k z)

1 + δ
(166)

∆E = −P0kβ0
b2
2

(
x2 − y2

)
sin (φ+ k z) (167)

∆x′ =
b3
(
x2 − y2

)
cos (φ+ k z)

1 + δ
(168)

∆y′ =
−2b3 xy cos (φ+ k z)

1 + δ
(169)

∆E = −P0kβ0
b3
3

(
x3 − 3xy2

)
sin (φ+ k z) (170)

∆x′ =
b4
(
x3 − 3xy2

)
cos (φ+ k z)

1 + δ
(171)

∆y′ =
−b4

(
3x2y − y3

)
cos (φ+ k z)

1 + δ
(172)

∆E = −P0k

c

b4
4

(
x4 − 6x2y2 + y4

)
sin (φ+ k z) (173)
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∆x′ =
a2 y cos (φ+ k z)

1 + δ
(174)

∆y′ =
a2 x cos (φ+ k z)

1 + δ
(175)

∆E = P0kβ0 a2 xy sin (φ+ k z) (176)

∆x′ =
2a3 xy cos (φ+ k z)

1 + δ
(177)

∆y′ =
−a3

(
y2 − x2

)
cos (φ+ k z)

1 + δ
(178)

∆E =
P0kβ0a3

3

(
y3 − 3yx2

)
sin (φ+ k z) (179)

∆x′ =
a4

(
y3 − 3yx2

)
cos (φ+ k z)

1 + δ
(180)

∆y′ =
a4

(
3xy2 − x3

)
cos (φ+ k z)

1 + δ
(181)

∆E = −P0kβ0 a4

(
x3y − y3x

)
sin (φ+ k z) , (182)

, where k = 2πf
cβ0

, f is frequency and c is the speed of light.

3.12 Wire

The wire element is described by in total 7 parameters: the wire current I, the
physical length of the wire L and the length of the embedded drift Lemb, the
horizontal distance dx and vertical distance dy between the wire midpoint and
the closed orbit, and the tilt angle φ in the (z, y) plane and the tilt angle θ
in the (x, z) plane. The length L is the physical length of the wire while the
embedded drift is the length of the integration interval of the kick (Eqn. 189) in
order to also take the fringe �elds of the wire into account. This is illustrated
in Fig. 2 which shows the vector potential and magnetic �eld together with the
physical length L and the length of the embedded drift Lemb. The tilt angles
are illustrated in Fig. 3.

To calculate the kick strength L of the wire in order to compensate the beam-
beam kick from one long-range beam-beam encounter, the following relation
between holds [11]:

L = e · c ·Np = L · I (183)

with Np being the bunch charge and L and I are the length and current of the
wire. L than has to units Am.
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Figure 2: Vector potential (left) and magnetic �eld (right) of a current bearing
wire with physical length L = 1 m and embedded drift (integrational length)
Lemb = 2 m.

The generic formula for a vector potential of a straight current bearing wire
with length L and current I centered at the origin is given in Cartesian coordi-
nates by the following expression1:

Ai(x, y, z) =
Iµ0 cos(ci)

4π
·

(
asinh

(
L/2− a√
b− a2

)
− asinh

(−L/2− a√
b− a2

))
, i = x, y, z, (184)

where the parameters a and b are de�ned as

a = x · cos(cx) + y · cos(cy) + z · cos(cz), (185)

b = x2 + y2 + z2, (186)

and cos(ci) are the direction cosines. The direction cosines can in general be
expressed through two tilt angles φ and θ (see Fig. 3) with:

cos(cx) :=
tan(φ)√

tan2(φ) + tan2(θ) + 1

cos(cy) :=
tan(θ)√

tan2(φ) + tan2(θ) + 1
(187)

cos(cz) :=
1√

tan2(φ) + tan2(θ) + 1
.

In case the wire lies parallel to the longitudinal axis (φ = θ = 0), the
transverse potential Ax,y vanish and the longitudinal potential can be further

1Note that Curvilinear and Cartesian coordinate system are equivalent as the curvature is

zero at the location of the wire element.
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z

y x

L/2

−L/2

θ φ

Figure 3: Wire centered (red) at the origin including the angles φ and θ as
de�ned for the directional cosines in Eqn. 187.

simpli�ed, leading to:

Ax(x, y, z) = 0

Ay(x, y, z) = 0

Az(x, y, z) =
Iµ0

4π
·
(

asinh

(
L/2− z√
x2 + y2

)
− asinh

(
−L/2− z√
x2 + y2

))
(188)

The Hamiltonian for the wire is then simply H = −As = −Az.
The kick experienced by an arbitrary particle with coordinates (x, y, z) using

a �rst order symplectic integrator is then given by:

∆px =

+Lemb/2∫

−Lemb/2

∂Az(x, y, s)

∂x
ds, (189)

∆py =

+Lemb/2∫

−Lemb/2

∂Az(x, y, s)

∂y
ds, (190)

∆x = ∆y = ∆δ = ∆σ = 0 (191)

where Lemb is the embedding drift or integration length (see Fig. 2), which takes
into account the fringe �eld of the wire, while the parameter L in Eqn. 188
denotes the physical length of the wire. A symplectic rotation of the coordinate
system as described in [10] is included in order to compute the transport map
for arbitrary orientation, explicitly arbitrary angles θ and φ in Fig. 3.

The �rst order symplectic transport map in thin lens approximation for an
arbitrary orientation of the wire can then be obtained by the following steps:
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Step 1 Shift to the origin: We de�ne the new variables

rx := x− xco + dx

ry := y − yco + dy (192)

where xco and yco denotes the closed orbit at the center of the wire.

Step 2 Symplectic rotation in (x, z) by θ as described in [10]: In a drift space
the normalized momenta pi are related by p2

x + p2
y + p2

z = (1 + δ)2 and we
can thus write pz as

pz =
√

(1 + δ)2 − p2
x − p2

y (193)

The rotation by θ can then be expressed as a rotation �rst in (px, pz):

px → px · cos θ + pz · sin θ
pz → −px · sin θ + pz · cos θ (194)

followed by a transformation in (rx, ry):

rx → rx

(
cos θ − px

pz
· sin θ

)

ry → ry − rx ·
py
pz
· sin θ (195)

Step 3 Symplectic rotation in (y, z) by φ as described in [10]: The new pz is

again de�ned as pz =
√

(1 + δ)2 − p2
x − p2

y using the updated values of

px, py from Step 2. Analogical to the symplectic rotation in (x, z), the
rotation by φ in (y, z) can be expressed as a rotation �rst in (py, pz):

py → py · cosφ+ pz · sinφ
pz → −py · sinφ+ pz · cosφ (196)

followed by a transformation in (rx, ry):

rx → rx − ry ·
px
pz
· sinφ

ry → ry

(
cos θ − py

pz
sin θ

)
(197)

Step 4 Application of the symplectic kick of a wire aligned along the longitu-
dinal axis (θ = φ = 0): We de�ne the radius r in the (rx, ry) by:

r2 := r2
x + r2

y (198)
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The thin lens kick of the wire aligned along the longitudinal axis can then
be expressed by:

px → px − 10−7 · I e
P0

rx
r2

(
d+ − d−

)
− pco,wire

py → py − 10−7 · I e
P0

ry
r2

(
d+ − d−

)
− pco,wire (199)

with d+ and d− de�ned as:

d+ =
√

(Lemb + L)2 + 4r2 (200)

d− =
√

(Lemb − L)2 + 4r2 (201)

As reminder L denotes the physical length of the wire and Lemb the length
of the embedded drift. The parameter pco,wire is the closed orbit kick due
to the wire. This kick is only subtracted if ibeco is equal to 1 in the BEAM
block.

Step 5 Backward rotation by −φ in (py, pz): The new pz is again de�ned as

pz =
√

(1 + δ)2 − p2
x − p2

y using the updated values of px, py from Step 4.

The rotation is then given by:

py → py · cosφ− pz · sinφ
pz → py · sinφ+ pz · cosφ (202)

Step 6 Backward rotation by −θ in (px, pz): The new pz is again de�ned as

pz =
√

(1 + δ)2 − p2
x − p2

y using the updated values of px, py from Step 5.

The rotation is then given by:

px → px · cos θ − pz · sin θ
pz → px · sin θ + pz · cos θ (203)

Note that as required for a thin lens approximation, the map does not change
x and y.

3.13 Crab cavity

The voltage of the crab cavity is denoted by V , the frequency by f and the
phase by φ. The map for a horizontal crab cavity is

px → px −
V

p
· (1 + δ) sin

(
2πf

σ

c
+ φ

)
(204)

δ → δ − 2πf
V

pc
· x · cos

(
2πf

σ

c
+ φ

)
. (205)

Followed by updates of the momentum and energy due to the change of δ. The
map for a vertical crab cavity is given by replacing x → y and px → py in the
map above.
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3.14 AC-dipole

The excitation amplitude of the AC-dipole is denoted by A [Tm], the excitation
frequency by qd [2π] and the phase of the excitation by φ. The map presented
here is for a purely horizontal dipole, the map for a vertical dipole is obtained
by replacing px → py.

The e�ect of the AC-dipole is split into four stages. The turn number is
denoted by n.

1. A number of free turns nfree, in which the AC-dipole has no e�ect on the
motion.

2. Ramp-up of the voltage from 0 to the excitation amplitude A for nramp-up

turns.

n′ =
n− nfree
nramp-up

(206)

px → px + n′ · A
pc
· (1 + δ) sin (2πqd · (n− nfree) + φ) (207)

3. Constant excitation amplitude for n�at turns.

px → px +
A

pc
· (1 + δ) sin (2πqd · (n− nfree) + φ) (208)

4. Ramp-down of the voltage from the excitation amplitudeA to 0 for nramp-down

turns.

n′ =
n− nfree − nramp-up − n�at − nramp-down

nramp-down

(209)

px → px + n′ · A
p
· (1 + δ) sin (2πqd · (n− nfree) + φ) (210)

3.15 Electron lens

Electron lenses are devices where the tracked beam interacts with a beam of
electrons. The electron beam travels co�axial to the main beam; it is contained
in a thick cylinder of inner radius R1 and outer radius R2. If R1 > 0, then the
lens is hollow. The interaction is purely via the Lorentz force. These devices
can be used for compensating beam�beam e�ects or for enhancing the beam
di�usion speed for collimation purposes [12].

The implementation in SixTrack does not start from the Hamiltonian but
from the integration of the Lorentz force along the length of the e-lens in ide-
alised conditions. The e-lens must be a thin lens; the derivation of the kick
assumes electrons moving along straight paths, parallel to the beam, for an in-
de�nite length, and an axis�symmetric transverse distribution (cylindrical sym-
metry). Hence, the derivation of the kicks and the implemented tracking is
developed in cylindrical coordinates, where

r =
√
x2 + y2 (211)
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is the radial coordinate used to compute the kick. Moreover, the implementation
of the hollow e-lens has no explicit dependence on the beam energy, taken into
account only in the form of the input parameter θmax provided by the user.
Moreover, a change of the particle energy could occur if the particle enters with
an initial x′ or y′ and thus sees an accelerating or decelerating �eld. These
e�ects are not taken into account for the time being.

The implementation in SixTrack is very similar to the one in Merlin [13].
There you can also �nd a complete derivation of the equations laid down in the
following.

3.15.1 Treatment of the Kick

The kick received by a beam particle can be conveniently described in cylindrical
coordinates as:

θ(r) =
f(r)

r/R2
θR2

(212)

where θR2 is the kick imparted by the electron beam when the beam particle is
at r = R2 and f(r) is a shape function which depends on the radial distribution
of the electron beam. θR2

reads like

θR2 =
LIT (1± βeβb)

2πε0 (Bρ)b βeβbc
2
· 1

R2
(213)

where L is the length of the e-lens, IT the total electron beam current, βe
and βb the relativistic β of electron and tracked beam, (Bρ)|b the magnetic
rigidity of the beam (synchronous particle), c the speed of light and ε0 the
vacuum permittivity. The ±-sign represents the two cases of the electron beam
travelling in the direction of the tracked beam (vevb > 0) leading to �−" or
in the opposite direction (vevb < 0) leading to �+". For hollow electron beam
collimation, electron and tracked beam travel in opposite directions. It should
be noted that θR2

depends on the magnetic rigidity (Bρ)b of the tracked beam
and on its relativistic normalised speed βb, and thus on the beam momentum
and speed; hence, during tracking of non�monochromatic beams, the actual
magnetic rigidity of each beam particle, its charge�to�mass ratio and its speed
are taken into account when computing the kick to be imparted.

f(r) reads like

f(r) =
I(r)

IT
=

2π

IT

∫ r

0

rρ(r)dr, (214)

where I(r) is the current enclosed in a radius r and ρ(r) is the electron beam
density distribution. Taking into account the cylindrical symmetry of the elec-
tron distribution and the fact that the electron distribution is contained in a
thick cylinder with R1 < r < R2, f(r) can be split into three expressions based
on respective domains as follows

f(r) =





0 , r ≤ R1

f̃(r) , R1 < r < R2

1 , R2 ≤ r
(215)
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where the mathematical expression of f̃(r) depends on the transverse distribu-
tion to be simulated.

The change in (x′, y′) due to the e-lens kick can then be expressed as

x′ = x′ − x

r

f(r)

r/R2
θR2

χ

1 + δ

βb/β ± βbβe
1± βbβe

(216)

y′ = y′ − y

r

f(r)

r/R2
θR2

χ

1 + δ

βb/β ± βbβe
1± βbβe

(217)

where x
r = cos(φ) and y

r = sin(φ) allow to get the horizontal and vertical
kicks from the radial one expressed by Eq. 212. O�-momentum particles and
di�erent ion species are taken into account via the last two fractions. The
former, χ/(1 + δ), comes from the de�nition of magnetic rigidity of ion species
di�erent from the nominal one (Bρ|b) given by

Bρ = Bρ|b
1 + δ

χ
, (218)

where χ is the charge�over�mass ratio of the tracked and synchronous particles,
i.e. χ = (q/m)/(q0/m0) and δ is the one used in case of multi�isotop tracking,

i.e. (p/m)
p0/m0

− 1 [14]. The latter comes from the de�nition of θR2
in Eq. 213,

and takes into account the fact that each tracked particle may have a value of
the relativistic β di�erent from that of the reference particle βb; to do so, the
relativistic normalised speed of electrons is also necessary, i.e. βe. Hence, the
current implementation of e-lenses is fully compatible with ion tracking only if

the three optional parameters (i.e. e-lens length, electron current and kinetic
energy) are provided by the user.

If the electron lens is centred around (xoffset, yoffset) (local reference frame),
particle coordinates (x, y) are simply transformed into:

x̃→ x− xoffset (219)

ỹ → y − yoffset (220)

(221)

before computing the radial position, without touching the above processing.

3.15.2 Uniform electron pro�le

The uniform distribution of the electron beam between R1 and R2 can be de-
scribed as:

ρ(r) =
IT

π(R2
2 −R2

1)
R1 < r < R2 (222)

This leads the middle term of f(r) (see Eq. 214) to be:

f̃(r) =
r2 −R2

1

R2
2 −R2

1

(223)
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3.15.3 Gaussian electron pro�le

The Gaussian distribution of the electron beam between R1 and R2 can be
described as:

ρ(r) =
IT

2πσ2
exp

[
− r2

2σ2

]
R1 < r < R2 (224)

This leads the middle term of f(r) (see Eq. 214) to be:

f̃(r) =
exp

[
− R2

1

2σ2

]
− exp

[
− r2

2σ2

]

exp
[
− R2

1

2σ2

]
− exp

[
− R2

2

2σ2

] (225)

The denominator in Eq. 225, which is added after integrating the Gaussian
pro�le as in Eq. 214, is a normalisation factor necessary to have f̃(R2) = 1.
Hence, the same factor must be considered in the expression of θR2

(see Eq. 213),
which then becomes

θR2 =
LIT (1± βeβb)

2πε0 (Bρ)b βeβbc
2
· 1

R2
·
{

exp

[
− R2

1

2σ2

]
− exp

[
− R2

2

2σ2

]}
(226)

It should be noted that, contrary to the case of the uniform distribution, θR2

does not coincide with the highest kick; the highest kick is found only at:

df

dr
= 0 (227)

which leads to the following equation

exp

[
− r2

2σ2

]
=

exp
[
− R2

1

2σ2

]

r2 + σ2
, (228)

that can be solved graphically or numerically, not analitically.

3.15.4 Radial electron pro�le from �le

A radial electron pro�le read from a plain ASCII �le is treated numerically. The
code expects the �le to contain ρ(r) on its appropriate domain. R1 and R2 are
stated by the user in the fort.3 �le; hence, the domain of the radial pro�le
must contain the one set by R1 and R2.

The radial distribution ρ(r) is numerically integrated and normalised ac-
cording to Eq. 214. The numerical integration actually reads as

I(R) = 2π

NR∑

i=1

(ri + ri−1)

2
ρi (ri − ri−1). (229)

A point (r = 0, ρ = 0) is automatically taken at i = 0 for the numerical
integration. I(R) is then normalised by the total current I(Rmax).
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The middle term of f(r) (see Eq. 214) reads:

f̃(r) =
I(r)− I(R1)

I(R2)− I(R1)
. (230)

Similarly to what happes with the Gaussian pro�le, also in this case θR2
(see

Eq. 213) must be updated as

θR2 =
LIT (1± βeβb)

2πε0 (Bρ)b βeβbc
2
· 1

R2
· [I(R2)− I(R1)] (231)

3.16 Misalignment

Misalignments of elements a�ects the coordinates at the entrance of an element
as follows

x→ (x− xs) · tc + (y − ys) · ts (232)

y → −(x− xs) · ts + (y − ys) · tc, (233)

where xs and ys are the displacements in the horizontal and vertical directions,
respectively. tc and ts are the cosine and sine of the tilt angle for the element.

4 Optics calculations

Optics calculation are needed to study the motion around the closed orbit. By
de�ning z as the vector of 2k coordinates,

z = (z1, . . . , z2k)T = (x− x0, px − px0, y − y0, py − py0, τ − τ0, pt − pt0)T

(234)

one can de�ne linear transfer maps (e.g. M1→2 that propagates coordinates
between two points s1, s2) and the one-turn map (e.g. M1 that combines the
e�ects for one turn starting from s1):

z(s2) = M1→2z(s1) z(C + s1) = M1z(s1). (235)

In the following we will describe the optics calculation based on the Ripken
formalism described in [15]. A good summary is also given in the MAD8 physics
manual [16].

4.1 Diagonalisation of one-turn matrix

Since the matrices derive from symplectic maps, the eigenvalue spectrum of the
one-turn map M consists of 2k distinct eigenvalues and linearly independent
eigenvectors. In addition, for the motion to be stable the eigenvalues λ±k with
eigenvectors v±k have to be complex [15]:

Mv±k = λ±k v
±
k , k = 1, . . . , 3 (236)

v+
k = (v−k )∗, λ+

k = (λ−k )∗, |λ±k | = 1 (237)
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As the eigenvectors are linearly independent M can be diagonalized with

M = V ΛV −1, (238)

where V consists of the eigenvectors and Λ of the eigenvalues:

V =




v+
1,1 v−1,1 · · · v−3,1
v+

1,2 v−1,2 · · · v−3,2
...

...
...

...


 Λ =




λ+
1

λ−1
. . .

λ−3


 (239)

for which v±i,j is the component j of eigenvector v±i .
The same calculation can be carried out with real numbers by the following

de�nitions:

v±k = ak ± ibk, λ±k = cosµk ± i sinµk, µk, ak, bk ∈ R (240)

such that:

M =WRW−1 (241)

with

R = R(µk) =




cosµ1 sinµ1

− sinµ1 cosµ1

. . .

cosµ3 sinµ3

− sinµ3 cosµ3



, (242)

W =




a1,1 b1,1 · · · a3,1 b3,1
a1,2 b1,2 · · · a3,2 b3,2
...

...
...

...
a1,6 b1,6 · · · a3,6 b3,6


 (243)

Usually µk is written as µk = 2πQk, where Qk is then the tune of the mode k.

4.2 Normalisation of eigenvectors

By convention, the eigenvectors and values are normalized, sorted and rotated
so that the following three conditions are ful�lled:

1. Plane 1 is associated with the horizontal, plane 2 with the vertical and
plane 3 with the longitudinal plane. This is achieved by �rst normalizing
the eigenvectors v±k and then sorting them so that:

|v+
j,2j−1| = |v−j,2j−1| = max

k=1,2,3
vk,j , j = 1, . . . , 3 (244)
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2. The eigenvectors are then rotated with a phase term ψk

vk → vk exp(iψk) (245)

such that

angle(v+
k,2k−1) = 0↔ ψk = −angle(v+

k,2k−1) (246)

In real space, Eqn. 244 and 246 then become equivalent to:

|aj,2j−1| = max
k=1,2,3

|ak,j |, bj,2j−1 = 0, j = 1, . . . , 3 (247)

This has the e�ect that a particle with x = 0 is transformed to x̃ in the
normalized phase space.

3. The sign of bk,j is �xed by the symplectic condition on W

WTSW = S (248)

with S de�ned as

S =




0 1
−1 0

. . .


 (249)

which is equivalent to:

aTk · S · bk = 1, bTk · S · ak = −1, for k = l

aTk · S · bl = 0, for k 6= l (250)

aTk · S · al = 0, bTk · S · bl = 0, k, l = 1, . . . , 3

Eqn. 250 yields that in phase space ak is thus obtained by an anticlockwise
rotation of bk by π/2 and a scaling of its length with |ak| = 1

|bk| .

4.3 Conversion to normalized coordinates

We will show in the following that in the normalized phase space the propagation
of particle coordinates z(s) from s1 to s2 is just a rotation by an angle φk in the
k = 1, . . . , 3 planes, while the amplitude Ik and initial phase φk,0 stay constant,
explicitly z(s) is then given by:

z(s) =

3∑

k=1

√
2Ik (ak(s) cos (φk,0 + φk(s))− bk(s) sin (φk,0 + φk(s))) (251)

and

z(s2) = W (s2)R(φk)W (s1)−1z(s1), (252)

with φk = φk(s2)− φk(s1)
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This implies that one turn is simply a rotation by φk = 2πQk where Qk is
the tune of the mode k. In the transverse plane the tune (QI,II) is usually
positive and the particles rotate clockwise, while in the longitudinal plane the
tune (QIII) is negative above γT leading to an anticlockwise rotation.

For the derivation the following steps are needed:

1. The e�ect of one turn on the normalized variable z̃(s) = W−1(s)z(s) is a
rotation:

z̃(C + s) = W−1z(s+ C)
(Eqn.241)

= W−1WRW−1z(s) = Rz̃(s), (253)

As M and R are symplectic also W is symplectic, and its inverse is thus
given by S−1WTS, explicitly:

W−1 =




b12 −b11 b14 −b13 b16 −b15

−a12 a11 −a14 a13 −a16 a15

b22 −b21 b24 −b23 b26 −b25

−a22 a21 −a24 a23 −a26 a25

b32 −b31 b34 −b33 b36 −b35

−a32 a31 −a34 a33 −a36 a35




(254)

2. The one-turn map and W -matrix can be propagated from s1 to s2 by

M2 = M1→2M1M
−1
1→2 W2 = M1→2W1 (255)

As Eqn. 253 represents a similarity transformation, the eigenvalues are
thus independent of the position s and as the rotation matrix R consists
of the eigenvalues of M , the angle of the rotation µk = 2πQk is thus also
independent of s.

3. As Eqn. 241 represents a basis transformation from the standard R2 ba-
sis to the eigenvector basis, the vectors ak and bk are projected onto
(Eqn. 250):

ã1 = W−1a1 = −SWTSa1

= −S(a1Sa1, b1Sa1, . . . , b3Sa1)T = (1, 0, . . . , 0)

b̃1 = W−1b1 = −SWTSb1

= −S(a1Sb1, b1Sb1, . . . , b3Sb1)T = (0, 1, . . . , 0) (256)

· · ·
b̃3 = W−1b3 = −SWTSb3

= −S(a1Sb3, b1Sb3, . . . , b3Sb3)T = (0, 0, . . . , 1)

in the normalized phase space.
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4. From Eqn. 253 it follows that the amplitude Ik and initial phase φk0 of
z̃ = W−1z = (z̃a1 , z̃b1 , . . . , z̃b3)

Ik =
(z̃ak)2 + (z̃bk)2

2
, k = 1, . . . , 3 (257)

tanφk0 = − z̃bk
z̃ak

(258)

are constants of the motion, which is illustrated in Fig. 4. The initial

b̃k

ãk

−φk,0

x̃′
k

x̃k

z̃

z̃ak

z̃bk
√ 2I

k

Figure 4: Normalized phase space.

phase is de�ned with a minus sign in view of the de�nition of the Twiss
parameters, where the initial phase is then added (and not subtracted) to
the phase advance. The components of z̃ are then explicitly given by:

z̃ak =

3∑

j=1

bk,2jz2j−1 − bk,2j−1z2j , k = 1, . . . , 3 (259)

z̃bk =

3∑

j=1

ak,2j−1z2j − ak,2jz2j−1, k = 1, . . . , 3. (260)

An arbitrary vector z(s) can thus be written in the following form:

z(s) = W (s)z̃(s)

= W (s)

(
3∑

k=1

z̃ak ãk + z̃bk b̃k

)

=

3∑

k=1

z̃akW (s)ãk + z̃bkW (s)b̃k
Eqn. 256

=

3∑

k=1

z̃akak + z̃bkbk

Eqns. 257,258
=

3∑

k=1

√
2Ik (ak cosφk0 − bk sinφk0) (261)

4.4 Twiss parameters

In the following the parameter k will always be used for the mode k and the
parameter j = 1, 2, 3 for the horizontal (x, x′), vertical (y, y′) and longitudinal
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plane (σ, δ) in the phase space. z2j−1 then stands for the coordinates (x, y, σ)
and z2j for (x′, y′, δ).

The Twiss parameters can be introduced by writing the components of
the eigenvector basis (ak(s), bk(s)) as the product of two envelope functions√
βk,j(s),

√
γk,j(s) and phase functions φk,j(s), φ̄k,j(s), also called Twiss pa-

rameters or lattice functions, with

ak,2j−1(s) =
√
βk,j(s) cosφk,j(s),

bk,2j−1(s) =
√
βk,j(s) sinφk,j(s), k, j = 1, . . . , 3, (262)

ak,2j(s) =
√
γk,j(s) cos φ̄k,j(s),

bk,2j(s) =
√
γk,j(s) sin φ̄k,j(s), k, j = 1, . . . , 3 (263)

where βk,j(s), αk,j(s), γk,j(s) represent the projection of the ellipse of mode k
on the plane of coordinates z2k−1 − z2k (see Fig. 5)

Figure 5: Projection of lattice function in the z − z′ plane.

Using Eqns. 251, 262, 263 and cos(x + y) = cosx cos y − sinx sin y, the
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coordinates z(s) can be expressed by:

z2j−1(s) =

3∑

k=1

√
2Ikβk,j(s) cos (φk,j(s) + φk,0) (264)

z2j(s) =

3∑

k=1

√
2Ikγk,j(s) cos (φ̄k,j(s) + φk,0), j = 1, . . . , 3 (265)

Conversely the lattice functions can also be expressed by ak and bk with

βk,j(s) = ak,2j−1(s)2 + bk,2j−1(s)2 (266)

αk,j(s) = ak,2j−1(s)ak,2j(s)− bk,2j−1(s)bk,2j(s) (267)

γk,j(s) = ak,2j(s)
2 + bk,2j(s)

2, (268)

The well known relations between the lattice functions

3∑

j=1

βk,jφ
′
k,j = 1 (269)

γk,j =
β2
k,jφ

′2
k,j + α2

k,j

βk,j
, with (270)

αk,j := −1

2
β′k,j (271)

can then be derived with the help of the normalization condition (Eqn. 250)

aTk Sbk = 1 (272)

by the following steps:

1. As x′ = dx
ds , y

′ = dy
ds and δ = dσ

ds the following relations hold also for ak
and bk:

ak,2j = a′k,2j−1 =
d

ds
(ak,2j−1), (273)

bk,2j = b′k,2j−1 =
d

ds
(bk,2j−1), k, j = 1, . . . , 3 (274)

2. The normalization condition Eqn. 250 can then be written as

aTk Sbk =

3∑

j=1

√
βk,j cosφk,j

(√
βk,j sinφk,j

)′

−
(√

βk,j cosφk,j

)′√
βk,j sinφk,j

=

3∑

j=1

βk,jφ
′
k,j

= 1 (275)
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Note that Eqn. 275 yields the the following relation between the phase
advance φ and β in 2D:

φ(s) = φ(0) +

∫ s

s0

1

β(s̄)
ds̄ (276)

3. Using the abbreviation αk,j := − 1
2βk,j , one �nds for each mode k and

plane j

√
γk,j cosφk,j = ak,2j = a′k,2j−1 = (

√
βk,j cosφk,j)

′ (1)
√
γk,j sinφk,j = bk,2j = b′k,2j−1 = (

√
βk,j sinφk,j)

′ (2)

(1)2+(2)2⇒ γk,j =
β2
k,jφ

′2
k,j + α2

k,j

βk,j
, k, j = 1, . . . , 3 (277)

which simpli�es in the 2D case to:

γ
Eqn. 275

=
1 + α2

β
(278)

5 Table of symbols

~R: moving reference frame origin

s: path length of the reference frame origin trajectory

X̂, Ŷ , Ẑ: global reference frame bases

X,Y, Z: reference frame origin coordinates ~R(s) = X(s)X̂ + Y (s)Ŷ + Z(s)Ẑ

~Q: particle position

x̂, ŷ, ŝ: moving reference frame bases

x, y: transverse particle coordinates ~Q(s) = ~R(s) + x(s) x̂(s) + y(s) ŷ(s)

t(s): time at which the particle is located in the plane x̂(s), ŷ(s)

v, P,E,m, q: particle velocity momenta, energy, rest mass, charge

v0, P0, E0,m0, q0: reference momentum, energy, rest mass,

β0, γ0: reference relativistic factors

∆t = s/β0 − ct: Mad time deviation, canonical conjugate of pt

σ = s− β0ct: Sixtrack time deviation, canonical conjugate of pσ

∆s = s− βct path length deviation, canonical conjugate of δ

z = β(s/β0 − ct) John time deviation, canonical conjugate of δ
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ρ = 1/h Radius of curvature for a moving reference frame in a circular trajec-
tory.

Px, Py, Ps: canonical momenta coordinates in a straight or curved reference
frame. Note that for a circular trajectory: vs = (1+hx)ṡ, Px = mγẋ+qAx,
Py = mγẏqAy and Ps = mγṡ(1 + hx)2 + q(1 + hx)As.

px = Px/P0, py = Px/P0, ps = Ps/P0 normalized momenta coordinates

x′ = Px/Ps, y
′ = Px/Ps transverse divergence coordinates

xp = Px/P, yp = Py/P approximated divergence coordinates

δ = (P − P0)/P0: normalized momentum deviation

pt = (E − E0)/P0c: normalized energy deviation

pσ = (E − E0)/β0P0c: SixTrack energy deviation canonical conjugate of σ

H Hamiltonian function

Ex, Ey, Es Electric �elds in a straight or curved reference frame

Bx, By, Bs Magnetic �uxes in a straight or curved reference frame

Ax, Ay, As Magnetic �uxes in a straight or curved reference frame
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