
European Organization for Nuclear Research
CERN BE/ABP

CERN/SL/94-56
Updated December 2019

SixTrack
Version 5.4.3

Single Particle Tracking Code Treating Transverse Motion with

Synchrotron Oscillations in a Symplectic Manner

User’s Reference Manual

F. Schmidt, A. Alekou, V.K. Berglyd Olsen, R. De Maria, M. D’Andrea, M. Fitterer,
S. Kostoglou, A. Mereghetti, T. Persson, K. Sjobak, J.F. Wagner, and S.J. Wretborn,

Abstract

The aim of SixTrack is to track two nearby particles taking into account the full six–dimensional phase
space including synchrotron oscillations in a symplectic manner. It allows to predict the long–term
dynamic aperture which is defined as the border between regular and chaotic motion. This border
can be found by studying the evolution of the distance in phase space of two initially nearby particles.
Parameters of interest like nonlinear detuning and smear are determined via a post processing of the
tracking data. An analysis of the first order resonances can be done and correction schemes for several
of those resonances can be calculated. Moreover, there is the feature to calculate a one–turn map to
very high order and the full six–dimensional case, using LBL differential algebra. This map allows a
subsequent theoretical analysis like normal form procedures which are provided by É. Forest [1].

The linear elements are usually treated as thick elements in SixTrack. In that case there is at
least one non–zero length element in the structure file which is not a drift element. If the accelerator,
however, is modelled exclusively with drifts and kicks, SixTrack automatically uses the thin lens
formalism according to G. Ripken [2]. A common header of output data and the format of these data
has been found for MAD and SixTrack tracking data.

Geneva, Switzerland
December 19, 2019

ii

Acknowledgement

I would like to thank my colleagues at DESY and CERN to help to find nasty bugs and for a thor-
ough check of the program. I would like to thank Mikko Vaenttinen who helped to vectorise the
program. He also did most of the typing of the manuscript. Moreover, I want to express my grati-
tude to F. Zimmermann who helped to finish the differential–algebra part in endless night sessions.
Additions concerning Normal Forms have been contributed by M. Giovannozzi. J. Miles helped with
the calculation of the 6D Courant–Snyder matrix and its use to transform the tracking data in the
post–processing. W. Herr is thanked for providing a software package used for the orbit correction.
L.H.A. Leunissen extracted and adapted the 6D beam–beam code of Hirata [20].

– F. Schmidt, for the version 3.x and 4.x manual

iii

iv

Contents

1 Introduction 1
1.1 Versions and Service . 2
1.2 Evolution of SixTrack . 2
1.3 SixTrack Input Structure . 3

1.3.1 Input Format . 3
1.3.2 Input Values . 4
1.3.3 Command Line Arguments . 4

2 Conventions 5
2.1 Tracking . 5

2.1.1 Normalisation Matrix . 6

3 General Input 7
3.1 Main Input Files . 7
3.2 Program Version . 7
3.3 Print Selection . 7
3.4 Settings . 8
3.5 Comment Line . 8
3.6 Iteration Errors . 9
3.7 MAD-X to SixTrack Conversion . 10

4 Initial Conditions for Tracking 11
4.1 Simulation Parameters . 11
4.2 Tracking Parameters . 13
4.3 Initial Coordinates . 16
4.4 Synchrotron Oscillation . 18
4.5 Tracking with Ions . 18
4.6 Random Numbers . 19
4.7 Initial Distribution . 19

4.7.1 Column Formats . 21
4.7.2 Filling the Columns . 24
4.7.3 Support for the Old DIST Format . 26

5 Machine Geometry 27
5.1 Single Elements . 27

5.1.1 Linear Elements . 27
5.1.2 Non-Linear Elements . 28
5.1.3 Multipole Blocks . 29
5.1.4 Generalized RF-Multipoles . 30
5.1.5 Solenoid . 30
5.1.6 Cavities . 30
5.1.7 Beam–Beam Lens . 30

v

Contents

5.1.8 Wire . 31
5.1.9 “Phase-trombone” or Matrix Element . 31
5.1.10 AC Dipole . 31
5.1.11 Dipole Edge . 32
5.1.12 Crab Cavity . 32
5.1.13 RF Multipole . 33
5.1.14 Electron Lens . 34
5.1.15 Scattering Point . 34
5.1.16 Beam Position Monitor . 34
5.1.17 X-Rotation . 34
5.1.18 Y-Rotation . 35
5.1.19 S-Rotation . 35

5.2 Block Definitions . 35
5.2.1 Structure Input . 36

5.2.1.1 Format 1: List of Single Elements . 36
5.2.1.2 Format 2: Multi-Column List of Elements 36

5.2.2 Displacement of Elements . 37

6 Special Elements 39
6.1 Multipole Coefficients . 39
6.2 Generalized RF-Multipoles . 40
6.3 Aperture Limitations . 40

6.3.1 General Description . 40
6.3.2 Specifying Aperture Marker . 41
6.3.3 Other Input Options . 42
6.3.4 Format of aperture losses.dat File . 43
6.3.5 Example . 44

6.4 Power Supply Ripple . 44
6.5 Dynamic Kicks . 45

6.5.1 FUN Statements . 45
6.5.2 SET Statement . 48
6.5.3 Additional Flags . 50
6.5.4 Output File dynksets.dat . 50
6.5.5 Examples . 50

6.6 Beam–Beam Element . 54
6.7 Wire . 57
6.8 “Phase Trombone” Element . 59
6.9 Beam Distribution EXchange (BDEX) . 59

6.9.1 Communication protocols . 60
6.10 Electron Lens . 61

6.10.1 Format of Radial Profile . 63
6.11 Scattering . 63

6.11.1 Module Flags . 64
6.11.2 Element, Target and Process Definitions . 65

6.12 Collimation . 67
6.12.1 Collimation Input Block . 68
6.12.2 The Collimator Database . 73

6.12.2.1 Main Database Section . 73
6.12.2.2 Additional Collimator Settings . 74

6.12.3 Collimation with Geant4 . 76
6.12.4 Old Input Format . 77

6.13 Fringe Fields . 80

vi

Contents

7 External Tools 83
7.1 Pythia Integration . 83

8 Organising Tasks 87
8.1 Random Fluctuation Starting Number . 87
8.2 Organisation of Random Numbers . 88
8.3 Combination of Elements . 89

9 Processing 91
9.1 Linear Optics Calculation . 91
9.2 Tune Variation . 92
9.3 Chromaticity Correction . 93
9.4 Orbit Correction . 93
9.5 Decoupling of Motion in the Transverse Planes . 94
9.6 Sub-Resonance Calculation . 94
9.7 Search for Optimum Places to Compensate Resonances 95
9.8 Resonance Compensation . 95
9.9 Differential Algebra . 96
9.10 Normal Forms . 97
9.11 Corrections . 98
9.12 Post-Processing . 98

10 Extra Output Files 103
10.1 Dumping of Beam Population . 103
10.2 FMA Analysis . 107
10.3 File Hash . 112
10.4 ZIPFile Combined and Compressed Output . 112
10.5 HDF5 Output . 113
10.6 ROOT Output . 115
10.7 Simulation Meta Data and Timing Output . 116

A List of Default Values 119
A.1 Default Tracking Parameters . 119
A.2 Default Size Parameters . 120

B Input and Output Files 121

C Data Structure of the Data Files 123

Bibliography 134

vii

Contents

viii

Chapter 1

Introduction

The Single Particle Tracking Code SixTrack is optimised to carry two particles 1 through an accelerator
structure over a large number of turns. It is an offspring of RACETRACK [3] written by Albin Wrulich.
The input structure is based on RACETRACK, but has been significantly enhanced in SixTrack 4
and 5.

The main features of SixTrack are:

1. Treatment of the full six-dimensional motion including synchrotron motion in a symplectic man-
ner [5]. The energy can be ramped at the same time considering the relativistic change of the
velocity [6].

2. Detection of the onset of chaotic motion and thereby the long term dynamic aperture by evalu-
ating the Lyapunov exponent.

3. Post processing procedure allowing:

• calculation of the Lyapunov exponent,

• calculation of the average phase advance per turn,

• FFT analysis,

• resonance analysis,

• calculation of the average, maximum and minimum values of the Courant-Snyder emittance
and the invariants of linearly coupled motion,

• calculation of smear, and

• plotting using the CERN packages HBOOK, HPLOT and HIGZ [7, 8, 9]

4. Calculation of first order resonances and of correction schemes for the resonances [10].

5. Calculation of the one turn map using the differential algebra techniques. The original DA
package by M.Berz [11] has been replaced by the package of LBL [1]. The Fortran code is
transferred into a Map producing via the (slightly modified) “DAFOR” code [12].

6. The code is vectorised, with two particles, the number of amplitudes, the different relative
momentum deviations ∆p/p0 in parallel [13].

7. Operational improvements:

• free format input,

• optimisation of the calculation of multipole kicks,

• improved treatment of random errors,

• each binary data file has a header describing the history of the run (Appendix C)
1Two particles are needed for the detection of chaotic behaviour.

1

Chapter 1: Introduction

1.1 Versions and Service

There are two versions: for element by element tracking there is a vector version, and there is a
version to produce a one turn map using the LBL Differential Algebra package. In both cases the
input structure file fort.2 is used to determine if the thick or thin linear element mode has to be
used.

To use the power of the Differential Algebra, for instance to calculate the 6D closed orbit in an
elegant fashion, the tracking versions may also be equipped with a low order map facility to avoid the
otherwise huge demand on memory.

It must be mentioned that in the linear thin lens version dipoles have to be treated in a special
way. See section 5.1.3 for details.

To convert MAD-X files into SixTrack input, a special conversion command exists the MAD-X.
See the MAD-X documentation for further details.

The following subroutines are taken from various packages:

Table 1.1: External Routines

Package Routine Purpose

HBOOK HBOOK2, HDELET, HLIMIT, HTITLE Graphic basics

HPLOT HPLAX, HPLCAP, HPLEND, HPLINT Graphic options

HPLOPT, HPLSET, HPLSIZ, HPLSOF

HIGZ IGMETA, ISELNT, IPM, IPL Graphic output

All versions can be downloaded from the web. The project webpage is found at http://sixtrack.web.
cern.ch/, and primary source repository is located at https://github.com/SixTrack/SixTrack. Older
versions can be found at http://cern.ch/Frank.Schmidt/Source.

In case of problems, please see the CERN SixTrack egroups “sixtrack-users” and “sixtrack-developers”.
If these are not accessible to you, you are welcome to contact the coordinators: Riccardo De Maria
and Kyrre Sjobak, as well as the original developer Frank Schmidt. Our contact details are available
from the CERN phonebook.

If you think you have found a defect in the program, please create a report on the issue tracker at
https://github.com/SixTrack/SixTrack/issues. Note that for this to be useful, you need to describe
what the program is doing, what you expected it to do, and an example which demonstrates the
unwanted behaviour. Please also look through the issues that are already listed to see if it has already
been reported. If so, you are welcome to add a comment to the issue, which may influence its priority
and give additional and useful information to the developers.

The most up to date version of the documentation can always be found on the SixTrack website,
and the latest features will be in the documentation in the source on GitHub. Additionally, various
older documentation can be found at http://cern.ch/Frank.Schmidt/Documentation/doc.html.

1.2 Evolution of SixTrack

Following, is a short historical overview of how the versions of SixTrack have evolved.

• Version 1 The first version has been an upgrade of RACETRACK [3] to include the full 6D
formalism for long linear elements by G. Ripken [5].

• Version 2 The DA package and the Normal Form techniques [11, 18] have been added to
allow the production of high order one turn Taylor maps and their analysis. The 6D thin lens
formalism [2] has also been included to speed up the tracking without appreciable deterioration
of the accelerator model for very large Hadron colliders like the LHC.

2

http://sixtrack.web.cern.ch/
http://sixtrack.web.cern.ch/
https://github.com/SixTrack/SixTrack
http://cern.ch/Frank.Schmidt/Source
https://github.com/SixTrack/SixTrack/issues
http://cern.ch/Frank.Schmidt/Documentation/doc.html

1.3 SixTrack Input Structure

• Version 3 The beam–beam kick à la Bassetti and Erskine [19] has been included together with
the 6D part by Hirata et al. [20]. Moreover, this 6D part has been upgraded to include the full
6D linear coupling [21]. Lastly, the LBL DA package has replaced the original one by Berz, and
all operations needed to set up the accelerator structure are now performed with the help of
Forest’s LieLib package [1].

• Version 5 Machine size and particle numbers are no longer defined by compiler flags but al-
located dynamically based on the input files. Merges the Collimation version of SixTrack into
the main code. Code-wide implementation of rounding of input float values from text, as well
as output of float values to text in critical parts, provided by the CRLIBM library. This also
includes a wrapper for consistent rounding of values from mathematical functions. Adds exper-
imental support for HDF5 and ROOT output files. Extensive rewrite of many sections of the
code to increase flexibility and modularity, as well as bug fixes to the physics. Includes a full
rewrite of the input parsing and upgrade of the source to Fortran 2008. Support for 32, 64 and
128 bit floating point precision. Replaces the astuce preprocessor with the c preprocessor.

For a more detailed list of changes, see CHANGELOG.md in the repository.

1.3 SixTrack Input Structure

The SixTrack input is line oriented. Each line is treated as one string of input in which a certain
sequence of numbers and character strings is expected to be found. The numbers and character
strings must be separated by at least one blank space. Floating point numbers can be given in
multiple formats, see below for further details. Comments can be added starting with the character
“!”. SixTrack 5 also supports in-line comments, older versions do not. Empty lines and lines starting
with the comment character will be ignored and are not counted towards the line number requirement
that apply to many of the input blocks. For beckwards compatibility, lines starting with a slash “/”
in the first column will also be ignored by the program.

For detailed questions concerning rounding errors, calculation of the Lyapunov exponent and
determination of the long term dynamic aperture, see [14].

1.3.1 Input Format

The input format used in SixTrack has been inherited from RACETRACK, but significantly extended
in version 4 and 5 to shift to a keyword/value style format. Many of the older input blocks still use
the old format, or support both RACETRACK and keyword/value types arguments.

The idea of the input format is to use a sequence of input blocks, each block with a specific keyword
in the first line. The block is terminated by the keyword NEXT in the last line. The input data goes in
the lines in between. The keyword ENDE ends the input sequence, and anything after this keyword is
ignored. This system makes it easy to read input and allows easy change and addition of input blocks.

Values inside a block can be indented, but the opening and closing keywords cannot. In some
blocks, more than 4 space indentation signify a line continuation of the previous line. It is therefore
advisable to keep indentation at less than 5 spaces to avoid unpredictable results.

In blocks using a keyword/value format, the keywords are in general case sensitive, and should be
provided in upper case. Values are as a rule not case sensitive, but there are some exceptions. Please
consult the documentation of the relevant block for further details.

From version 5, SixTrack enforces the proper closing of input blocks, which in the past have been
somewhat inconsistent. This does not apply to the first line, which contains the flag to determine
which file to read the lattice from. If a NEXT keyword is added after this, an error is raised. Multiple
occurrences of the same input block is, as a general rule, not allowed and will cause an error. However,
there are a few exceptions. String input variables can be wrapped in either single or double quotes.
SixTrack will also accept strings without quotes, provided they do not contain tabs, spaces or the
comment character.

3

Chapter 1: Introduction

Input errors in fort.3 will provide a descriptive error message, the line number and file in which
the error was encountered, and a printout of the line where the error was found. Errors in other input
files may be less descriptive.

A new SETTINGS block has been added in SixTrack 5 where a DEBUG flag can be added. When
this flag is set, most values read from the main input file will be printed back with the value it was
converted to internally in SixTrack, and if it was modified, what it was changed to.

In the following chapters, the input structure of SixTrack is discussed in detail. To facilitate the
use of the program, a list of default values in Appendix A, the input and output files are described in
Appendix B, and a description of the data structure of the binary data files in Appendix C.

1.3.2 Input Values

Integers must be entered as plain integers.

Floats can be entered as integers (converted during parsing) and standard Fortran floats.
Examples 1, 1.0, 1.0e3, 1e3, 1.0d3, 1d3, 1.0q3, 1q3.

Strings can be entered with both single and double quotes, and without quotes if the string contains
no tabs, spaces or comment characters.

Flags accept the following values: .true./.false., true/false, yes/no, on/off, and 1/0. These
are not case sensitive.

1.3.3 Command Line Arguments

SixTrack does not require any command line arguments, but can optionally take the file name for the
main input file as well as the geometry file. The first file name encountered is taken as the input file,
and the second is taken as the geometry file. See also Sections 3.1 and 3.2.

In addition, SixTrack can take the following command line arguments:

--notrack SixTrack will run the initialisation of the job, but skip the entire track-
ing loop. This can be useful for checking initial simulation parameters
without having to run the full job.

-v, --version Echo program name and version as a single line, and exit.

-V, --VERSION Echo program name, version, release date, and git hash on four lines,
and exit.

-nv, --numvers Echo the numerical version as an integer, and exit,

4

Chapter 2

Conventions

2.1 Tracking

The main particle tracking arrays used in SixTrack are listed in Table 2.2. Some of them are relative
to the reference particle main values, which are listed in Table 2.1.

Table 2.1: An overview of the reference particle variables used in SixTrack.

Name Variable Unit Description

m0 numc0 [MeV] Reference mass

E0 e0 [MeV] Reference energy

P0 e0f [MeV/c] Reference momentum

β0 beta0 [1] Reference relativistic beta factor

γ0 gamma0 [1] Reference relativistic gamma factor

Table 2.2: An overview of the particle arrays used in SixTrack, and their definition.

Name Variable Unit Definition Description

x xv1(j) [mm] – Horizontal position

y xv2(j) [mm] – Vertical position

x′ yv1(j) [1/1000] Px
P Approximate horizontal angle

y′ yv2(j) [1/1000]
Py

P Approximate vertical angle

σ sigmv(j) [mm] s− β0ct Longitudinal offset

pσ n/a [1] E−E0
β0P0c

Canonical conjugate of σ

δ dpsv(j) [1] P−P0
P0

Canonical conjugate of σ

rv rvv(j) [1] β0

β Velocity ratio

rp oidpsv(j) [1] P0
P Momentum ratio

ζ n/a [mm] σ/rv Longitudinal offset conjugate with δ

m nucm(j) [MeV/c2] – Mass

m/c mtc(j) [1] q
q0
m0
m Mass-to-charge ratio

P ejfv(j) [MeV/c] – Momentum

E ejv(j) [MeV] – Energy

5

Chapter 2: Conventions

2.1.1 Normalisation Matrix

The normalisation matrix, referred to in this manual as the T-matrix and in the source code with the
variable tas, is a 6 × 6 matrix calculated from the eigenvectors of the one-turn map. The T-matrix
is used to convert normalised coordinates to physical coordinates, and its inverse converts physical to
normaliased.

The T-matrix and its inverse is printed to the tracking files (see Appendix B) and to the particle
state files dumped from the settings block (see Section 3.4).

It is also used for writing normalised particle dumps (see Section 10.1) and to read normalised
input beam distributions (see Section 4.7).

6

Chapter 3

General Input

3.1 Main Input Files

SixTrack requires a main input file, which by default must be named fort.3. Alternatively, if a
different file name is desired, it can be given to the SixTrack executable as the first command line
argument. If a geometry file is requested in the main input file (see Section 3.2), it can be given as
the second command line argument. If none is provided, SixTrack will look for a file named fort.2.
These files will be referred to as fort.3 and fort.2 in the rest of this document.

Note that you can always add the global DEBUG flag to the SETTINGS block to enable echoing back
most of the input parameters set in the fort.3 file. The flag is described in Section 3.4. This can not
only verify that SixTrack understood and received the values correctly, but it also often echoes back
other parameters computed from the input values. The echoed back lines will start with “INPUT>
DEBUG”, so it is sometimes easier to grep for these lines in the output. They contain the name of the
block where they were parsed, and their line number within the block if available or relevant.

3.2 Program Version

The Program Version input block determines if all of the input will be in the input file fort.3, or if
the geometry part of the machine (see 5) will be in a separate file: fort.2. The latter option is useful
if tracking parameters are changed, but the geometry part of the input is left as it is. The geometry
part can be produced directly from a MAD-X input file (see 3.7). Note that this line should not have
a NEXT keyword after it, and must always be the first line of the file.

Keyword FREE or GEOM

Data lines None

Format keyword comment title

Format Description

keyword The first four characters of the first line of the fort.3 input file are reserved for
the keyword. FREE for free format input with all input in fort.3, and GEOM if the
geometry part is in file fort.2.

comment Following the first four characters, 8 characters are reserved for comments

title The next 60 characters are interpreted as the title printed at the top of the output
file fort.6.

3.3 Print Selection

The PRIN flag is deprecated, and replaced by the PRINT flag in the SETTINGS block.

7

Chapter 3: General Input

3.4 Settings

The Print Selection input block available in earlier version has been replaced with the SETTINGS block.
This was done to allow for more options related to what output SixTrack produces in fort.6. The
PRIN flag is available as one of several options in this block. However, for backwards compatibility,
the PRIN flag is still accepted.

Keyword SETT

Data lines Variable

Format Description

PRINT This causes the printing of the input data to the output file fort.6.

DEBUG A global debug flag that causes the majority of the blocks to echo back the value
read from the input file after parsing. It may also print out secondary values set
based on input values read, or modification made to input values based on other
dependencies and criteria.

QUIET Followed by an integer specifying how “quiet” the output should be. A higher
value causes less information to be printed back out. If the keyword is not present,
the default value is 0, which means it is disabled. If it is present, but the integer
value is omitted, it is set to be 1. This flag does not interfere with the PRINT flag.

PRINT DCUM This will cause the calculated s-coordinate of each structure element to be printed
to the file machine length.dat.

PARTSUMMARY Enable or disable the printing of a particle summary after tracking. The flag takes
an optional parameter to explicitly state whether it is ON or OFF. If omitted,
it is assumed the user requests it to be ON. If the flag is omitted entirely, the
default behaviour is determined by the particle count. If SixTrack is running with
64 particles or less, it is ON by default, otherwise OFF.

WRITEFORT12 Enable or disable the writing of fort.12 after tracking. The flag takes an optional
parameter to explicitly state whether it is ON or OFF. If omitted, it is assumed
the user requests it to be ON. If the flag is omitted entirely, the default behaviour
is determined by the particle count. If SixTrack is running with 64 particles or
less, it is ON by default, otherwise OFF.

INITIALSTATE Followed by either “binary” or “text”. This will write a file before tracking con-
taining the initial state of all particles to either a binary or a text file. Adding
“ions” as a second keyword will also dump the additional ion columns (see Sec-
tion 4.5). The file header also contains the settings of the reference particle, the
4D and 6D closed orbit, the tunes, and the TA matrix. (Note that the dp/p0

values are not scaled by a factor 1000 in this file.)

FINALSTATE Followed by either “binary” or “text”. This will write a file after tracking contain-
ing the final state of all particles, including those lost during tracking, to either
a binary or a text file. Adding “ions” as a second keyword will also dump the
additional ion columns (see Section 4.5). The file header also contains the settings
of the reference particle, the 4D and 6D closed orbit, and the TA matrix. (Note
that the dp/p0 values are not scaled by a factor 1000 in this file.)

3.5 Comment Line

An additional comment can be specified with the Comment block. The comment will be written to
the binary data files (Appendix C), and will appear in the post processing output as well.

8

3.6 Iteration Errors

Keyword COMM

Data lines 1

Format A string of up to 80 characters.

3.6 Iteration Errors

For the processing procedures, the number of iterations and the precision to which the processing is to
be performed are chosen with the Iteration Errors input block. If the input block is left out, default
values will be used.

Keyword ITER

Data lines 1 to 4

Format Each data line holds three values as in table 3.1, except for the fourth line where
the horizontal and vertical aperture limits can be additionally specified. This has
been added to avoid artificial crashes for special machines.

Table 3.1: Iteration Errors

Variable Type Default Description

Data Line 1

ITCO int 50 Number of Iterations for closed orbit calculation.

DMA dbl 1e-12 Demanded Precision of closed orbit displacements.

DMAP dbl 1e-15 Demanded Precision of derivative of closed orbit
displacements.

Data Line 2

ITQV int 10 Number of Iterations for Q Adjustment.

DKQ dbl 1e-10 Variations of quadrupole strengths.

DQQ dbl 1e-10 Demanded Precision of tunes.

Data Line 3

ITCRO int 10 Number of Iterations for chromaticity correction.

DSM0 dbl 1e-10 Variations of sextupole strengths.

DECH dbl 1e-10 Demanded Precision of chromaticity correction.

Data Line 4

DE0 dbl 1e-9 Variations of momentum spread for chromaticity calculation.

DED dbl 1e-9 Variations of momentum spread for evaluation of dispersion.

DSI dbl 1e-9 Demanded Precision of desired orbit r.m.s. value;
compensation of resonance width.

APER(1) dbl 1000 [mm] Demanded Precision of horizontal aperture limit.

APER(2) dbl 1000 [mm] Demanded Precision of vertical aperture limit.

9

Chapter 3: General Input

3.7 MAD-X to SixTrack Conversion

A converter has been developed [15], which is directly linked to MAD-X. It produces the geometry
file fort.2; an appendix to the parameter file fort.3, which defines which of the multipole errors are
switched on; the error file fort.16, and the file fort.8 which holds the transverse misalignments and
the tilt of the non-linear kick elements. It also produce a file fort.34 with linear lattice functions,
phase advances and multipole strengths needed for resonance calculations for the program SODD [22].

In addition, the flag aperture will produce an aperture limitations file. The flag multicol will pro-
duce an alternative fort.2 file with more information on the machine structure (see Section 5.2.1.2).

10

Chapter 4

Initial Conditions for Tracking

For the study of non-linear systems, the choice of initial conditions is of crucial importance. The input
structure for the initial conditions was therefore organised in such a way as to allow for maximum
flexibility. SixTrack is optimised to reach the largest possible number of turns. In order to derive
the Lyapunov exponent, and thereby to distinguish between regular and chaotic motion, the particle
has a close by companion particle. Moreover, experience has shown that varying only the amplitude
while keeping the phases constant is sufficient to understand the non-linear dynamics, as a subsequent
detailed post-processing allows to find the dependence of the parameter of interest on these phases.

A number of features have over time been deprecated or replaced by other modules in SixTrack.
Therefore there are a number of parameters that are no longer in use, but nevertheless have to be set
to dummy values. The Simulation (SIMU) and Distribution (DIST) blocks are intended to replace all
of the blocks in this chapter. These blocks take keyword/value sets instead of blocks of numbers, and
are therefore easier to maintain. The SIMU block (Section 4.1) can currently be used to replace the
TRAC, INIT, and HION blocks (Section 4.2), but note that the implementation may still have bugs, and
is therefore considered experimental.

4.1 Simulation Parameters

Note: This input block is experimental. It provides an alternative interface to the most used param-
eters of the TRAC, INIT, and HION blocks, and is intended to be used in combination with the DIST

block.

The Simulation block (SIMU) is intended to take the main simulation parameters, and replaces the
TRAC, INTI, and HION blocks. If the SIMU block is present in fort.3, these blocks cannot be present.

If the reference particle mass is set in the SIMU block, the value provided in the SYNC block is
ignored.

Keyword SIMU

Data lines Variable

Format Keyword/value format. See Table 4.1.

Some settings provided by the TRAC and INIT blocks are not supported by the SIMU block. These
are listed below. The option to add closed orbit to generated particles is only supported for the
amplitude scan, which is not supported by the SIMU block. If you need this feature, please use the old
input format.

TRAC ntwin Fixed to a value of 2.

TRAC idy(1), idy(2) Fixed to a value of 1.

TRAC idfor Fixed to a value of 1.

TRAC amp(1), amp0 Fixed to a value of 0.

11

Chapter 4: Initial Conditions for Tracking

Table 4.1: Available arguments in the SIMU block.

Keyword Argument(s) Default

Particles and Turns

PARTICLES n particles(int) 0

The number of particles to be tracked. The value must be an even number. This is due to several
parts of SixTrack dealing with particles as pairs.

TURNS forward(int) [backward(int)] 0 0

The number of turns in the forward, and optionally, backward direction.

CRPOINT interval(int) 1000

How often to write checkpoint files. This parameter is ignored if SixTrack was not built with
checkpoint/restart functionality. Checkpoint files are always written on turn 1, then with the
interval specified here, and then a last time at the end of tracking.

Reference Particle

REF ENERGY energy(float,MeV) 0.0

The reference particle energy in MeV.

REF PARTICLE mass(float,MeV) [charge A Z] 938.271998 1 1 1

REF PARTICLE name [charge A Z] proton 1 1 1

The reference mass can either be provided as a value in MeV, or as a named particle. Currently this
can only be set to “proton”. This value defaults to the proton mass set in the SixTrack physical
constants module in source/constants.f90. Optionally, the reference particle charge and atomic
mass (A), and atomic number (Z) can be set. If A is set, Z must also be set. If only charge is set, Z
is set to the same value. The default values are all 1 (proton).

PDG YEAR year(int) 2002

This can be used to set the PDG year to use for the mass if a name is provided in REF PARTICLE.
The default value is the 2002 proton mass, the other value currently supported is 2018. More will be
added in the future. Note that this value affects how the proton radius is calculated as it uses the
PDG year to select the relevant constant for calculating this. Even when setting a reference particle
mass in MeV, the PDG year is used for this.

Lattice and Optics

LATTICE thin|thick 4D|6D thin 4D

The first argument must be either thick or thin, and this must match the content of the geometry
file. The second argument must be either 4D or 6D. These arguments are not case sensitive. When
6D tracking is requested, closed orbit and optical functions at the starting point are calculated using
the differential algebra package.

OPTICS first(int) last(int) 1 nblz

Start and stop structure element index for optics calculation. If set to 0 or omitted, the optics
calculation defaults to the full machine.

Closed Orbit

6D CLORB on|off off

Compute the 6D closed orbit. If the simulation is running 4D, this option is ignored.

INIT CLORB on|off off

INIT CLORB x xp y yp [sigma dpsv] (float) 6 * 0.0

Initialise closed orbit. This keyword can be called either with a flag, in which case it turns on or off
the reading of a closed orbit suggestion from file fort.33, or it can provide 4 or 6 values for the
closed orbit suggestion. If omitted, the values are initialised to zero, and the 4D closed orbit is used
to seed the first four values of the 6D closed orbit. These settings are ignored when running in 4D.

(The table continues on the next page)

12

4.2 Tracking Parameters

Keyword Argument(s) Default

Particle and Track Files

READ FORT13 on|off off

Read the particle distribution from file fort.13. This file is not intended for reading an initial
distribution, but for continuing tracking from a previous simulation from a fort.12 file.
Note that if the file is used as an input file for the initial distribution, the closed orbit is not added,
even if requested with the ADD CLORB flag.

WRITE FORT12 interval(int) 10000

How often, in terms of turns, to write the particle distribution to file fort.12. This file can be
renamed to fort.13 and used as an input file for continued tracking.

WRITE TRACKS interval(int) [rewind(flag)] nturn+1 on

How often, in terms of turns, to write to the tracking file singletrackfile.dat (see Appendix B).
The optional rewind flag specifies whether or not to rewind the tracking files on each write.

Various Flags and Options

EXACT on|off off

Switch to enable exact solution of the equation of motion into tracking and 6D (no 4D) optics
calculations.

off: x′ ' Px
P0(1 + δ)

, y′ ' Py
P0(1 + δ)

;

on: x′ ' Px

P0

√
(1 + δ)2 − P 2

x − P 2
y

, y′ ' Py

P0

√
(1 + δ)2 − P 2

x − P 2
y

.

CURVEFF on|off off

Enable or disable the effect of the curvature in a combined function magnet (bending + quadrupole).
Note that the weak focusing effect is always included.

4.2 Tracking Parameters

All tracking parameters are defined with this input block. The initial coordinates are generally also
set here. A fine tuning of the initial condition is done with Initial Coordinates block (4.3), and the
parameters for the synchrotron oscillation are given in block (4.4).

Keyword TRAC

Data lines 3

Format Line 1: numl numlr napx amp(1) amp0 ird imc

niu(1) niu(2) numlcp numlmax

Line 2: idy(1) idy(2) idfor irew iclo6

Line 3: nde(1) nde(2) nwr(1) nwr(2) nwr(3) nwr(4)

ntwin ibidu iexact curveff

Format Description

numl integer Number of turns in the forward direction.

numlr integer Number of turns in the backward direction.

napx integer Number of amplitude variations (i.e. particle pairs).

13

Chapter 4: Initial Conditions for Tracking

amp(1),amp0 floats Start and end amplitude (any sign) in the horizontal phase space plane
for the amplitude variations. The vertical amplitude is calculated using
the ratio between the horizontal and vertical emittance set in the Initial
Coordinates block (4.3), where the initial phase in phase space are also
set. Additional information can be found in the Remarks.

imc integer Number of variations of the relative momentum deviation has been
removed. This value must be 1.

niu(1),niu(2) integer Start and stop structure element index for optics calculation. If 0,
defaults to the full machine.

numlcp integer Checkpoint/restart version: How often to write checkpointing files.

numlmax integer No longer in use.

idz(1),idz(2) integers A tracking where one of the transversal motion planes shall be ignored
is only possible when all coupling terms are switched off. The part of
the coupling that is due to closed orbit and other effects can be turned
off with these switches.
idz(1), idz(2) = 1: coupling on.

idz(1), idz(2) = 0: coupling to the horizontal and vertical motion
plane respectively switched off.

idfor integer Usually the closed orbit is added to the initial coordinates. This can be
turned off using idfor, for instance when a run is to be prolonged.

idfor = 0: closed orbit added.

idfor = 1: initial coordinates unchanged.

idfor = 2: prolongation of a run, taken the initial coordinates from
fort.13.

irew integer To reduce the amount of tracking data after each amplitude and
relative momentum deviation iteration ∆p/p0 the binary track file
singletrackfile.dat (see Appendix B) are rewound. This is always
done when the post-processing is activated (9.12). For certain appli-
cations it may be useful to store all data. The switch irew allows for
that.
irew = 0: track file rewound.

irew = 1: all data on track file.

iclo6 integer This switch allows to calculate the 6D closed orbit and optical functions
at the starting point, using the differential algebra package. It is active
in all versions that link to the Differential Algebra package. Note that
iclo6 > 0 is mandatory for 6D simulations, and that iclo6 = 0 is
mandatory for 4D simulations.

iclo6 = 0: switched off.

iclo6 = 1: calculated.

iclo6 = 2: calculated and added to the initial coordinates (4.3).

iclo6 = 5 or 6: like for 1 and 2, but in addition a guess closed orbit
is read (in free format) from file fort.33.

nde(1) integer Number of turns at flat bottom, useful for energy ramping.

nde(2) integer Number of turns for the energy ramping. numl-nde(2) gives the number
of turns on the flat top. For constant energy with nde(1) = nde(2) = 0
the particles are considered to be on the flat top.

nwr(1) integer Every nwr(1)’th turn the coordinates will be written to track file in the
flat bottom part of the tracking.

14

4.2 Tracking Parameters

nwr(2) integer Every nwr(2)’th turn the coordinates in the ramping region will be
written to track file.

nwr(3) integer Every nwr(3)’th turn at the flat top a write out of the coordinates
to track file will occur. For constant energy this number controls the
amount of data in track file, as the particles are considered on the flat
top.

nwr(4) integer In cases of very long runs it is sometimes useful to save all coordinates
for a prolongation of a run after a possible crash of the computer. Every
nwr(4)’th turn the coordinates are written to unit 6.

ntwin integer For the analysis of the Lyapunov exponent it is usually sufficient to
store the calculated distance of phase space together with the coordi-
nate of the first particle (ntwin set to one). You may want to improve
the 6D calculation of the distance in phase space with sigcor, dpscor

(see 4.3) when the 6D closed orbit is not calculated with iclo6 6= 2.
If storage space is no problem, one can store the coordinates of both
particles (ntwin set to two). The distance in phase space is then cal-
culated in the post-processing procedure (see 9.12). This also allows a
subsequent refined Lyapunov analysis using differential algebra and Lie
algebra techniques ([29]).

ibidu integer No longer in use. Value ignored.

iexact integer Switch to enable exact solution of the equation of motion into tracking
and 6D (no 4D) optics calculations.

iexact = 0: approximated equation

e.g. x′ ' Px
P0(1 + δ)

, y′ ' Py
P0(1 + δ)

;

iexact = 1: exact equation

e.g. x′ ' Px

P0

√
(1 + δ)2 − P 2

x − P 2
y

, y′ ' Py

P0

√
(1 + δ)2 − P 2

x − P 2
y

.

curveff integer curveff = 0: the effect of the curvature in a combined function is
neglected. Note that the weak focusing effect is always included.

curveff = 1: switch to enable the curvature effect in a combined func-
tion magnet (bending + quadrupole).

Remarks

1. This input data block is usually combined with the Initial Coordinates input block (4.3) to allow
a flexible choice of the initial coordinates for the tracking.

2. For a prolongation of a run the following parameters have to be set:

(a) in this input block: idfor = 1

(b) in the Initial coordinates input block:

• itra = 0

• take the end coordinates of the previous run as the initial coordinates (including all
digits) for the new run.

3. A feature is installed for a prolongation of a run by using idfor = 2 and reading the initial data
from file fort.13. The end coordinates are now written to fort.12 after each run. Intermediate

15

Chapter 4: Initial Conditions for Tracking

coordinates are also written to fort.12 in case the turn number nwr(4) is exceeded in the
run. The user takes responsibility to transfer the required data from fort.12 to fort.13 if a
prolongation is requested. This feature can be used to effectively read in a custom-made beam
distribution. The format of the file is one line per pair of particles; the meaning of the columns
is exactly that of the Initial Coordinates input block (see Sec. 4.3 and Tab. 4.4).

4. As of version 5.2 the particle momentum offset from fort.13 is re-calculated from the particle
energy to ensure these are consistent. The particle momentun offset in fort.13 is therefore
ignored.

5. Some illogical combinations of parameters have been suppressed.

6. The initial coordinates are calculated using a proper linear 6D transformation: amp(1) is still
the maximum horizontal starting amplitude (excluding the dispersion contribution) from which
the emittance of mode 1 eI is derived, rat (see 4.3) is the ratio of eII/eI of the emittances of
the two modes. The momentum deviation ∆p

p0,1
is used to define a longitudinal amplitude. The

6 normalized coordinates read:

(a) horizontal: [
√
eI =

amp(1)
√
βxI +

√
|rat| × βxII

, 0.0

]
(b) vertical:

[sign(rat)×
√
eII with eII = |rat| × eI , 0.0]

(c) longitudinal: [
0.0,

∆p

p0,1
×
√
βsIII

]
and are then transformed with the 6D linear transformation into real space. Note that results
may differ from those of older versions.

7. The amplitude scan is performed from amp(1) to amp0 in steps of delta = (amp0−amp(1))/(napx−
1). For the intermediate amplitudes, delta is added up for each step, however the last amplitude
is guaranteed to be fixed to the given value. This enables “control calculations” by setting the
first amplitude of one simulation equal to the last amplitude of another simulation, and unless
there are calculation errors, they shall produce exactly the same results.

8. Note that if iclo6 = 2 and idfor = 0 in the input file, then idfor is internally set to 1, as
is seen in some outputs. This does not mean that the closed orbit is not added; the setting of
iclo6 = 2 simply takes precedence.

4.3 Initial Coordinates

The Initial Coordinates input block is meant to manipulate how the initial coordinates are organise,
which are generally set in the tracking parameter block (4.2). Number of particles, initial phase, ratio
of the horizontal and vertical emittances and increments of 2 × 6 coordinates of the two particles, the
reference energy and the starting energy for the two particles.

Keyword INIT

Data lines 16

Format Line 1: itra chi0 chid rat iver

Lines 2 to 16: 15 initial coordinates as listed in Table 4.4

16

4.3 Initial Coordinates

Format Description

itra integer Number of particles:

itra = 0: Amplitude values of tracking parameter block (4.2) are ig-
nored and coordinates of data line 2–16 are taken. itra is set internally
to 2 for tracking with two particles. This is necessary in case a run is
to be prolonged.

itra = 1: Tracking of one particle, twin particle ignored.

itra = 2: Tracking the two twin particles.

chi0 float Starting phase of the initial coordinate in the horizontal and vertical
phase space projections.

chid float Phase difference between first and second particles.

rat float Denotes the emittance ratio (eII/eI) of horizontal and vertical motion.
For further information see the Remarks of the TRAC input block in
Section 4.2.

iver integer In tracking with coupling it is sometimes desired to start with zero
vertical amplitude which can be painful if the emittance ratio rat is used
to achieve it. For this purpose the switch iver has been introduced:

iver = 0: Vertical coordinates unchanged.

iver = 1: Vertical coordinates set to zero.

Table 4.4: Initial Coordinates of the 2 Particles

Line Contents

2 x1 [mm] coordinate of particle 1

3 x′1 [mrad] coordinate of particle 1

4 y1 [mm] coordinate of particle 1

5 y′1 [mrad] coordinate of particle 1

6 path length difference 1 (σ1 = s− v0 × t) [mm] of particle 1

7 ∆p/p0,1 of particle 1

8 x2 [mm] coordinate of particle 2

9 x′2 [mrad] coordinate of particle 2

10 y2 [mm] coordinate of particle 2

11 y′2 [mrad] coordinate of particle 2

12 path length difference (σ2 = s− v0 × t) [mm] of particle 2

13 ∆p/p0,2 of particle 2

14 energy [MeV] of the reference particle

15 energy [MeV] of particle 1

16 energy [MeV] of particle 2

Remarks

• These 15 coordinates are taken as the initial coordinates if itra is set to zero (see above).
If itra is 1 or 2 these coordinates are added to the initial coordinates generally defined in
the tracking parameter block (4.2). This procedure seems complicated but it allows freely to
define the initial difference between the two twin particles. It also allows in case a tracking run
should be prolonged to continue with precisely the same coordinates. This is important as small
difference may lead to largely different results.

17

Chapter 4: Initial Conditions for Tracking

• The reference particle is the particle in the centre of the bucket which performs no synchrotron
oscillations.

• The energy of the first and second particles is given explicitly, again to make possible a contin-
uation that leads precisely to the same results as if the run would not have been interrupted.

• There is a refined way of prolonging a run, see the Tracking Parameters input block (4.2).

4.4 Synchrotron Oscillation

The parameters needed for treating the synchrotron oscillation in a symplectic manner are given in
the Synchrotron Oscillation input block.

Keyword SYNC

Data lines 2

Format Line 1: harm alc u0 phag tlen pma ition dppoff

Line 2: dpscor sigcor

Format Description

harm integer Harmonic number.

alc float Momentum compaction factor, used here only to calculate the lin-
ear synchrotron tune QS .

u0 float Circumference voltage in [MV].

phag float Acceleration phase in degrees.

tlen float Length of the accelerator in meters.

pma float Rest mass of the particle in MeV/c2.

ition integer Transition energy switch:

ition = 0: for no synchrotron oscillation (energy ramping still
possible).

ition = 1: for above transition energy.

ition = -1: for below transition energy.

dppoff float Offset Relative Momentum Deviation ∆p/p0: a fixpoint with re-
spect to synchrotron oscillations. It becomes active when the 6D
closed orbit is calculated (see item iclo6 in section 4.2).

dpscor,sigcor floats Scaling factor for relative momentum deviation ∆p/p0 and the
path length difference (σ = s − v0 × t) respectively. They can be
used to improve the calculation of the 6D distance in phase space,
but is only used when ntwin = 1 in the tracking parameter input
block (4.2). Please set to 1 when the 6D closed is calculated.

Note: The value of tlen is also calculated internally by SixTrack (in dcum), and a warning is
issued if the given value is different from the calculated value.

4.5 Tracking with Ions

The default tracking in SixTrack is for protons. In case tracking of ions is wanted the following input
block should be used. The HION block only specifies the reference particle. By default, all particles

18

4.6 Random Numbers

are initialised to the same values, but if multiple ion species are needed, these can be provided by an
input file in the DIST block.

Keyword HION

Data lines 1

Format Line 1: A Z ma Q

Format Description

A integer Total number of nucleons (atomic mass number).

Z integer Total number of protons.

ma float Mass of the ion [GeV/c2].

Q integer Electrical charge.

4.6 Random Numbers

The RAND block configures and initialises the pseudo-random number generator used by some parts of
SixTrack. The block allows the user to set a master seed that generates a reproducible sequence of
numbers, or alternatively seed the generator with a clock seed by providing the word TIME in place of
a seed number. The SEED keyword is required, and if it is a number, it must be larger than 0.

The main random number generator in this module is RANLUX [52]. The RANECU [53, 54]
generator used by the magnet error code is also available. It is possible to override the default
generator for the block with the OVERRIDE keyword. This will force the initialisation of all random
number series to set the generator provided.

The “Luxury level” of the RANLUX generator is by default set to 3. This can be overridden by
the LUXLEVEL keyword.

Some modules in SixTrack uses its own seeds and initialisation of random numbers. Please refer
to the sections for the individual blocks for which feature requires this module. The original magnet
error block is one such module (see Secyion 8.1).

Keyword RAND

Data lines Variable

Format Keyword/value

Example

RANDOM NUMBERS

SEED 42

LUXLEVEL 3

OVERRIDE ranlux

NEXT

4.7 Initial Distribution

The DIST block adds the ability to read a beam distribution from file, or generate it internally in
SixTrack. The file format is very flexible and can be specified column-wise with the FORMAT keyword
to support many file layouts. It is also possible to specify the unit of the data in the input file, within
a limited range. If no format is specified, the DIST block falls back to the fixed 14 column format read
by the original simple DIST block prior to version 5.3.1 (see Table 4.10).

19

Chapter 4: Initial Conditions for Tracking

Keyword DIST

Data lines Variable

Format Keyword/value

Format Description

There are several approaches available for initiating the beam distribution. It can be read in its
entirety from a file, selecting a set of many available conventions for describing the particle coordinates,
ion values and meta data. For a small number of particles, the coordinates can be set directly in the
DIST block as well.

The DIST block is linked to the external DISTlib library for beam distributions, and the filled
particle coordinates can be passed on to this library for further processing, like applying the T-matrix
(see Section 2.1.1). In the future, more features will be added to this library, and made available
through the DIST block interface.

Table 4.7 lists the currently available keywords of the DIST block. Table 4.8 lists all the column
formats the block supports. Table 4.9 lists all the available fill methods for populating the particle
arrays without having to read from file.

For an overview of the definitions used for the particle tracking variables in SixTrack, see Sec-
tion 2.1.

Default Behaviour

Since there are multiple ways to set the particle coordinates, a few default behaviours and prece-
dences have been coded into the parsing.

• All particle coordinates are initially set to 0, with the exception of particle energy, which defaults
to the reference energy. That is, the particle δ momentum is 0.

• The particle mass and ion parameters also default to those of the reference particle.

• The particle ID, if not provided, is set as a range from 1 to the number of particles as specified
in the TRAC or SIMU block.

• The particle parent ID is set to equal that of its ID. This is the correct way to indicate that a
particle is a primary particle.

It is only possible to set each particle coordinate using one method. If conflicting methods are
selected in the FORMAT keyword and in FILL methods, an error will be raised. Since SixTrack uses
multiple arrays for different values related to the particle energy, these are calculated after initialisation
from the input format chosen.

The default normalisation method is to use the internal T-matrix in SixTrack (see Section 2.1.1).
Alternatively, Twiss and dispersion can be set in the block, or a new T-matrix provided. These will
then take precedence over the internal matrix.

All emittances default to 0, so if these are not set, the normalisation will also return arrays of
zeros.

Table 4.7: Available keyword/value sets in the DIST block.

Keyword Argument(s) Default

Input, Output and Format

FORMAT [list of columns] OLD DIST

(The table continues on the next page)

20

4.7 Initial Distribution

Keyword Argument(s) Default

A list of column formats for the input. The available column values are listed in Table 4.8. This
format is applied to either the input file or to particles specified directly in the DIST block. The
number format columns must match the file columns or particle entries. If no format is specified, the
parser assumes it will receive a 14 column file matching the format described in Table 4.10.

READ filename(char) [use distlib(flag)]

The filename of the file to read. An optional logical flag sets whether the filename is passed on to the
external DISTlib, in which case the file must conform to the DISTlib file format. This is not covered
here. If the file contains more particles than requested in the TRAC or SIMU block, the remaining
particles will be ignored. If the file contains less particles, an error will be raised.

PARTICLE [list of values]

A list of values to be parsed as a particle. This requires a format to be specified. It provides the
option to add particles to the simulation without having to use the INIT block or a distribution file.
Although not intended for initialising a large number of particles, there is no limit on how many
times this keyword can be used.

ECHO [filename] echo distribution.dat

Echos the distribution back to a file. The format of the file is described in Table 4.11. This keyword
is kept for legacy support, but a much more detailed file is written by the INITIALSTATE keyword in
the SETTINGS block.

Beam Parameters

EMITTANCE emit1[mm mrad] emit2[mm mrad] 0.0 0.0

The transverse beam emittance values in units of mm mrad.

LONGEMIT emit3 unit[eVs|um] 0.0

Longitudinal emittance and its unit. The emittance can either be provided in µm or in eVs.

TWISS betaX[m] alphaX[1] betaY[m] alphaY[1] 1.0 0.0 1.0 0.0

The horizontal and vertical twiss parameters.

DISPERSION dx dpx dy dpy 0.0 0.0 0.0 0.0

Beam dispersion

TMATRIX val1 val2 val3 val4 val5 val6

Specify the 6× 6 normalisation matrix in its entirety. The keyword needs to be repeated 6 times,
once for each row.

Internal Generator

FILL [list of parameters]

The different columns can also be filled by a set of fill functions controlled with this keyword. The
settings provided by this keyword are applied after the file is read or the arrays are populated by the
PARTICLES keyword. The FILL feature can therefore be used to overwrite the data read from the file.
The various fill methods available are listed in Table 4.9. If a fill method using random numbers is
used, note that the random number generator also must be initialised with the RAND block. See
Section 4.6.

4.7.1 Column Formats

The FORMAT keyword allows the user to specify their own file format by providing a list of columns it
contains. The available formats and how they are converted to internal SixTrack particle coordinates
are listed in Table 4.8.

Each column can optionally take a unit in square brackets, appended to the column name itself
with no space in between. The available units are also listed in the table for the column formats that

21

Chapter 4: Initial Conditions for Tracking

support units. If no unit in square brackets is provided, the parser defaults to the internal SixTrack
units which are mm, mrad and MeV.

For units of energy c = 1 such that for instance MeV, MeV/c and MeV/c2 are equivalent. The
parser accepts the following notation: MeV, MeV/c, MeV/c^2, and MeV/c**2. Units are not case sensi-
tive.

For units of length, the parser accepts the character u as an alternative to µ.

Multi-Column Formats

To avoid the need for specifiying common combinations of columns, a set of multi-column keywords
are also available. They are translated directly into a group of columns in a pre-defined order. using
these keywords does not prevent the user from adding more columns to extend the format.

Note, however, that conflicting columns cannot be provided. Only one column for each of the 6
particle coordinates is allowed at the same time. If the file contains multiple columns for the same
coordinate, the columns not in use can be disabled with the SKIP flag.

For backwards compatibility with the old DIST block, a format that matches the old 14 colum file
is also provided. For the recent addition of charge and PDGID, these columns must be added to this
format. If no format is specified, the default is the old 14 column format described in Table 4.10.

Example

Below is an example of a DIST block using a 7-column input file with the length unit in millimetres.

DIST

FORMAT ID X[mm] PX Y[mm] PY ZETA[mm] DELTA

READ partDist.dat

NEXT

Table 4.8: Available column formats in the DIST block.

Column Name Units

Meta Columns

SKIP N/A

Disables the column in the file, that is, during parsing, the column is skipped.

ID N/A

The particle ID. Currently, this number must be in the range 1 to number of particles in the
simulation, and they must be unique. There is no restriction on the order.

PARENT N/A

The particle’s parent ID. If the parent ID is the same as the particle ID, the particle is considerd a
primary particle.

Transverse Coordinates

X, Y m or mm

The particle coordinate in the horizontal and vertical plane, respectively. These are the internal
values used for tracking in SixTrack, and are read in as provides.

XP, YP [1]

The particle transverse momentum ratio relative to its total momentum, px/p ≈ x′, py/p ≈ y′. These
are the internal values used for tracking in SixTrack, and are read in as provides.

PX, PY eV, keV, MeV, GeV or TeV

The particle transverse momentum. These values will be converted to SixTrack internal values.

(The table continues on the next page)

22

4.7 Initial Distribution

Column Name Units

PX/P0, PXP0, PY/P0, PYP0 [1]

The particle transverse momentum relative to the reference momentum, px/p0, py/p0. The slash in
the column name is optional. These values will be converted to SixTrack internal values.

Longitudinal Position

SIGMA m or mm

The particle offset relative to the reference particle, σ. This is the internal value used for tracking in
SixTrack, and is read in as provided.

ZETA m or mm

The particle offset relative to the reference particle, with relative velocity correction, ζ = β0

β σ. This
value will be converted to SixTrack internal value SIGMA (σ).

DT ps, ns, µs, ms or s

The particle time delay, σ = −β0 · dt · c. This value will be converted to SixTrack internal value.

Energy and Momentum

E, P eV, keV, MeV, GeV or TeV

The particle total energy or momentum, respectively. These are values used by SixTrack for
tracking. Only one can be set, and the other is computed from the first.

DE/E0, DEE0 [1]

The particle total energy relative to reference energy, ∆E/E0. This is converted to SixTrack internal
value E after input.

DP/P0, DPP0, DELTA [1]

The particle total momentum relative to reference momentum, ∆P/P0. This is a value used by
SixTrack for tracking. If provided as input, particle total energy and momentum is calculated from
this value.

PT [1]

The particle total momentum relative to reference energy, ∆E/P0c. This is converted to SixTrack
internal value E after input.

PSIGMA [1]

The particle total momentum relative to reference energy and relativistic velocity, ∆E/β0P0c. This
is converted to SixTrack internal value E after input.

Normalised Coordinates

XN, YN, ZN, PXN, PYN, PZN N/A

The six coordinates in nurmalised coordinates in units of
√
m. These are transformed by the beam

parameters given in the DIST block after input.

JX, JY, JZ, PHIX, PHIY, PHIZ N/A

NOT YET IMPLEMENTED! The six coordinates in action coordinates. These are transformed by
the beam parameters given in the DIST block after input.

Ion Parameters

MASS, M eV, keV, MeV, GeV or TeV

The mass of the particle. The default value is the reference particle mass set in the SIMU, SYNC or
HION block.

CHARGE, Q N/A

The charge of the particle in units of elementary charge. The default value is the reference particle
mass set in the SIMU or HION block.

ION A, ION Z N/A

(The table continues on the next page)

23

Chapter 4: Initial Conditions for Tracking

Column Name Units

The ion A and Z values (atomic mass and atomic charge). The default value is the reference particle
mass set in the SIMU or HION block. Both columns must be provided if one of them is.

PDGID N/A

The Particle Data Group ID of the particle. If it is not provided, it is either calculated from A and Z
if given, or set to that of the reference particle in the SIMU or HION block.

Spin Vector

SX, SY, SZ N/A

The three components of the particle spin vector. This information is currently not used for
tracking, but is available for future additions to SixTrack.

Multi-Columns Keywords

4D N/A

Equivalent to setting X PX Y PY with default units.

6D N/A

Equivalent to setting X PX Y PY ZETA DELTA with default units.

NORM N/A

Equivalent to setting XN PXN YN PYN ZN PZN.

ACTION N/A

Equivalent to setting JX PHIX JY PHIY JZ PHIZ.

IONS N/A

Equivalent to setting MASS CHARGE ION A ION Z PDGID with mass in units GeV.

SPIN N/A

Equivalent to setting SX SY SZ.

OLD DIST N/A

Gives the old file format as described in Table 4.10. That is, it’s equivalent to ID PARENT SKIP

X[M] Y[M] SKIP XP[RAD] YP[RAD] SKIP ION A ION Z MASS[GEV] P[GEV] DT.

4.7.2 Filling the Columns

The FILL keyword allows the user to fill the particle arrays with values generated based on a set of
parameters. These can be both pseudo-random distributions, value ranges, or fixed values.

The fills are processed after particles are read from file or from direct PARTICLE declarations in the
DIST block. This makes it possible to overwrite certain values after reading from file. The FILL feature
can also be used to populate the arrays from scratch, which can be useful for filling the normalised
arrays (see example below).

The different fill methods are listed in Table 4.9.
Note that the PARENT column cannot be filled. The SPIN columns are also currently disabled with

this feature.
Also note that the FILL methods cannot create corrolated distributions. This can be achieved by

using the normalised column formats, which triggers a normalisation after they have been filled.
If a fill method using random numbers is used, the random number generator also must be initialised

with the RAND block. See Section 4.6.

The general format for this feature is:

FILL column method param1 ... paramN [firstIDX lastIDX]

24

4.7 Initial Distribution

FILL The keyword selecting this feature.

column The target column format. Must be one of the columns described in Table 4.8.

method The fill method. Must be one of the methods described in Table 4.9.

params The fill method parameters. These vary from method to method. See Table 4.9.

firstIDX Optional: The first paricle index for this fill method. Defaults to particle 1.

lastIDX Optional: The last paricle index for this fill method, where -1 indicates the last
particle as request in the SIMU or TRAC block. Defaults to particle -1.

Example

The example below fills the normalised coordinate arrays with Gaussian distributions with a sigma
cut, and fills the particle ID and ion columns. Writing to the normalised coordinate arrays in this
manner triggers the normalisation routine to be called, here defaulting to use the internal T-matrix
since no TWISS or TMATRIX keywords are set.

DIST

EMITTANCE 2.5 2.5

SEED 12

FILL ID COUNT 1 1

FILL XN GAUSS 1.0 0.0 5.0

FILL PXN GAUSS 1.0 0.0 5.0

FILL YN GAUSS 1.0 0.0 5.0

FILL PYN GAUSS 1.0 0.0 5.0

FILL ZN GAUSS 0.8 0.0 3.0

FILL PZN GAUSS 0.5 0.0 3.0

FILL ION_A INT 1

FILL ION_Z INT 1

FILL CHARGE INT 1

FILL MASS FLOAT 938.272046

NEXT

Table 4.9: Available fill methods in the DIST block.

Method Argumnent(s)

INT value [first last]

Sets all values to a fixed integer. Can be used with column formats ION A, ION Z, CHARGE, and PDGID.

FLOAT value [first last]

Sets all values to a fixed floating point value. Can be used with all floating point column formats.

GAUSS sigma mu [cut] [first last]

Generates a normal random distribution with width sigma and offset mu, with an optional sigma
cut. Can be used with all floating point column formats except MASS, JX,JY, and JZ.

RAYLEIGH sigma [maxcut] [mincut] [first last]

Generates a Rayleigh random distribution with width sigma, with an optional sigma maxcut and
sigma mincut. Can be used with floating point column formats JX,JY, and JZ.

UNIFORM lower upper [first last]

Generates a uniform random distribution between the values lower and upper. Can be used with all
floating point column formats except MASS.

LINEAR lower upper [first last]

Fills the array with floating point values ranging between the values lower and upper in equal steps.
Can be used with all floating point column formats except MASS.

COUNT start step [first last]

Fills the array with integer values starting from start, with a given step. Can be used with column
format ID.

25

Chapter 4: Initial Conditions for Tracking

4.7.3 Support for the Old DIST Format

Tables 4.10 and 4.11 describe the old input file and echo file for the DIST block. These formats are
still supported for backwards compatibility.

Table 4.10: Format of the ASCII file containing the distribution to be read by the DIST block.

Description

1 particle id

2 parent particle id

3 statistical weight (unused)

4 x [m]

5 y [m]

6 z (unused)

7 x′ [1e-3]

8 y′ [1e-3]

9 z′ (unused)

10 mass number

11 atomic number

12 mass [GeV/c2]

13 linear momentum [GeV/c]

14 time lag [s]

Table 4.11: The format of the ASCII file where the distribution read by the DIST block is echoed. See
also Table 10.2 in DUMP for a more detailed description of the variables.

Variable Unit

1 xv1 [mm]

2 yv1 [1e-3]

3 xv2 [mm]

4 yv2 [1e-3]

5 sigmv [mm]

6 ejfv [MeV/c]

26

Chapter 5

Machine Geometry

5.1 Single Elements

The Single Elements input block defines the name and type of linear and non-linear elements, the
inverse bending radius or multipole strength respectively, and the strength and length of the elements.
Linear and non-linear elements are distinguished by length – linear elements have a non-zero length
and non-linear elements have zero length. Both kinds of elements can appear in the input block in
arbitrary order. The input line has a different format for linear and non-linear elements. Moreover,
the multipoles, being a set of non-linear elements, are treated in a special way. The maximum number
of elements is set as a parameter (see Appendix A.2).

Keyword SING

Data lines Variable

Format Described in the following sections.

5.1.1 Linear Elements

Each linear single element has a name, type, inverse bending radius, focusing and a non-zero length.

Format name type %−1 K length

name May contain up to 47 characters.

type As shown in the table 5.1 .

%−1 Inverse bending radius in m−1.

K Focusing strength in m−2.

length Magnet length in meters.

Remarks

1. For the horizontal plane the bending radius is defined to be negative (% < 0). This is different
from other programs like MAD-X [23].

2. K < 0 corresponds to a horizontal focusing quadrupole.

3. For the length of an edge focusing element (type=8) the same value must be used as for the
corresponding bending magnet. A sector bending magnet is transformed into a rectangular
magnet with an edge focusing element of positive length on either side, while for the opposite
transformation a negative length is required.

27

Chapter 5: Machine Geometry

Table 5.1: Different Types of Linear Elements

Type %−1 K Description

0 0 0 Drift length magnet

1 X 0 Horizontal (rectangular) bending

2 0 X Quadrupole (– focusing, + defocusing)

3 X 0 Horizontal (sector) bending

4 X 0 Vertical (rectangular) bending

5 X 0 Vertical (sector) bending

6 X X Horizontal combined function magnet

7 X X Vertical combined function magnet

8 X 0 Edge focusing

4. It is important to note that the splitting of a rectangular magnet, which is sometimes necessary
if multipole errors are to be introduced, does change the linear optics. It is therefore advisable
to replace the rectangular magnet with a sector magnet, which can be split without affecting the
linear optics, and make an overall transformation into a rectangular magnet via edge focusing
elements. Do not forget to use the total length of dipole as the length of the edge focusing
element.

5.1.2 Non-Linear Elements

Format name type Kn-strength rms-strength length

name May contain up to 47 characters.

type As shown in table 5.2.

Kn-strength Average multipole strength.

rms-strength Random multipole strength.

length Must be 0.

Table 5.2: Different Types of Non-linear Elements

Type Strength Description

0 – Observation point (for instance for aperture limitations).

1 b1[rad ·m0] Horizontal bending kick.

-1 a1 Vertical bending kick.

2 b2[rad ·m−1] Normal quadrupole kick.

-2 a2 Skew quadrupole kick.
...

10 b10[rad ·m−9] Normal 20th pole.

-10 a10 Skew 20th pole.

28

5.1 Single Elements

Remarks

1. Because the horizontal bending magnet is defined to have a negative bending radius, the sign
for normal elements is different from other programs like MAD-X, while skew elements have the
same sign.

2. Again contrary to other programs the factor (n− 1)! is already included in the multipole strength,
which is defined as follows:

• for normal elements:

bn(SixTrack) =
−1

(n− 1)!
Lelement bn(MAD)

• for skew elements:

an(SixTrack) =
1

(n− 1)!
Lelement an(MAD)

3. Unlike in RACETRACK, the horizontal and vertical displacements do not fit into the 80 charac-
ter input lines of SixTrack. They have to be introduced in a separate Displacements of Elements
input block (5.2.2).

5.1.3 Multipole Blocks

A set of normal, normal-r.m.s., skew, and skew-r.m.s. errors can be combined effectively. The actual
values for the strengths have to be given in a separate Multipole Coefficient input block (6.1) which
must have the same name. To consider the curvature of dipoles which are replaced by drifts and dipole
kicks this block is used in two different ways.

Format name type cstr cref length

Marker for high order kick (default)

name May contain up to 47 characters.

type Must be 11.

cstr The bending strength given in the Multipole Coefficient input block (6.1) is
multiplied with this factor.

cref The reference radius given in the Multipole Coefficient input block (6.1) will
be multiplied by this factor. If it is zero the multipole block will be ignored.

length Must be 0.

Default + dipole curvature

name May contain up to 47 characters.

type Must be 11.

cstr The bending strength [rad] of horizontal or vertical dipole. Internally the
value is set to one to allow the processing of a multipole block (6.1).

cref The length [m] of the dipole that is approximated by a kick. Internally this
value is set to one to allow the processing of a multipole block (6.1).

length length = -1: horizontal dipole.

length = -2: vertical dipole.

Remarks The definition of the multipole strength in a block will be given in (6.1).

29

Chapter 5: Machine Geometry

5.1.4 Generalized RF-Multipoles

A set of normal and skew RF-multipoles. The actual values for the strengths have to be given in a
separate Generalized RF-multipoles input block (6.2) which must have the same name.

Format name type

name May contain up to 47 characters.

type Must be 11.

5.1.5 Solenoid

Format name type ks ks ∗ l

name May contain up to 47 characters.

type Type identifier is 25.

ks The strength ks of the solenoid

ks*l The strength ks of the solenoid multiplied with the length of the corresponding
thick solenoid.

Remarks The solenoid is modeled as thin solenoid but a length the length of the real solenoid is
still needed. This is different from the case with a multipole.

5.1.6 Cavities

Format name type u0 harm lag

name May contain up to 47 characters.

type Type identifier is +12 and −12 for above and below transition energy respectively.

u0 Circumference voltage in [MV].

harm Harmonic number.

lag Lag angle [degrees] in the cavity (zero is default).

5.1.7 Beam–Beam Lens

Depending on the setting in the BEAM block of fort.3 (Section 6.6), there are two ways to define a
beam beam lens in the SINGLE ELEMENTS list.

When the EXPERT flag is set in the BEAM block: The parameters of the beam–beam lens is defined
there. In this case, only the element name and type and the location within the lattice remain in the
fort.2 element definition.

Format name type 0 0 0 0 0 0

name May contain up to 47 characters.

type 20

The rest of the parameters are ignored and should be set to zero.

When the EXPERT flag is not set: The “traditional” format is used.

30

5.1 Single Elements

Format name type h-sep v-sep strength-ratio σ h2 σ v2 σ hv2

name May contain up to 47 characters.

type 20

h-sep Horizontal beam–beam separation [mm].

v-sep Vertical beam–beam separation [mm].

strength-ratio Strength ratio with respect to the nominal beam–beam kick strength.
This is useful, in particular for 4D, to allow for splitting one beam–beam
kick into several (longitudinally close by) kicks.

σ h2 When the flag lhc=2 is set in the BEAM block of the fort.3 file, this
column represent the horizontal σ for the strong beam [mm2].

σ v2 When the flag lhc=2 is set in the BEAM block of the fort.3 file, this
column represent the vertical σ for the strong beam [mm2].

σ hv2 When the flag lhc=2 and ibbc=1 is set in BEAM block of the fort.3 file,
this column represent the coupled σ for the strong beam [mm2].

Remarks These beam–beam elements become active when the “Beam–Beam” input block 6.6 is
used.

5.1.8 Wire

Format name type

name May contain up to 47 characters.

type 15

Remarks The “wire” elements become active when the WIRE input block 6.7 is used. All parameters
except name and type have to be set to zero, otherwise SixTrack aborts. The parameters for the wire
are defined in the WIRE input block.

5.1.9 “Phase-trombone” or Matrix Element

Format name type

name May contain up to 47 characters

type 22

Remarks These “trombone” elements become active when the “Phase Trombone Element” input
block 6.8 is used.

5.1.10 AC Dipole

Format name type ACdipAmp Qd ACdipPhase

name May contain up to 47 characters.

type Type identifier is +16 and −16 for horizontal and vertical AC dipoles respectively.

ACdipAmp Maximum excitation amplitude [Tm].

Qd Excitation frequency in units of [2× π].

ACdipPhase Phase of the harmonic excitation in radians.

31

Chapter 5: Machine Geometry

Remarks The length of the ramps and the flat top are specified in the “Displacement” block 5.2.2.
The energy introduced in the “Initial coordinates” block 4.3 is used to compute the deflection angle.

5.1.11 Dipole Edge

Format name type r21 r43

name May contain up to 47 characters.

type 24

r21 Horizontal edge focusing.

r43 Vertical edge focusing.

Remarks MAD-X is outputting the correct format when using the dipedge element. An example of
the hard edge model is described in the physics guide [16], which gives r21 = −r43. Note that the values
of the vertical edge focusing is dependent on the modeling of the fringe fields [24]. A particle with
position x1, y1 and angle x′1, y

′
1 will have the angle x′2, y

′
2 after passing through the dipedge element.

The following equations describe their relation:

x′2 = x′1 + x1
r21

1 + δ
(5.1)

y′2 = y′1 + y1
r43

1 + δ
(5.2)

5.1.12 Crab Cavity

Format name type voltage frequency phase

name May contain up to 47 characters.

type Type identifier is +23 and −23 for horizontal and vertical crab cavities respec-
tively.

voltage Crab Cavity voltage [MV].

frequency Crab Cavity frequency [MHz].

phase Phase of the excitation in radians.

Remarks

How to use the crab cavity from MAD-X (using rfmultipole) to SixTrack:
In the MAD-X script write:

MULT.1, FREQ=<freq in MHz>., KNL=\{V [MV]/E0[MeV]\}, PNL=\{phase\}, TILT=<H: 0; V:PI/2.>;

where phase is 0.25 (phase for multipoles in SixTrack). As an example, to have the effect of a vertical
Crab Cavity of f = 400 MHz, V = 6 MV, beam energy [MeV]: BEAM -> PC/1e3, use the following line:

MULT.1, FREQ=400., KNL={6./BEAM -> PC/1e3}, PNL={0.25}, TILT=PI/2.;

This creates the following line in fort.2:

mult.1d -23 6.00000000e+00 4.00000000e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

If you dont want to have a vertical Crab Cavity then just remove the TILT. If you dont want to have
CC but a simple dipole field then remove the FREQ parameter.

32

5.1 Single Elements

5.1.13 RF Multipole

Provides a kick in the form of

∆x′ + i∆y′ =
k

1 + δ
(x+ iy)n cos(φ− 2πft) (5.3)

∆δ =P0
k

1 + δ

(x+ iy)n+1

(n+ 1)!
cos(φ− 2πft) (5.4)

Format name type name kick frequency phase

Check the phase keyword

name May contain up to 47 characters.

type 26: normal quadrupole, -26 skew quadrupole,

27: normal sextupole, -27 skew sextupole,

28: normal octupole, -28 skew octupole.

kick maximum normalized kick k.

frequency frequency f in [MHz].

Remarks
How to use the RF multipoles (from MAD-X to SixTrack):

2nd order multipole (quadrupole):
In the MAD-X script write:

MULT.1, KNL=\{0,-0.06*1e-3/brho\}, PNL=\{0, 0.25\};

where -0.06*1e-3 is the b2 value in units of 1/mn−1.
This gives the following single element in fort.2:

mult.1q 26 6.00000000e-05 400.00000000e+00 -1.570796327e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

3rd order multipole (sextupole):
In the MAD-X script write:

MULT.1, FREQ=400., KNL=\{0,0,1159.*1e-3/brho\}, PNL=\{0,0,0.25\};

where 1159.*1e-3 is the b3 value in units of 1/mn−1.
This gives the following single element in fort.2:

mult.1s 27 -5.79500000e-01 4.00000000e+02 -1.570796327e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

4th order multipole (octupole):
In the MAD-X script write:

MULT.1, FREQ=400., KNL=\{0,0,0,-4.*1e-3/brho\}, PNL=\{0,0,0,0.25\};

where -4.*1e-3 is the b4 value in units of 1/mn−1.
This gives the following single element in fort.2:

mult.1o 28 6.666666667e-04 4.00000000e+02 -1.570796327e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

The values of b2, b3, and b4 used in the above examples were taken from Table II of paper [37] and
normalized by the beam rigidity.

The effect of these multipoles was checked on a beam of particles with x = x′ = y′ = 0,
and y = 1, 2, and 3 mm, with different z positions. The effect on y′ was linear, quadratic and

33

Chapter 5: Machine Geometry

cubic with y when using b2, b3, or b4, respectively, as expected. Furthermore, the amplitude of
the y′ agrees with the analytical formulas found in the appendix of this paper [37] under “Normal
quadrupole/sextupole/octupole”.

Important note: Bρ and the factorial (n− 1)! are already included in K2, K3 etc of MAD-X, i.e.
b3 = 1159 · 10−3 in MAD-X results in a kick as if b3 is 1159 · 10−3/(n − 1)!. So in order for this
paper’s [37] analytical equations to be compatible with MAD-X, the equations for normal quadrupole
should read as

∆x′ = − b2
(2− 1)! Bρ

. . . .

5.1.14 Electron Lens

Format name type

name May contain up to 47 characters.

type 29

Remarks The “e-lens” elements become active when the ELEN input block 6.10 is used. All param-
eters except name and type have to be set to zero in the list of single elements, otherwise SixTrack
aborts. The parameters for the e-lens are defined in the ELEN input block.

5.1.15 Scattering Point

Format name type

name May contain up to 47 characters.

type 40

Remarks The “scattering” elements become active when the SCATter input block 6.11 is used. All
parameters except name and type have to be set to zero in the list of single elements, otherwise
SixTrack aborts. The parameters of the scattering are defined in the SCATter input block.

5.1.16 Beam Position Monitor

Format BPMname 0 0 0 0

BPMname Must start with “BP” and maybe followed by 46 characters.

Remarks This element dumps the coordinates of the 1st particle to the file with name “BPMname”.
The file contains 7 columns: x,x′, y,y′, ct,δp/p and E. Usual SixTrack units are used. Any number of
BPM elements can be used but the names must differ.

5.1.17 X-Rotation

Format name type angle

name May contain up to 47 characters.

type 43

angle The rotation angle in radians.

Remarks A positive angle rotates the reference system in the clockwise direction.

34

5.2 Block Definitions

5.1.18 Y-Rotation

Format name type angle

name May contain up to 47 characters.

type 44

angle The rotation angle in radians.

Remarks A positive angle rotates the reference system in the clockwise direction.

5.1.19 S-Rotation

Format name type angle

name May contain up to 47 characters.

type 45

angle The rotation angle in radians.

Remarks A positive angle rotates the reference system in the clockwise direction.

5.2 Block Definitions

In four-dimensional transverse tracking, the linear elements between non-linear elements can be com-
bined to a single linear block to save computing time.

Keyword BLOC

Data lines > 1

Format First line: mper msym(1) ... msym(mper) (integers)

From second line: block-name {element-name}

Format Description

mper Number of super periods. The following set of blocks is considered a
super-period. The accelerator consists of mper super-periods.

msym(i) ± 1 for each super-period. If msym(i) = 1, the i’th super-period will be
built up in the order in which linear elements appear in the blocks below. If
msym(i) = −1, the super-period will be built up in reverse order.

block-name The name of the block with up to 47 characters.

element-name The element names have to appear as a linear element in the list of “single
elements” (5.1.1). If one line is too short to contain all the elements of a
block, a line with additional elements to the same block can be added. At
least 5 (five) blanks must appear at the beginning of the extra line so that
names of blocks and names of linear elements in a block can be distinguished.

Remarks

1. When synchrotron oscillation is introduced, the linear elements can no longer be lumped into
one block, because in that case even a drift length magnet is a non-linear element with respect
to the longitudinal plane. However, the block structure is still kept to make use of the speed-up
in case one can restrict the studies to the four-dimensional case.

35

Chapter 5: Machine Geometry

2. The maximum number of blocks and the maximum number of entries in each block are defined
as parameters (Appendix A.2).

3. The inversion of a super-period (msym(i) = −1) is presently no longer allowed.

5.2.1 Structure Input

The model of the accelerator is put together by constructing a sequence of blocks of linear elements,
non-linear elements, observation points, and possibly a cavity with the keyword CAV used if this name
does not appear in the list of single elements (5.1) with type ±12. In that case, its parameters are
given in the Synchrotron Oscillations input block (4.4).

The Structure Elements block can either be specified as a list of Single Element names with multiple
elements per line, or in a multi-column format with one element per line.

5.2.1.1 Format 1: List of Single Elements

The single column format defines a list of Single Elements in the order they appear in the machine.
The maximum number of elements per line is 40.

Format { structure-element | CAV | GO }

structure-element Structure elements must appear as non-linear and observation elements
in the single element list or in the list of blocks of the Block Definition
input block (5.2).

CAV A cavity can be introduced by a keyword CAV. This element does not
appear in the single element list (5.1).

GO Starting point: the keyword GO denotes where the tracking is started
and where the tracked coordinates are recorded at each turn.

Remarks Repetition of parts of the structure is indicated by parentheses with a multiplying factor
N in front of them. If the left parenthesis “(” occurs in a line of input, the factor N is expected to be
found in the preceding characters. If the characters are blank, N is set to 1. The right parenthesis “)”
signals the end of the sequence to be repeated.

5.2.1.2 Format 2: Multi-Column List of Elements

This mode is enabled by the MULTICOL flag, which has to appear on the first line of the block. The
block then takes a list of elements, one per line, with at least three values. The GO keyword is supported
as in the list format, and has to appear alone on a single line. Note: Generating these imput files
requires MadX version 5.05 or higher.

Format ElemName FamName S

ElemName string The unique element name (uniqueness is not enforced).

FamName string The single element name, or “family name”.

S float The s-coordinate of the centre of the element.

The multi-column Structure block is generated automatically by the SixTrack converter in MadX
when the flag multicol is present. The ElemName column is populated with the lower case version
of the element name as defined in MadX. The FamName column is populated with the Single Element

36

5.2 Block Definitions

name as defined in the Single Element block. The S column is the s-coordinate at the centre of the
element as defined in MadX.

5.2.2 Displacement of Elements

This block allows to displace nonlinear elements in horizontal and vertical positions. With the r.m.s.
values of the horizontal and vertical displacements it is possible to achieve a displacement that is
different from element to element.

To simulate a measured closed orbit at the position of non-linear elements, it is convenient to use
the Displacement of Elements input block instead of trying to produce a closed orbit by dipole kicks.

Keyword DISP

Data lines Variable

Format name xd xdrms yd ydrms

name Name of the element which is displaced.

xd Horizontal displacement [mm].

xdrms r.m.s. of horizontal displacement [mm].

yd Vertical displacement [mm].

ydrms r.m.s. of vertical displacement [mm].

In the case of an AC dipole these variables are not meant for displacing this element but are used for
the following AC dipole parameters:

Format name nfree nramp1 nplato nramp2

name May contain up to 47 characters.

nfree Number of turns free of excitation at the beginning of the run.

nramp1 Number of turns to ramp up the excitation amplitude from 0 to ACdipAmp.

nplato Number of turns of constant excitation amplitude.

nramp2 Number of turns to ramp down the excitation amplitude.

Remarks In RACETRACK the displacements had been included in the Single Element input block
(5.1). In SixTrack they must be given in the separate Displacement of Elements input block because
of the limited length of one line of input.

37

Chapter 5: Machine Geometry

38

Chapter 6

Special Elements

One advantage of SixTrack, that has been adopted from RACETRACK, is that it easily allows to
define elements for a specific purpose. The special elements implemented util now are found in this
section. All Special Elements should be written in the fort.3 file.

6.1 Multipole Coefficients

Sets of normal and skew multipoles of up to tenth order, each with an r.m.s. value, can be combined
with this block. The multipole kick is calculated using a Horner scheme, which saves considerably in
computation time. Moreover, using the multipole block reduces the number of elements in the single
element list (5.1).

Keyword MULT

Data lines 2 to 12

Format First line: name R0 δ0.

Lines 2 to 12: Bn rms-Bn An rms-An.

Format Description

name Name of the multipole block which must appear in the list of single elements
(5.1.3).

R0 Reference radius (in mm) at which the magnet errors are calculated. This makes
it convenient to use values from field measurements.

δ0 Bending strength of the dipole (in mrad). Field errors of line 2–11 are taken to
be relative to the bending strength.

Remarks

1. The Bn and An are related to the bn, an of the single nonlinear element (5.1.2) in the following
way:

bn = δ0BnR
1−n
0 103n−6

an = δ0AnR
1−n
0 103n−6

2. The sign convention and the factorial (n!) are treated as for the single non-linear elements in
(5.1.2).

3. Multipoles of different names can be set to be equal using the ORG input block.

4. 22-poles are included (n = 11). By enlarging the parameter MMUL (Appendix A.2) up to 40-poles
(MMUL=20) can be treated. To make the change of MMUL effective, it is of course necessary to
recompile the program.

39

Chapter 6: Special Elements

6.2 Generalized RF-Multipoles

Keyword RFMU

Data lines 2 to 21

Format First line: name frequency .

Lines 2 to 21: Bn φBn An φAn.

Format Description

name Name of the block which must appear in the list of single elements (5.1.4).

Bn Strength of the normal multipole of order n.

φBn Phase (in radians) of the normal multipole of order n.

An Strength of the skew multipole of order n.

φAn Phase (in radians) of the skew multipole of order n.

6.3 Aperture Limitations

The aperture LIMItation block allows to define aperture limitations in the machine and hence describe
the mechanical acceptance of the machine. In this way, it is possible to check if particles being tracked
still remain inside the machine mechanical aperture or will be lost against the beam pipe.

In addition to the check against the detailed model of the machine, there is also a general (rectan-
gular) aperture check at each non-zero length element. The general aperture check is always on, but
in general values of the specifiers are set large enough (A.1) to define the short term dynamic aperture
and be outside of any factual machine mechanical aperture.

6.3.1 General Description

Each non-linear (zero length) element defined in the Single Element input block (5.1.2) except mul-
tipole blocks (5.1.3) can be used to define aperture limitations, but it is highly recommended to use
dedicated markers. Several aperture types are available to the user (see later).

The aperture limitations are taken into account during tracking by the online aperture checking
algorithm, which verifies that the tracked particles falls within the mechanical acceptance of the
machine. When a particle does not fit into the mechanical acceptance, it is removed from tracking; its
coordinates at the point of loss are reported in a text file. A back-tracking algorithm finds the actual
loss location interpolating the aperture profile by means of a bi-section method; the user can set the
precision with which the longitudinal position is found (default is 10 cm). While on by default, the
algorithm can be switched off by the user; in this case, the particle coordinates reported in the loss
file are those at the aperture marker where the particle is found out of the mechanical aperture of the
machine. Particles outside of the mechanical acceptance will be mercilessly killed, unless explicitly
requested by the user (see Sec. 6.3.3).

The present implementation extends the functionalities developed in the context of the Fluka-
SixTrack coupling [47, 48]. Please note that, if aperture markers are defined in the LIMI block, the
aperture check is triggered only by the markers. On the other hand, the general aperture check is
performed at every element and it is always on. Finally, no matter if the LIMI block is present or not,
or if the back-tracking algorithm is on or off, SixTrack dumps all particles at their loss point in the
aperture losses.dat file (see Sec. 6.3.4).

40

6.3 Aperture Limitations

Format Description

Keyword LIMI

Data lines Variable

Format Each aperture marker is fully specified by means of its type and numerical pa-
rameters (see Sec. 6.3.2). Other input options are available to the user, headed
by specific keywords, to control the respective parameters.

6.3.2 Specifying Aperture Marker

An aperture profile can be assigned to a SINGLE ELEMENT specifying its type and numerical
specifiers:

Format: name type aper 1 aper 2 aper 3 aper 4 x off y off angle

name The name of any non-linear (zero length) element in the Single Element input
block (5.1.2) except multipole blocks (5.1.3).

type Type of aperture limitation (string). See Tab. 6.2 for the types presently available.

aper 1 to aper 4 Aperture specifiers (floats). Their actual meaning depend on the aperture type.
The aperture specifiers are aligned to those of MAD-X [23], with the exception of
the Racetrack, that can have an ellyptical corner. See Tab. 6.2 for their meanings.
Only the Transition type needs 8 specifiers (hence from aper 1 to aper 8).

x off and y off Hor. and ver. offsets in mm.

angle Tilt angle is in degrees. The tilt is around the offset point.

The last three numerical specifiers are optional, whereas the others are mandatory, depending on
the type. Tab. 6.2 summarises the aperture types presently available and the meaning of the respective
numerical specifiers; see also Fig. 6.1 for further geometrical clarifications. The list of aperture markers
and specifiers can be given directly in the fort.3 file, in the LIMI block, or via a text file, the name of
which must be specified in the LIMI block with the LOAD keyword (see Sec. 6.3.3). For the convention
on signs for the last three (optional) aperture specifiers, please see Fig. 6.2.

Table 6.2: Aperture types and specifiers. Only the mandatory specifiers are reported.

Aperture specifier

Name Type name meaning

Circle CR aper 1 radius [mm]

Rectangle RE aper 1 hor. half-size [mm]

aper 2 ver. half-size [mm]

Ellipse EL aper 1 hor. semi-axis [mm]

aper 2 ver. semi-axis [mm]

RectEllipse RL aper 1 hor. half-size [mm]

aper 2 ver. half-size [mm]

aper 3 hor. semi-axis [mm]

aper 4 ver. semi-axis [mm]

Octagon OC aper 1 hor. position of ver. side [mm]

aper 2 ver. position of hor. side [mm]

aper 3 angle of first cut corner [degree]

aper 4 angle of second cut corner [degree]

41

Chapter 6: Special Elements

Figure 6.1: Sketch of the most general aperture profile
currently treated by the aperture module. The purple
line marks the actual aperture restriction as interpreted
by the code with the given parameters.

Figure 6.2: Sketch of the octagon aperture
shown in the example. While both offsets
are negative, the tilt angle is positive.

Ractetrack RT aper 1 hor. displ. of ellypse centre [mm]

aper 2 ver. displ. of ellypse centre [mm]

aper 3 hor. semi-axis [mm]

aper 4 ver. semi-axis [mm]

Transition TR aper 1 hor. half-size [mm]

aper 2 ver. half-size [mm]

aper 3 hor. semi-axis [mm]

aper 4 ver. semi-axis [mm]

aper 5 hor. displ. of ellypse centre (a-la RACETRACK) [mm]

aper 6 hor. displ. of ellypse centre (a-la RACETRACK) [mm]

aper 7 angle of first cut corner [rad]

aper 8 angle of second cut corner [rad]

6.3.3 Other Input Options

The user can customize the behavior of the LIMI block concerning the back-tracking algorithm. The
syntax is via keywords, followed by positional arguments. Tab. 6.3 lists all available options, their
syntax and meaning.

Table 6.3: Other input options of the LIMI block. Options are listed in alphabetical order.

keyword argument description

BACKTRKOFF to disable back-tracking.

Consequently, particle losses will occur only at aperture markers.

DEBUG to enable debugging output for the aperture code.

For the moment, this flag only increase the verbosity during parsing of fort.3.

42

6.3 Aperture Limitations

LOAD to load specifications of apertures from a file.

filename ASCII file containing the specifications of apertures

PREC to set custom accuracy in finding the actual loss location

precision precision of back-tracking [m]

PRIN to echo the profile of the machine aperture with s to a file.

The precision set for back-tracking is used also as precision of the echo.

filename ASCII file where to echo the machine aperture

MEM optional flag to dump aperture profile as in memory

SAVE to avoid killing particles out of the mechanical aperture.

Use this option for direct comparisons against BeamLossPattern profiles.

XSEC to dump aperture cross sections at specific s-locations

(NOT OPERATIONAL YET!)

filename ASCII file where to echo the cross section

smin first s-location where to get the cross-section [m]

smax last s-location where to get the cross-section [m] (optional)

∆s longitudinal steps where to calculate the cross-section [m] (optional)

N number of azimuthal angles (optional)

6.3.4 Format of aperture losses.dat File

The aperture losses.dat file lists all lost particles, along with their coordinates at the loss point.
The file is generated no matter if the LIMI block has been inserted in the fort.3 or not, or if the
back-tracking algorithm is on or off. Table 6.4 shows the format of the file. If the code is compiled
with the FLUKA compilation flag, the particle ID is complemented by the parent particle ID and the
statistical weight.

Table 6.4: Columns of the aperture losses.dat file. The number between parentheses refers to the
case SixTrack is compiled for coupling to Fluka, i.e. if the FLUKA compilation flag is on. A ’-’ means
that a given column is not available when SixTrack is compiled the FLUKA compilation flag.

Description

1 turn number

2 index of entry in accelerator sequence

3 index of element in the SINGLE ELEMENT array

4 name of SINGLE ELEMENT

5 s-coordinate of loss point [m]

6 particle id

- (7) parent particle id

- (8) statistical weight

7 (9) x at loss point [m]

8 (10) x′ at loss point []

9 (11) y at loss point [m]

10 (12) y′ at loss point []

11 (13) linear momentum [GeV/c]

12 (14) energy deviation [eV]

13 (15) time lag [s]

43

Chapter 6: Special Elements

6.3.5 Example

The following example shows a typical use of the LIMI block. Debug messages are requested by the user.
The description of the aperture markers is provided by the fort3.limi file, and the aperture profile
is echoed and saved in the ape dump.dat file. The back-tracking algorithm is kept on (BACKTRKOFF
option being commented out). Precision of the back-tracking alghoritm is set at 1 mm.

LIMITATION OF APERTURE--

DEBUG

/ SAVE

PREC 0.001

PRIN ape_dump.dat

LOAD fort3.limi

/ BACKTRKOFF

NEXT

In the above example, the content of fort3.limi is the following:

aper.1 EL 29.0 29.0

aper.2 OC 40.0 30.0 0.5236 1.0472 -10.0 -2.0 0.174533

aper.3 RL 18.95 23.85 23.85 23.85

• aper.1 specifies an ellyptical aperture with both axes of 29 mm. Effectively, it is a circular
aperture;

• aper.2 specifies an octagon aperture, 40 mm wide horizontally (half-width), and 30 mm height
(half-height). The cut corner angles are 30 and 60 degrees. The aperture maker is offset by
10 mm and 2 mm on the horizontal and vertical planes, respectively. The aperture is tilted by
10 degrees;

• aper.3 specifies a rectellipse aperture. It is actually equivalent to a circular aperture of 23.85 mm
of radius, and vertical bars at x=±18.95 mm.

Fig. 6.2 shows a sketch of the ocatogon aperture described by the aper.2 marker, to show the con-
vention on signs.

6.4 Power Supply Ripple

Note: The RIPP block is deprecated since release 4.5.20, and the functionality is now provided by the
DYNK block (6.5). A fort.3 file containing a RIPP block is therefore no longer valid, and will result in
an error message. The description below is therefore only provided as a reference for those who need
to convert old input files.

If power supply ripple is to be considered this input data block can be used. A non-linear quadrupole is
expected as a ripple element (type=2 and zero length in the single element list (5.1.2)), but in principle
other non-linear elements are also allowed. Ripple depth, ripple frequency and starting phase of the
ripple frequency are the input parameters.

Keyword RIPP

Data lines Variable

Format name depth frequency start-phase nrturn

Format Description

44

6.5 Dynamic Kicks

name Name of the non-linear element in the single element block (5.1.2).

depth Maximum kick strength of the ripple element. A quadrupole kick is usually
expected.

frequency Given in number of turns (a real value is allowed) of one ripple period.

start-phase Initial phase of the ripple element.

nrturn Initial number of turns, for prolongation runs the number of turn already
done.

6.5 Dynamic Kicks

The DYNamic Kicks module [38, 39] allows time-dependent modification of the settings of single
elements. The supported elements and attributes are listed in Table 6.7. The settings can be computed
on-the fly using several functions, loaded from input files or a combination, as described in Table 6.6.

If the DYNKSETS flag is present, DYNK produces an output file dynksets.dat. This file contains
the setting of all elements and attributes for which DYNK is active. It is written in all turns of the
simulation, even if DYNK is not active in that exact turn.

Keyword DYNK

Data lines Variable

Format There are four types of statements possible in a DYNK block, listed in the following
subsections.

6.5.1 FUN Statements

Format: FUN function-name function-type arg1 arg2 arg3 ...

This statement defines a function, i.e. something which when evaluated, produces a numerical
value, which can be used to set the value of an element attribute. The functions in DYNK all have a
unique name, and they may take up to 7 arguments (a limitation imposed by the internal parameter
getfields n max fields). The function type must be one of those listed in Table 6.6.

A function may be defined so that it uses the result of another function, which must be defined
above it in the DYNK block. This requirement avoids any possibility for infinite recursion. The functions
are only evaluated when needed, i.e. when used by a SET statement in that turn (6.5.2). The functions
may thus be evaluated multiple times in one turn (if used by multiple SET statements which are active
in that turn, or referenced by multiple other FUN statements which are themselves used more than
once in that turn), or it may not be evaluated at all. The functions are always evaluated as a function
of the current turn number t, which may be shifted by a turn-shift specified in a SET statement (6.5.2).

Function names have a maximum length of 20 characters.

Table 6.6: Available function types in DYNK.

Type name Arguments Description

“System” functions

GET element-name[string]

attribute-name[string]

Extracts the original value of a setting, i.e. as specified in the
SINGLE ELEMENT section (Sec. 5.1). Attributes as used for
SET, see Table 6.7.

FILE filename[string] Loads the settings from file; the file is expected to be an ascii
file with two columns where the first column is the turn number
(should start at 1 and include all turns up to as long as is
wanted), and the second column is the value for that turn
number.

(The table continues on the next page)

45

Chapter 6: Special Elements

Type name Arguments Description

FILELIN filename[string] Similar to FILE, but any double can be used as the turn number
as long as they are monotonically rising. When evaluated, the
function interpolates from the line-segments specified in the
file.

PIPE inPipeName[string]

outPipeName[string]

ID[string]

Uses a pair of UNIX FIFOs, through which it can communicate
with an external program. When evaluated, it sends a message
through the outpipe, and then waits for a message on the in-
pipe which should contain the value the FUN should returned.
The ID is used in case several DYNK PIPE FUNs are using
the same outPipe and inPipe, so that the controlling external
program can choose what to calculate. For more details, see
the example below. Also note that PIPE is not available in the
checkpoint/restart version of SixTrack.

RANDG seed1[int] seed2[int]

mu[real] sigma[real]

mcut[int]

Returns a pseudorandom number generated from a Gaussian
distribution. The mean value and width is controlled by mu

and sigma, while mcut is the maximum number of sigmas to
generate numbers up to; set to 0 to disable this cut. The
integers seed1 and seed2 are the seed used to initialize the
RANECU generator. Note that every RANDG function defined in
DYNK uses its own separate random number stream.

RANDU seed1[int] seed2[int] Returns a pseudorandom number generated from a uniform
distribution. The integers seed1 and seed2 are the seed used
to initialize the RANECU generator. Note that every RANDU func-
tion defined in DYNK uses its own separate random number
stream.

RANDON seed1[int] seed2[int]

P[float]

Returns the value of 1.0 or 0.0 resulting of the weighting with
the probability P of a pseudorandom number generated from a
uniform distribution . The integers seed1 and seed2 are the
seed used to initialize the RANECU generator. Note that every
RANDON function defined in DYNK uses its own separate random
number stream.

Filters

FIR N[int]

filename[string]

baseFun[string]

Applies a Finite Impulse Response (FIR) filter of order vN to

the function baseFun. The output is given as y[t] =
∑N
i=0 bi ∗

x[t − i], where t is the current turn and x[t − 0] is the result
of the most recent call to baseFun. The coefficients b0 . . . bN
and initial values of x[t − 0] . . . x[t − N] are loaded from the
given file filename, which is a space-separated ascii file with
three columns. These columns are (1) row index [int], (2)
coefficients bi [float] and (3) initial values of the x[] array
[float]. The row indices are expected to go from 0 to at
least N in steps of 1. Note that the filter is stepped once per
call, i.e. the array x[] is shifted once every time the FUN is
called. Also note that when called, the filter is first stepped,
then the new value is filled into the first position in x[], and
finally the sum is evaluated. This means that the last value
in the x[] array is never used, while the first value (x[t− 0]) is
immediately pushed into x[t− 1] before the first evaluation.

(The table continues on the next page)

46

6.5 Dynamic Kicks

Type name Arguments Description

IIR N[int]

filename[string]

baseFun[string]

Applies an Infinite Impulse Response (IIR) filter of order N to
the function baseFun. This is very similar to FIR, except that
it also uses its own previous outputs. The sum is thus written
as y[t] =

∑N
i=0 bi∗x[t−i]+

∑N
i=1 ai∗y[t−i]. The file filename

is identical to that which is used for FIR, except for adding two
more columns. These columns are (4) a0 . . . aN [float] and
(5) initial values for the y[] array [float]. Note that a0 is
never used, and the value of y[t− 0] is pushed back to y[t− 1]
before the first evaluation of the sum, such that y[t − N] is
never used.

2-operand operators

ADD function-name-1[string]

function-name-2[string]

Evaluate the functions referenced by function-name-1 and
function-name-2, and return the sum of the results.

SUB function-name-1[string]

function-name-2[string]

Similar to ADD, but return the result of function1 minus func-
tion2.

MUL function-name-1[string]

function-name-2[string]

Similar to ADD, but return the product of the results.

DIV function-name-1[string]

function-name-2[string]

Similar to ADD, but return the result of function1 divided by
function2

POW function-name-1[string]

function-name-2[string]

Similar to ADD, but return the result of function1 raised to the
power of function2.

1-operand operators

MINUS function-name Returns the value of the named function, with the opposite
sign.

SQRT function-name Returns the square root of the value generated by the named
function.

SIN function-name Returns the sine of the value generated by the named function.

COS function-name Returns the cosine of the value generated by the named func-
tion.

LOG function-name Returns the natural logarithm of the value generated by the
named function.

LOG10 function-name Returns the common logarithm of the value generated by the
named function.

EXP function-name Returns the natural exponential function ex, where x is the
value generated by the named function.

ABS function-name Returns the absolute value of the value generated by the named
function.

Polynomial and elliptical functions

CONST value[real] Always returns the value specified.

TURN (none) Return the turn number, i.e. y(t) = t.

LIN a[real] b[real] Computed value from the linear function y(t) = a · t+ b.

LINSEG x1[real] x2[real]

y1[real] y2[real]

The function is defined by a line segment between the points
(x1, y1) and (x2, y2), and undefined for x < x1 and x > x2. It
is required that x1 < x2.

QUAD a[real] b[real]

c[real]

Computed value from the quadratic function y(t) = a · t2 + b ·
t+ c.

QUADSEG x1[real] x2[real]

y1[real] y2[real]

deriv1[real]

The quadratic function is defined by overlapping the quadratic
curve segment which passes through the points (x1, y1) and
(x2, y2), and dy/dx at x1 is deriv1. The quadratic coefficients
a, b, c are calculated as a = deriv1

x1−x2
+ y2−y1

(x1−x2)2
, b = y2−y1

x2−x1
−(x1+

x2) · a and c = y1 +
(
−x21 · a− x1 · b

)
.

Trancendental functions

(The table continues on the next page)

47

Chapter 6: Special Elements

Type name Arguments Description

SINF A[real] omega[real]

phi[real]

Computes y(t) = A sin (ωt+ φ).

COSF A[real] omega[real]

phi[real]

Computes y(t) = A cos (ωt+ φ).

COSF RIPP A[real] period[real]

phi[real]

Computes y(t) = A cos
(

2π(t−1)
period + φ

)
. This specialized cosine

is provided for compatibility, to be used when replacing old
RIPP blocks.

Specialized functions

PELP tinj[real] Iinj[real]

Inom[real] A[real]

D[real] R[real]

te[real]

This function describes a patched “Parabolic-Exponential-
Linear-Parabolic” function, as used for ramping the LHC
dipoles and described in [40, Appendix C] and [41]. The pa-
rameters are:
• The injection time tinj, which is the time (in turn num-

bers) when the ramp starts.
• The injection value Iinj, which is the value when t ≤
tinj

• The final value Inom, which is the value after the end of
the ramp.

• The acceleration parameter A, which describes how fast
the current is growing in the first (parabolic) segment.

• The decelertation parameter D, which describes how fast
the current growths flattens out in the forth (parabolic)
segment.

• The ramp rate R, which describes the maximum ramp
rate, seen in the third (linear) segment.

• The start time of the ramp te, which describes at what
time it switches from the parabolic (first) to the expo-
nential (second) segment.

ONOFF p1[int] p2[int] This function is a periodic “pulse width modulation” with
period p2 and pulse length p1. It may be described as
y(t) = {1.0 if mod(t− 1, p2) < p1} ; {0.0 otherwise}. The rea-
son for using t− 1 is that the modulus is naturally zero-based,
while SixTrack counts turns starting from 1. Note that it is
expected that p1 >= 0, p2 > 1, and p1 <= p2. Also note that
for negative t, the function will always return 1.0.

6.5.2 SET Statement

Format: SET element-name attr-name func-name first-turn last-turn turn-shift

This statement defines an element setpoint, which changes an element/attribute, attr-name, to
the value computed by the given function, func-name. The SET statement becomes active when the
turn number reaches first-turn, and switches off once last-turn has been passed. When switched
off, the value applied in last-turn stays for the rest of the simulation, or until overwritten by another
SET. If last-turn equals −1, the SET is active until the end of the simulation.

The element type and attribute combinations that can be used in DYNK are shown in Table 6.7.
The argument turn-shift is an integer (positive, negative, or zero) number which is added to

the current turn number before computing the function. Thus, in order to (as an example) apply
an exponential decay from the value v0 starting in turn t0 using the function defined as f(t) =
V0 exp(−t/τ), a turn-shift −t0 should be applied.

In addition to changing single element attributes, it is also possible to use DYNK to change certain
global attributes such as the reference energy. This is done through the “element” GLOBAL VARS; for
example one may want to simulate an energy ramp following the function eramp throughout the whole
simulation. For this, one would use the SET command

48

6.5 Dynamic Kicks

SET GLOBAL-VARS E0 eramp 1 -1 0

Because of this, SixTrack does not accept a real single element in fort.2 named GLOBAL-VARS if DYNK
is active.

Element type (idx) Attribute Units Description

Standard thin elements
(±1 – ±10),
Section 5.1.2

average ms radians * m-n See Table 5.2

Multipoles
(11),
Section 6.1

scaleall - Multiplies all order by this factor

a{ORDER}rms, e.g a1rms radians * m-n Corresponds to the 4th column in
the multipole block.

b{ORDER}rms, e.g b2rms radians * m-n Corresponds to the 2nd column in
the multipole block.

a{ORDER}str, e.g a3str radians * m-n Corresponds to the 1th column in
the multipole block.

b{ORDER}str, e.g b4str radians * m-n Corresponds to the 3rd column in
the multipole block.

RF cavities (±12),
Section 5.1.6

voltage MV One-turn accelerating voltage

harmonic – Harmonic number of the cavity

lag angle degrees Lag angle of the cavity
Beam-Beam 6d (expert)

(20),
Section 6.6

h-sep mm Horizontal offset

v-sep mm Vertical offset

strength - Strength-ratio

Sxx - Σx,x

Sxxp - Σx,xp

Sxpxp - Σxp,xp

Syy - Σy,y

Syyp - Σy,yp

Sypyp - Σyp,yp

Sxy - Σx,y

Sxyp - Σx,py

Sxpy - Σxp,y

Sxpyp - Σxp,yp

Beam-Beam 4d (expert)

(20),
Section 6.6

h-sep mm Horizontal offset

v-sep mm Vertical offset

strength - Strength-ratio

4dSxx - Σx,x

4dSyy - Σy,y

4dSxy - Σx,y

RF multipoles
(±23, ±26 – ±28),
Section 5.1.12

voltage MV Kick voltage

frequency MHz Frequency

phase radians Offset between zero-crossing and
ideal bunch center

Electron lens
(29),
Section 6.10

theta R2 mrad Angular kick at R2

elens I A Electron current

elens Ek keV Electron kinetic energy

49

Chapter 6: Special Elements

Scattering
(40),
Section 6.11

scaling – Scaling of probability, see Sec-
tion 6.11, paragraph about ELEM
command.

Generalized RF-
multipoles
(41),
Section 6.2

a{ORDER}amp, e.g a1amp m-n Corresponds to the 3rd column
in the generalized RF-multipole
blocks.

b{ORDER}amp, e.g b2amp m-n Corresponds to the 1st column in
the multipole block.

a{ORDER}pha, e.g a3pha radians Corresponds to the 4th column in
the multipole block.

b{ORDER}pha, e.g b4pha radians Corresponds to the 2nd column in
the multipole block.

GLOBAL-VARS

Not a real element,
changes global variable

E0 MeV Reference energy of synchronous
particle

Table 6.7: Element types and attributes available in DYNK .

6.5.3 Additional Flags

Flag DYNKSETS

The presence of this statement in a DYNK block switches on the writing of the output file dynksets.dat
in every line. This can be useful to save disk space in very long simulations.

This flag replaces the NOFILE flag that in version 5.3.4 and earlier was used to disable the writing
of dynksets.dat. The file is now disabled by default, and has to be explicitly requested.

Flag DEBUG

This statement switches on extra “debugging” output from DYNK. This can be useful if debugging
the code or if debugging the input.

6.5.4 Output File dynksets.dat

When the DYNKSETS flag is present in the DYNK block, a file dynksets.dat is created and in the current
working directory. This file contains first a header

turn element attribute SETidx funname value

followed by rows of data in the format specified in the header. This data is written for all ele-
ment/attribute combinations and in all turns, wether a SET is active for this element/attribute in
this turn or not. If no SET is active when the line is written out, the SETidx is written as −1, and
the funname is “N/A”. If a SET is active when the line is written out, the SETidx is the index of
the currently active SET statement, where the first statement occurring in fort.3 has index 1, etc.
Similarly, the funname is the name referencing the currently active FUN statement.

6.5.5 Examples

Replacement of RIPP Block
One use of the DYNK block is to replace the functionality of the RIPP block (Section 6.4). The FUN type
COSF RIPP is provided for exactly this purpose, and provides an exact replacement. As an example,
the RIPP block in the SixTest test-case prob1 looks like (slightly reduced in size):

50

6.5 Dynamic Kicks

RIPPLE OF POWER SUPPLIES

dmqx1f50l5+2 3.2315D-10 224.9

dmqx2af50l5+2 -3.2315D-10 224.9

dmqx1f10mel5+2 2.5246D-16 0.0011245

NEXT

This can be replaced by the following:

DYNK

FUN RIPP-dmqx1f50l5+2 COSF_RIPP 3.2315D-10 224.9 0.0

SET dmqx1f50l5+2 average_ms RIPP-dmqx1f50l5+2 1 -1 0

FUN RIPP-dmqx2af50l5+2 COSF_RIPP -3.2315D-10 224.9 0.0

SET dmqx2af50l5+2 average_ms RIPP-dmqx2af50l5+2 1 -1 0

FUN RIPP-dmqx1f20kl5+2 COSF_RIPP 2.5246D-12 0.56225 0.0

SET dmqx1f20kl5+2 average_ms RIPP-dmqx1f20kl5+2 1 -1 0

NEXT

Here, each RIPP data line is replaced with two lines, one FUN statement for generating the function,
and one SET statement for applying the value. Note that the SET statements have an end time -1,
meaning it is used until the end of the simulation.

Starting tracking inside a bump

This example was taken from the paper [38], and demonstrates how a bump can be temporarily
disabled if the starting point of the tracking is inside of it. The reason for doing this is removing
the necessity of generating a starting distribution with the bump already applied. Here, the HL-
LHC v1.1 lattice is used, with vertical crab cavities around the first interaction point (IP1, ATLAS),
which is also the point where the tracking is started. The crab cavities opening the bump are called
CRAB IP1 L1· · · 4, while the closing cavities are CRAB IP1 R1· · · 4. The DYNK block for this looks like:

DYNK

FUN zero CONST 0.0

FUN CV_1R1 Get CRAB_IP1_R1 voltage

FUN CV_1R2 GET CRAB_IP1_R2 voltage

FUN CV_1R3 GET CRAB_IP1_R3 voltage

FUN CV_1R4 GET CRAB_IP1_R4 voltage

SET CRAB_IP1_R1 voltage zero 1 1 0

SET CRAB_IP1_R2 voltage zero 1 1 0

SET CRAB_IP1_R3 voltage zero 1 1 0

SET CRAB_IP1_R4 voltage zero 1 1 0

SET CRAB_IP1_R1 voltage CV_1R1 2 2 0

SET CRAB_IP1_R2 voltage CV_1R2 2 2 0

SET CRAB_IP1_R3 voltage CV_1R3 2 2 0

SET CRAB_IP1_R4 voltage CV_1R4 2 2 0

NEXT

Here, the function zero is defined such that it always returns 0.0, and is used to switch off
the closing cavities in the first turn, i.e. when the beam exits the bump. Further, the functions
CV 1R1· · · 1R4 and CV 1L are used to store the original value of the voltages, without having to explicitly
enter them into the DYNK block.

The SET statements then first sets the voltage of all the cavities to zero in turn 1, and then in turn
2 sets it to their respective “switched on” voltages. The SET statements end after turn 2, but the last
values are retained.

This means that when the simulation starts with the bunch in IP1, it exits the bump without
any kicks from the closing crab cavities. It then comes around (still in turn 1), and encountered the
switched-on opening cavities CRAB IP1 L1· · · 4, which crabs the beam. After passing through IP1, the
turn counter is increased from 1 to 2, triggering the SET statements to switch on the closing cavities
CRAB IP1 R1· · · 4 as well.

Ramp and exponential decay of crab voltage, combined with a linear drift of crab phase

This slightly more complicated example builds on the example given above. It shows how to
change two parameters (voltage and phase) of several objects. It also demonstrates how functions can

51

Chapter 6: Special Elements

0 20 40 60 80 100
Turn

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vo
lta

ge
 [M

V]

0

π/2

π

3π/2

2π

5π/2

3π

Ph
as
e
[r
ad

ia
ns

]

Voltage
Phase

Figure 6.3: Singals generate by DYNK example for ramp + exponential decay of crab voltage, and also
linear drift of crab phase. Only the signals for CRAB IP1 L1 are shown. The plot is made from the
data in dynksets.dat.

be chained together, making more complicated functions. Some of the resulting functions are shown
in Figure 6.3, and the DYNK block here looks like:

52

6.5 Dynamic Kicks

DYNK

DEBUG

FUN zero CONST 0.0

FUN CV_R1 GET CRAB_IP1_R1 voltage

FUN CV_R2 GET CRAB_IP1_R2 voltage

FUN CV_R3 GET CRAB_IP1_R3 voltage

FUN CV_R4 GET CRAB_IP1_R4 voltage

FUN CV_L GET CRAB_IP1_L1 voltage

FUN ramp LIN 0.02 0

FUN ramp_R1 MUL CV_R1 ramp

FUN ramp_R2 MUL CV_R2 ramp

FUN ramp_R3 MUL CV_R3 ramp

FUN ramp_R4 MUL CV_R4 ramp

FUN ramp_L MUL CV_L ramp

SET CRAB_IP1_R1 voltage zero 1 10 0

SET CRAB_IP1_R2 voltage zero 1 10 0

SET CRAB_IP1_R3 voltage zero 1 10 0

SET CRAB_IP1_R4 voltage zero 1 10 0

SET CRAB_IP1_L1 voltage zero 1 9 0

SET CRAB_IP1_L2 voltage zero 1 9 0

SET CRAB_IP1_L3 voltage zero 1 9 0

SET CRAB_IP1_L4 voltage zero 1 9 0

SET CRAB_IP1_R1 voltage ramp_R1 11 61 -11

SET CRAB_IP1_R2 voltage ramp_R2 11 61 -11

SET CRAB_IP1_R3 voltage ramp_R3 11 61 -11

SET CRAB_IP1_R4 voltage ramp_R4 11 61 -11

SET CRAB_IP1_L1 voltage ramp_L 10 60 -10

SET CRAB_IP1_L2 voltage ramp_L 10 60 -10

SET CRAB_IP1_L3 voltage ramp_L 10 60 -10

SET CRAB_IP1_L4 voltage ramp_L 10 60 -10

! Voltage decay and detuning

FUN expCore LIN -0.05 0.0

FUN decay EXP expCore

FUN decayScaled MUL decay CV_L

SET CRAB_IP1_L1 voltage decayScaled 70 100 -70

SET CRAB_IP1_L2 voltage decayScaled 70 100 -70

SET CRAB_IP1_L3 voltage decayScaled 70 100 -70

SET CRAB_IP1_L4 voltage decayScaled 70 100 -70

FUN phasedrift LIN 0.3141592654 0.0

SET CRAB_IP1_L1 phase phasedrift 70 100 -70

SET CRAB_IP1_L2 phase phasedrift 70 100 -70

SET CRAB_IP1_L3 phase phasedrift 70 100 -70

SET CRAB_IP1_L4 phase phasedrift 70 100 -70

NEXT

The first functions defined here are the same as above, storing the default values (as defined in the
single element list) for the relevant elements and also zero. Then follows a normalized linear ramp
function ramp, with gradient 0.02 = 1/50. This is then used by the “specialized” ramp functions
ramp R1· · · R4, which scales ramp so that the end point is the standard voltages for t ∈ 0 . . . 50.

These functions are used to first set the crabs to 0.0 for the first 9 revolutions, and in the 10th
revolution the ramp starts. As the ramp function is defined starting at turn 0, a shift −10 or −11 is
applied to the ramps. The ramp is switched off after turn 60/61, leaving the crabs to be operating at
the last SET value.

Further, we want to demonstrate a failure in the crab voltage. This is done using an exponential
decaying function V (t) = V0 exp (−0.05t), which is implemented as three chained functions:

expCore f(t) = −0.05t+ 0.0

decay g(t) = exp(f(t)) = exp(−0.05t+ 0.0)

decayScaled h(t) = V0 · g(f(t)) = V0 · exp(f(t)) = exp(−0.05t+ 0.0)

For the SET, the time t is then shifted by −70 turns, so that the functions are evaluated starting
at t = 0.

53

Chapter 6: Special Elements

Using the PIPE function

To use the PIPE functionality, add a FUN and SET to the DYNK block such as:

FUN pipe1 PIPE /tmp/pip1 /tmp/pip2 myID1 4242

SET ACFCA.AR1.B1 voltage pipe1 10 -1 -9

Then create the two pipes using the mkfifo UNIX command, e.g. mkfifo pip1 and mkfifo pip2

in the chosen directory. When starting SixTrack, it will first open the input pipe (while reading the
DYNK block), and wait for the external program to do the same. This can be simulated by running
cat > pip1; it is also possible to open the input pipe before starting SixTrack. After opening the
input pipe, SixTrack will open the output pipe, again this can be simulated by running cat pip2, and
again this pipe may be opened before starting SixTrack. Note that when SixTrack ends, the output
pipe will be closed, so the receiving cat process is terminated.

After opening the output pipe, SixTrack writes the line DYNKPIPE !******************! to this
file. It then writes a line similar to INIT ID=myID1 for FUN=pipe1 for each FUN using this output
pipe.

During tracking, when one of the PIPE FUNs are called SixTrack writes a line similar to GET

ID=myID1 TURN= 1 to the output pipe. Note that the turn number is the one passed to the FUN from
SET, i.e. including any turn-shift. It then waits for a single floating point number to be written (in
ascii) to the input pipe, which is then read and returned from the FUN.

6.6 Beam–Beam Element

The beam–beam kick, including a separation of the beams, is treated à la Basetti and Erskine [19] and
implemented as in MAD-X [23]. However, a much faster but nevertheless precise calculation using
interpolation can be used [25]. Since SixTrack version 3, the beam–beam is also available in the 6D
form à la Hirata [20]. Lastly, the linear coupling has been considered in 4 and 6 dimensional phase
space [21].

Keyword BEAM

Data lines > 1

Format Two different input formats are available, “traditional” and “EXPERT”. If “EX-
PERT” mode is wanted, this is triggered by adding the flag EXPERT on the first
line of the block.

Traditional format

First line: partnum emitnx emitny sigz sige ibeco ibtyp lhc ibbc

Further lines: name ibsix xang xplane xstr

partnum float Number of particles in bunch

emitnx,emitny floats Horizontal and vertical normalised emittance respectively [µm·rad]

sigz,sige floats r.m.s. bunch length [m] and r.m.s. energy spread

ibeco integer Switch (0 = off; 1 = on) to subtract the closed orbit introduced by
the separation of the beams. It is recommended to always subtract
it as it is not yet calculated in a selfconsistent manner. The ibeco

switch also acts on the “wire” elements 6.7 in the same way as on
the beam-beam elements. It subtracts the closed orbit introduced
by the wire if ibeco=1 and applies it if ibeco=0.

54

6.6 Beam–Beam Element

ibtyp integer Switch (0 = off; 1 = on) to use the fast beam–beam algorithms
developed in collaboration with G.A. Erskine and E. McIntosh.
The linear optics are calculated with “exact” beam–beam kicks.

lhc integer For the LHC with its anti-symmetric IR the separation of the
beams in one plane can be calculated by the β-function of the other
plane. For flat beams (not anti-symmetric optics) the separation
can be loaded from the fort.2 file. (0 = off; 1 = anti-symmetric;
2 = load from file).

ibbc integer Linear coupling considered in 4D and 6D (0 = off; 1 = on).

name Name of 6D beam–beam element. Beam–beam elements that do
not appear will be treated as 4D kicks.

ibsix integer Number of slices of the 6D beam–beam element. If ibsix is set to
0 this element is treated as a 4D element.

xang float Half crossing angle (angle the between the trajectories of the two
beams) at this particular element [rad].

xplane float Crossing plane angle [rad].

xstr float Angle of the position of the slices in the boosted frame [rad] (i.e.
X = Z sin(xstr) cos(xplane), Y = Z sin(xstr) cos(xplane)). In
absence of crabbing user should make sure xstr=xang; in case the
xstr flag is not set then xstr=xang is assumed and a warning is
printed (since version 4.5.45).

EXPERT format

First line: EXPERT

Second line: partnum emitnx emitny sigz sige ibeco ibtyp lhc ibbc

Further lines 4D BB lens (1 line per element):

name ibsix Σx,x Σy,y h-sep v-sep strength-ratio Σx,y

6D BB lens (3 lines per element):

name ibsix xang xplane h-sep v-sep

Σx,x Σx,xp Σxp,xp Σy,y Σy,yp

Σyp,yp Σx,y Σx,py Σxp,y Σxp,yp strength-ratio

Some parameters are new or defined in a different way:

lhc integer This parameter is kept for now only for RHIC studies when equal
to 9.

name Name of the beam–beam element.

ibsix integer Number of slices of the 6D beam–beam element.

If ibsix is set to 0, this element is treated as a 4D element.

If ibsix is larger or equal 1, this element is treated as a 6D ele-
ment.

Σxx float Horizontal σ for the strong beam [mm2].

Σyy float Vorizontal σ for the strong beam [mm2].

55

Chapter 6: Special Elements

Σxy float Coupled σ for the strong beam [mm2]. Optional, used only if
ibbc=1.

h-sep float Horizontal beam–beam separation [mm]

v-sep float Vertical beam–beam separation [mm]

strength-ratio float Strength ratio with respect to the nominal beam–beam kick
strength. This is useful to allow for splitting one beam–beam kick
into several (longitudinally close by) kicks.

Σi,j float Second order momenta matrix for the strong beam, in units of mm
and mrad. For example Σxxp in [mm mrad]

Conversion from traditional to EXPERT format

An automatic converter from the “traditional” input block to the new “expert” format is built into
SixTrack; every time a non-EXPERT input block is encountered, a conversion is printed to the standard
output. Therefore, all the user needs to do is to run SixTrack (number of turns does not matter) on
an input file that should be converted, and follow the instructions which are printed at the beginning
of the program output.

Remarks

These beam–beam elements have to appear in the single element list (5.1.2) (type 20). If the
“traditional” option is used in the BEAM block, the listing in the single element list must contain their
horizontal and vertical beam–beam separations (see 5.1.7).

Sign Convention

Some clarifications regarding the sign convention used for the separation and crossing angle vari-
ables.

Separations:

1. The separation is added to the transverse coordinates of each particles just before the beam-beam
subroutines (see Fig. 6.4).

x̃i = xi + sepx − COx

ỹi = yi + sepy − COy

2. Lorentz boost applied to the updated coordinates.

3. The separation used for the actual beam-beam kick (sepx,y,kick) is the difference between the
centroid of the strong slice (X†,Y†) and the each particle (xi,yi).

4. Antiboost to return to accelerator frame.

5. The separation is removed and the closed orbit is added back. Tracking continues.

x̃i = xi − sepx + COx

ỹi = yi − sepy + COy

56

6.7 Wire

Figure 6.4: Coordinate manipulation taking into consideration the beam-beam lens separation as
stated in point 1 of the separation sign convention.

Crossing angles:

1. The closed orbit is removed just before the beam-beam subroutines.

x̃′i = x′i − COx′

ỹ′i = y′i − COy′

2. Lorentz boost applied to the updated coordinates.

3. Apply Synchro-Betatron Mapping.

4. Antiboost to return to accelerator frame.

5. The closed orbit is added back. Tracking continues.

x̃′i = x′i + COx′

ỹ′i = y′i + COy′

Figure 6.5: Coordinate manipulation to move from the accelerator frame to a head-on collision frame
(Figures left and center). A positive crossing angle is considered as shown in the left figure. Then
Lorentz boost and Synchro-Betatron Mapping are applied (right).

6.7 Wire

The wire block serves for reading in the input parameters for the wire. Each wire also needs to be
added as single element in the list of single elements.

57

Chapter 6: Special Elements

Keyword WIRE

Data lines Variable

Format name flag co current int length phys length disp x disp y tilt x

tilt y

A description of the input parameters for the wire is given in Table 6.11.

Table 6.11: Input parameters for the WIRE block.

Arguments Unit Description

name - Name of wire. Must be the same as in list of single
elements.

flag co - flag to define the displacement of the wire in respect to
the closed orbit or x=y=0. For flag co=+1 disp *

is the distance between x=y=0 and the wire. For
flag co=-1 disp * is the distance between the closed
orbit and the wire.

current A wire current

int length m integrated length of the wire

phys length m physical length of the wire

disp x mm hor. displacement of the wire

disp y mm vert. displacement of the wire

tilt x degrees hor. tilt of the wire −90 < tilt x < 90 (uses same
defintion as DISP block)

tilt y degrees vert. tilt of the wire −90 < tilt y < 90 (uses same
defintion as DISP block)

Remarks

The user has to check that the wires defined in the WIRE block are also defined in the list of
single elements and vice versa. All parameters, except for the type (type 15), are ignored in the
single element definition and the execution is aborted if the parameters are non-zero. In addition to
the parameters defined in the WIRE block, the ibeco parameter in the BEAM block (see Section 6.6)
imposes the same behavior on the wire as for beam-beam. Explicitly, the closed orbit introduced by
the wire is subtracted if ibeco=1 and not subtracted if ibeco=0.

Example:

In the following we give some examples for wire definitions. This example defines two wires wire 1

and wire 2.
The input block in fort.3 is given by:

WIRE

wire_1 -1 +98.9 2.0 1.0 10.0 10.0 1.1 1.1

wire_2 -1 +98.9 2.0 1.0 10.0 10.0 0.0 0.0

NEXT

The single and structure element definition in fort.2 is given by:

58

6.8 “Phase Trombone” Element

SINGLE ELEMENTS---

...

wire_1 15 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00

wire_2 15 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00

...

STRUCTURE INPUT---

...

BLOC56 wire_1 wire_2

...

Note that all parameters except for the type have to be set to 0 in the single element definition.

6.8 “Phase Trombone” Element

The linear “phase trombone” allows for the introduction of an arbitrary transfer matrix. It can be
used to introduce a change in the transverse phases without spoiling the linear optics of the rest of
the machine, i.e. the Twiss parameters are the same at entrance and exit of the element. Note that
it is up to the user to construct the matrix. The coordinates used as inputs are: x, px, y ,py, σ, pσ.

Keyword TROM

Data lines 1 line with name and then in blocks of 14 lines with 3 entries each.

Format First line: name

Second line: x, px, y

Third line: py, σ, pσ
Fourth util 15th: M(6× 6) matrix

name char May contain up to 48 characters.

cx, cx’, cy, cy’, cz, cz’ floats 6D closed orbit to be added to the coordinates.

M(6× 6) floats 6× 6 matrix elements.

Remarks

The user has to make sure that the above stated conditions are fulfilled. When using themad 6t [15]
converter from MAD-X to SixTrack, this is guaranteed to be the case. Note also that the crossterms
between the transverse plains are not considered for the time being.

6.9 Beam Distribution EXchange (BDEX)

The Beam Distribution EXchange allows an external program to read and modify the beam distri-
bution in SixTrack. This can be used for tracking part of the machine in an external program, for
example for including physics processes that are normally not available in SixTrack. Another possible
use is for multi-bunch tracking, i.e. with an external program “swapping” the bunch at a some point in
the ring. This would be useful for studying (for example) beam loading, where the external program
would read the position of a bunch in the cavity, use that to compute an update of the cavity voltage
(which can be sent to SixTrack using DYNK FUN PIPE), swap the bunch with another one and track
that to the cavity (still at “physics turn” 1, but “SixTrack turn” 2) etc.

Please note that BDEX is currently not supported in the checkpoint/restart version or in the colli-
mation version. Including BDEX in one of these versions results in a run-time error.

Keyword BDEX

Data lines Variable

Format There are three types of statements possible in a BDEX block, listed below.

59

Chapter 6: Special Elements

ELEM ELEM chanName elemName action

This associates a given element with an already existing channel and an action. The element must
appear in the SINGLE ELEMENT block, and be of type 0 (marker). The action indicates what should
be done with the particle distribution when it reaches this element. Currently, the only allowed action
is “1”, which means “particle exchange”, i.e. output the beam distribution and read back another one
at the same point.

CHAN CHAN chanName chanType ...

This creates a new channel through which the BDEX can communicate. Currently, the only imple-
mented chanType is PIPE, however TCPIP is also foreseen.

For the PIPE type, the statement including arguments is CHAN PIPE inPipeName outPipeName

format fileUnit. This uses a pair of UNIX FIFOs, through which SixTrack can communicate with
an external program. When the channel is used, it sends a message on the outpipe, then waits for
a reply with the new distribution over the inPipe. The format is an integer used to indicate the
output/input format, and is currently unused. The fileUnit is the Fortran unit number that should
be used to open the inPipe. The outPipe is opened on the next unit, so both units fileUnit and
fileUnit+1 must be free.

DEBU

This statement switches on extra “debugging” output from BDEX. This can be useful if debugging
the code or if debugging the input.

6.9.1 Communication protocols

The communication protocols used by the different channel types are listed below:

PIPE communication protocol

When a pair of pipes are first initialized, a header “BDEX-PIPE !******************!” is writ-
ten to the output pipe. Then, when the tracking reaches an element which is marked as active for
this channel, it writes another header like “BDEX TURN= 1 BEZ=ip1 I= 1 NAPX= 64”, where TURN

is the number of the current SixTrack turn, BEZ the name of the SINGLE ELEMENT, I the in-
dex of the STRUCTURE ELEMENT, and NAPX the number of particles to be written out. Af-
ter this follows NAPX lines with the particle information (one per particle), each line of the for-
mat xv(1,j) yv(1,j) xv(2,j) yv(2,j) sigmv(j) ejv(j) ejfv(j) rvv(j) dpsv(j) oidpsv(j)

dpsv1(j),nlostp(j) where all but the last floating point numbers, the last being an integer. Finally,
it writes “BDEX WAITING...” to the output pipe, and waits for data on the input pipe.

The first line expected on the input pipe should be an integer containing the number of particles
to write back. If this integer is -1, the current particle distribution is kept. Otherwise, a number of
lines of the same format as with the output is expected. After reading in the expected number of
particles, the string “BDEX TRACKING...” is written to the output pipe and tracking is resumed.

TCPIP communication protocol

TCPIP is not yet implemented, as it would require an external library. The FLUKA version
implements this, we should make sure that we are compatible with their requirements and ideally
their protocol.

60

6.10 Electron Lens

6.10 Electron Lens

The electron lens module serves for reading in the input parameters of electron lenses. Each e-lens
also needs to be added as single element in the list of single elements. Currently, the ideal electron
lens is implemented, i.e.

• no errors in the e–beam distribution;

• the kick is only due to the transverse components of the electric and magnetic fields generated
by the electron beam;

• electrons travel all parallel to the e-lens axis;

• no longitudinal component of the kick is considered.

Keyword ELEN

Data lines Variable

Format name type theta r2 r2 r1 offset x offset y (L I E k)

The last three parameters are optional, but if specified, all of them must be
present; they allow to re-compute the angle at r2 theta r2, taking into account
also the beam energy.

Additional parameters specific to the electron distributions (see later) must be
specified before the optional ones.

Currently, three types of electron beam profiles on the transverse plane (i.e. in the xy-plane) are
supported:

UNIFORM e–beam with constant density of electrons.

GAUSSIAN e–beam with a radial Gaussian profile.

RADIAL e–beam follows a radial distribution as described in a plain ASCII file.

Table 6.12: Input parameters for ELEN block.

Type Name Arguments Unit Description

Valid for all types

name – Name of e-lens. Must be the same as that in the list
of single elements.

type – Type of e-lens - either UNIFORM or GAUSSIAN.

theta r2 mrad Kick1 received at r = r2 where r2 is the outer radius
of the e-lens.

r2 mm Outer radius of the e-lens.

r1 mm Inner radius of the e-lens.

offset x mm Horizontal offset of the e-lens.

offset y mm Vertical offset of the e-lens.

Specific to GAUSSIAN type

sig el mm σ of the electron beam.

(The table continues on the next page)

1Total, not per charge.

61

Chapter 6: Special Elements

Type Name Arguments Unit Description

Specific to RADIAL type

filename filename of the radial profile. Please see Sec. 6.10.1 for
proper formatting of the file. The profile is read from
the file, radially integrated and normalised to the total
current. Hence, the kick at r2 is given by the value
of theta r2 (or by the optional parameters) and not
by integration of the radial profile. The domain of the
profile must be larger than the domain identified by
R1 and R2.

Optional arguments (all types)

L m Length of the e-lens. Must be positive.

I A Electron current of the e-lens. Must be non–zero. If
negative, the electron beam is considered travelling in
the direction opposite to that of the main beam.

E k keV kinetic energy of electrons in the e-lens. Must be pos-
itive.

The spatial charge density of all profiles is defined between r1 and r2:

ρ(r) =

0 if r ≤ r1

f(r) if r1 < r < r2

0 if r2 ≤ r
(6.1)

For the time being, r 1 cannot be 0; hence, the electron lens can only be hollow.

Remarks

1. The user has to check that the e-lens defined in the ELEN block is also defined in the list of single
elements and vice versa. All parameters in the single element definition except the type (type
29) are ignored.

2. The current implementation (ideal e-lenses) has no explicit energy–dependency, except for the
user defined parameter theta r2 (see [16]), in case the user specifies L, E k and I. In fact, in this
case, theta r2 is re-calculated after input parsing, taking into account the beam energy. This
parameter is re-computed also during energy ramping by the DYNK module.

3. The implementation is fully chromatic and hence compatible with ion tracking and tracking
of species different from the synchronous one only if the three main optional parameters (i.e.
length, kinetic energy of electrons and current) are specified by the user. In fact, only in this
case, the code knows the value of the normalised relativistic speed βe;

4. In case of energy ramping, if not DYNK-ed, the kick stays constant, as if the e-lens was ramped
in beam current in synch with the rest of the machine. On the contrary, if the user specifies
the three main optional parameters (i.e. length, kinetic energy of electrons and current), if not
DYNK-ed, the kick is recomputed at any update of the reference energy, as if the e-lens was not
ramped. Hence, it is responsibility of the user to define the way the e-lens is ramped with beam
energy.

62

6.11 Scattering

5. Note that if the user specifies theta r2 with DYNK, then, starting with the first turn where it
is set via DYNK, theta R2 is no longer ramped with the energy, as if the elens was specified using
only this parameter in fort.3. However note that the chromatic behaviour, which requires E k,
is still handled in a physically correct way.

Examples

In the following we give an example of e-lens definition. The example defines two electron lenses
hel1 and hel2 for cleaning purposes; the former has a uniform electron density whereas the latter
has an electron beam with a Gaussian profile with σ=1.1547 mm. While the former has an explicit
definition of the kick at r2, the latter triggers the re-computation of the kick, given the length of the
electron lens of 4 m, the electron current of 2 A (opposite wrt the main beam) and the electron kinetic
energy of 1 keV. The input block in fort.3 is then given by:

ELEN

hel1 UNIFORM 4.920e-03 6.928 4.619 1.1547 2.3093

hel2 GAUSSIAN 4.920e-03 6.928 4.619 1.1547 2.3093 1.1547 4 -2 1

NEXT

The single and structure element definition in fort.2 are given by:

SINGLE ELEMENTS---

...

hel1 29 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00

hel2 29 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00

...

STRUCTURE INPUT---

...

BLOC56 hel1 hel2

...

Note: All parameters except for the type are set to 0 in the single element definition.

6.10.1 Format of Radial Profile

The file format of the radial profile is

Data lines Variable

Comment character # (only as first char of the line)

Format R (mm) J (A cm−2)
Formatting rules:

• every non-commented line is taken as a point in the profile;

• values of the radius must be in increasing order. Otherwise, the program stops.

An example of radial profile is contained in each test of e-lenses.

6.11 Scattering

Note: The PYTHIA implementation in this module should be considered experimental! It is not yet
fully tested for correct physics.

The SCATTER module is a framework for scattering particles through Monte Carlo processes at
various points in the machine.

The Scatter Module currently supports interfacing with PYTHIA8 to generate scattering events.
In order to use PYTHIA as an event generator, SixTrack must be built with the PYTHIA flag. If this is
enabled, the PYTHIA block becomes available as an input block in fort.3. The PYTHIA block provides

63

Chapter 6: Special Elements

access to the SoftQCD module of PYTHIA8 through a minimal interface. See Section 7.1 for how to
use this block.

In addition, the Scatter Module has an internal generator for elastic scattering events that does
not rely on any external tools.

The Scatter Module uses the internal random number generator in SixTrack, both with and without
PYTHIA integration. It therefore requires the RANDOM NUMBERS block to be present. See Section 4.6.

Keyword SCAT

Data lines Variable

Format Name/value sets, see below.

6.11.1 Module Flags

These are the main settings and flags to control the general flow of the Scatter Module, and allows for
additional debugging options to ensure the simulation is set up correctly. Especially when scattering
against a realistic Beam 2, it can be tricky to ensure that the beams actually interact. The additional
output files below are intended to help verifying that they do.

Module Debugging DEBUG

This statement switches on extra “debugging” output from SCATTER. This can be useful if debug-
ging the code or if debugging the input.

Particle Losses LOSSES

This statement switches on particle losses in the scatter module. This flag is propagated to the
PYTHIA module (see Section 7.1), allowing for selecting double diffractive and non-diffractive processes.
In addition, this will allow losses with single diffractive when the tracked prticle is destroyed and the
target particle survives. If losses are disabled, the event generator will only accept events where the
tracked particle survives.

Particle losses are off by default.

Beam 2 Sample Log WRITE PLOG

If the PYTHIA block has the REALBEAM flag enabled (see Section 7.1), the Scatter Module will
generate a random three-momentum vector of Beam 2 particles that is then fed to the PYTHIA event
generator. This flag enables the logging of these generated events to the scatter momentum.dat file.

Density Dump DENSITY DUMP element name turn

This setting allows for a dump of the target PDF in a 500 by 500 matrix to the file scatter pdf.dat,
and a dump of the target density seen by each particle to the file scatter density.dat. This is in-
tended as a debug tool to check that Beam 1 and Beam 2 are actually interacting. The dump can
only be used once, on a given element, on a given turn.

Beam Dump BEAM DUMP element name turn

This setting dumps a particle state file (see Section 3.4) immediately before and after the scatter
point. This information is written to the files scatter beam before.dat and scatter beam after.dat.
This is intended as a debug tool to check the effect of the scatter element on the beam. The dump
can only be used once, on a given element, on a given turn.

64

6.11 Scattering

6.11.2 Element, Target and Process Definitions

This section describes the keywords needed to set up the actual scattering points. The target density
profile for scattering, and the scattering event generators, are defined separately. The profiles and the
generators are then applied to the scattering elements (of type 40) in the lattice. This ensures that
the input block is reasonably human readable, and avoids redundant configurations.

Note:

If using very low scattering probabilities, ensure that the probability is within the scope of the
resolution of the random number generator. To select whether a scattering event has occured, the
probability is evaluated against a uniformly distributed random number between 0 and 1. However,
the default random number generator has a resolution of just below 231, meaning the smallest number
that can be sampled is 4.66× 10−10. Scattering probabilities below ≈ 10−8 should be avoided.

The Scatter Module allows for statistical scaling of scattering probabilities. In the scatter log.dat

file, there is a column keeping track of the statistical weight through multiple scattering of the same
particle.

Beam 2 Emittance BEAM2 EMIT emitX emitY

If the target profile is a model of Beam 2, defined by Twiss parameters, this keyword is required
to set the x and y normalised emittance. The emittance is in units of µm.

Beam 2 Length BEAM2 LEN sigmaZ

If the target profile is a model of Beam 2, defined by Twiss parameters, this keyword is required
to set the beam length, assuming a Gaussian longitudinal profile. The length is in units of mm.

Density Profiles PRO name type (arguments)

This keyword defines a profile, that is a density profile and its general properties. This is the target
the tracked particles are colliding with.

Several different types are available:

PRO name FIXED density[targets/cm2]

A uniform density profile with infinte extent.

PRO name GAUSS1 beamtot[particles] sigmaX[mm] sigmaY[mm] offsetX[mm] offsetY[mm]

The simple, round, Gaussian target profile with a given number of particles. The GAUSS1 profile
parameters are given by

ρ(x, y) =
Ntot

2πσxσy
exp

(
−(x− µx)2

2σ2
x

)
exp

(
−(y − µy)2

2σ2
y

)
. (6.2)

REFBEAM density [crossX crossY]|[MIRROR]

Each particle is collided against the reference particle. The density determins the scattering
probability, and is a fixed number. Optionally, the x and y crossing angles can be added, or the
MIRROR flag used to take the same crossing angles as for Beam 1. If neither is specified, the crossing
angle is taken to be 0. The crossing angle is only relevant when the PYTHIA option REALBEAM is enabled.

65

Chapter 6: Special Elements

UNCORRBEAM nbeam betaX betaY alphaX alphaY crossX crossY [offsetX offsetY] | MIRROR

The target is a Beam 2 described by a set of uncorrelated Twiss parameters, and a total beam
particle count. The target beam is effectively a “thin” beam, in that it appears as an infinitely thin foil
at the centre of the interaction point. The crossing angle is taken into account using an effective sigma,
as is commonly done for luminosity calculations. The probability is then corrected using the particle
time offset and assuming a longitudinal Gaussian distribution. If the keyword MIRROR is specified, the
Twiss, offset and crossing angle is taken from Beam 1.

Event Generator GEN name type [arguments]

The generator block takes a name and a generator type input, followed by the parameters for the
generator type.

GEN name PPBEAMELASTIC a b1 b2 phi tmin crossSection

Takes five or six input arguments, and generates the probability distribution given by

g(t) =
1

a2
1

dσ

dt
= e−b1t + 2ae−(b1+b2)t/2 cosφ+ a2e−b2t, (6.3)

where the first expression is a soft scatter data fit, the third expression a hard scatter fit, and the
second expression is the interference. a = a2/a1 is the amplitudes of the expressions. These are
combined into the first four input arguments a, b1, b2, and φ, as well as tmin which provides a cut-
off limit. The sixth argument defines a fixed cross section for the scattering probability in units of
millibarn. If all elements have ratio set to a fixed value, the cross section set here is ignored.

Input example with values for a fit to 13 TeV LHC.

GEN sc_thin PPBEAMELASTIC 0.046 18.52 4.601 2.647 0.0 30.0

GEN name PYTHIA crossSection

If SixTrack is built with PYTHIA support, it is available as a generator, taking only the total
cross section as input parameter. The generator itself is configured through the PYTHIA block. See
Section 7.1.

Scatter Elements ELEM elemname profile ratio scaling gen1 ... genN

This statements associates a PROfile and one or more GENerators with a SINGLE ELEMENT. The
element must be of type 40.

The ratio argument (string/float) can be used to set a fixed scattering probability at the element.
Alternatively, the field can be set to “auto”, in which case the scattering probability is calculated from
the cross section and density profile.

The scaling argument (float) is used to scale the probability of an interaction when using cross
section to claculate the scattering probability. This field can be controlled through DYNK (see Sec-
tion 6.5), for example in order to scale only at one specified turn, or to switch off and on scattering
at the element by scaling it by 0 and 1 respectively.

The profile, generator(s), and single elements are referenced through their names. The generators
and profile must be defined above the ELEM defintiion where they are used. When using multiple
generators, a branching ratio between them is calculated, and sampled by the scatter routine.

66

6.12 Collimation

6.12 Collimation

Collimation and beam cleaning studies are carried out with the well established SixTrack code, ex-
tended for tracking large numbers of halo particles, and to take into account halo interaction with
arbitrarily placed collimators. Particles are transported through the lattice element by element and
their phase space coordinates are transformed according to the type of element. When a particle hits a
collimator jaw, it is randomly scattered through matter. The effect of collimator scattering is modeled
using COLLTRACK/K2 [42, 43] routines.

The main characteristics of the SixTrack used for collimations studies are:

• Proton scattering in various collimator materials, including:

– Multiple Coulomb scattering,

– Ionization of the collimator material,

– Elastic proton-proton (pp) scattering, and inelastic diffractive pp scattering (single diffrac-
tive scattering),

– Inelastic proton-nucleon scattering,

– Elastic and inelastic proton-nucleus scattering,

– Rutherford scattering.

• Various types of halo and possibility of including diffusion.

• Tracking of large particle ensembles (106 protons) over hundreds of turns.

• Multiple imperfections on the beam and the collimator properties (setting errors, tilts, orbit,
beta beat,)

Input parameters are divided in 3 files:

• fort.2 (generated by MAD-X), defining the lattice of the machine without magnetic field errors.

• Collimator database file, containing the details of collimators geometry, material, settings (open-
ing)

• fort.3 (modified from the one used for SixTrack without collimation), including tracking pa-
rameters (number of particles and turns), type of beam, type of halo.

MAD-X is used to generate the LHC lattice, the optics and eventual orbit and focusing errors. Beam-
LossPattern: Implementation of the LHC aperture model with analysis of loss locations for all tracked
protons.

SixTrack for collimation studies tracks particles populating an halo (with typically σ ≥ 6) through-
out the LHC lattice (as defined by the MAD-X output file fc.2). The halo is represented in the phase
diagram Y (offset from beam orbit axes), Y ′ (angle with respect to the beam orbit axes) in Figure 6.6.

Figure 6.6: Left: Halo particles in the phase diagram. Right: Impact Parameter.

67

Chapter 6: Special Elements

One defines the Impact Parameter b (see Figure 6.6) as the transverse offset between the jaw
surface and the impact point. b typically equals 1µm at the first impact.

These changes implied to modify/add some input files:

• the generic SixTrack parameter file fort.3 now has a new block for collimation parameters,

• a separate collimator database file is now mandatory if collimation studies are to be done.

This database including the name, length, orientation and material of every single collimator of the
ring (1 file per Collimation System Phase though). Apart from these two, the other required SixTrack
files are produced via MAD-X and its conversion module.

6.12.1 Collimation Input Block

The collimation module is controlled by the COLL block in fort.3.

Keyword COLL

Data lines Either 17 lines (old format), or free (new format)

Format See below.

Format Description:

From SixTrack version 5.2.5 and on, the main format of the (COLL) block is a set of keyword/value
lines.

For backwards compatibility, the old format is still supported, and it is described in Section 6.12.4.
When encountering the COLL block, the parser will check if the first line of the block is a single value,
and if it is, it will conclude that the block is in the old format. The old block format consists of 17
lines of varying number of values, and the full description is laid out in Table 6.14.

Note that the old and new format cannot be inter-mixed. The old format is parsed based on the
line number, and must follow exactly the format described in Table 6.14.

The keyword/value formated block is described below. The keywords mostly correspond to the
keywords listed in Table 6.14.

Do Collimation (Required) DO COLL true|false

The collimation module can be switched on and off in its entirety with this flag, without having
to comment in and out the entire block. When the flag is off, the collimation routines are skipped in
tracking, and the additional memory needed for collimation is not allocated. This entry is required
for collimation to be enabled, but if ommitted, defaults to false.

Collimator Database (Required) COLLDB filename

The filename of the database of collimators. This entry is required. The format of the database is
described in Section 6.12.2. It is also possible to load the old style database format. If so, a converted
database is written to the simulation folder with an added file extension .new.

Beam Energy (Required) ENERGY energy[MeV]

The energy of the beam to be tracked. This is independent of the energy specified in other blocks,
and is a required value.

68

6.12 Collimation

Emittance (Required) EMIT eX d eY d eX g eY g

Specifies the normalised emittance for the distribution [eX d, eY d], and for the collimator gaps
[eX g, eY g]. These are required.

Random Seed SEED seed

Set the seed for the random number generator. If set to 0 (default) a new seed will be selected for
each run.

Distribution Generator Type DIST TYPE 0-6

The type of the distribution generator to use. Setting this to larger than 0 will overwrite the
distribution generated by the initialisation routines in SixTrack, including the distribution read from
the DIST block (see Section 4.7). This feature will be deprecated in the future, and the functionality
taken over by an extended DIST module. The different options are listed below. The default value is
0.

0. The internal collimation distribution generator is disabled and the general SixTrack distribution
is used instead (default).

1. Distribution in the plane for which the parameters are specified ONLY: flat distribution in the
selected plane between Ax±δAx (horizontal) or Ay±δAy (vertical). The amplitude in the other
plane is zero. The parameters must be provided with the DIST PARAM keyword. Values 1 to 4
are used.

2. Distribution in the plane for which the parameters are specified + a Gaussian distribution cut at
3σ in the other plane. The parameters must be provided with the DIST PARAM keyword. Values
1 to 4 are used.

3. Distribution in the plane for which the parameters are specified + a Gaussian distribution cut at
3σ in the other plane. The parameters must be provided with the DIST PARAM keyword. Values
1 to 4 are used. In addition an energy spread is given as value 5, and a longitudinal component
given by value 6.

4. Reads an external file that contains the beam distribution to be tracked. The file is specified by
DIST FILE.

5. Radial transverse distribution of radius Ar. This corresponds to a flat distribution both in the
horizontal and vertical planes between Ax ± δAx and Ay ± δAy, with Ax = Ay = Ar/Ö2.

6. Reads a normalised distribution from an external file. The file is specified by DIST FILE.

Distribution Generator Parameters DIST PARAM Ax δAx Ay δAy [enerror bunchlen]

The parameters for the distribution generator DIST TYPE. The required values are determined by
the type selected. All values default to 0.

Recomended values are 3.06 × 10−4 at 450 GeV and 1.129 × 10−4 at 7 TeV for energy error
(enerror), and 11.24 cm at 450 GeV and 7.55 cm at 7TeV for bunch length (bunchlen).

Distribution Generator Input File DIST FILE filename

Name of the distribution file to be read in for distribution type 4 or 6.

69

Chapter 6: Special Elements

Special Radial Distribution DO RADIAL true|false amp smear

Alternative radial beam distribution where amp is the amplitude of the beam in numbers of ra-
dial sigmas, and smear is the smear of the beam in radial sigma. Setting this to true will override
DIST TYPE.

This distribution is equivalent to DIST TYPE = 1 with the DIST PARAM values:

Ax = Ay = amp/
√

2

δAx = δAy = smear/
√

2

.

Special Radial Distribution DO MINGAP true|false

If true, the particle distribution is generated at the collimator with the smallest gap (to be used
with sheet/pencil beam). Default value is false.

Do Change Collimator Gaps DO NSIG true|false

If true, the collimator gaps specified in the imput block by keyword NSIG FAM are used instead of
those in the collimator database file. Default value is false.

Set Collimator Gaps NSIG FAM name collgap

Family name and collimator gap in units of sigma for each collimator family specified below. This
is only applied to the collimators themselves if the DO NSIG is true.

The collimator family name is extracted from the collimator name in the collimator database. The
default collimator families are listed below. A new collimation database format will be added in the
near future where the families can be specified independently in the database, and not locked to the
naming convention for the LHC.

The default value is the sigma gap specified in the collimator database.

tcp3 The primary collimator in IR3.

tcsg3 The secondary graphite collimator in IR3.

tcsm3 The secondary metallic collimator in IR3.

tcla3 The active absorbers in IR3.

tcp7 The primary collimators in IR7.

tcsg7 The secondary graphite collimator in IR7.

tcsm7 The secondary metallic collimator in IR7.

tcla7 The active absorbers collimator in IR7.

tclp The physics debris collimator.

tcli The absorbers for injection protection.

tcdq The beam dump protection collimator2.

tcstcdq The secondary collimator dedicated to beam dump.

tdi The injection protection collimator.

tcth1 The horizontal tertiary collimator in IR1.

tcth2 The horizontal tertiary collimator in IR2.

tcth5 The horizontal tertiary collimator in IR5.

70

6.12 Collimation

tcth8 The horizontal tertiary collimator in IR8.

tctv1 The vertical tertiary collimator in IR1.

tctv2 The vertical tertiary collimator in IR2.

tctv5 The vertical tertiary collimator in IR5.

tctv8 The vertical tertiary collimator in IR8.

tcxrp The Roman Pots3.

tcryo The collimators in the DS regions.

Jaw Slicing

This feature has been removed from the main collimation block. The collimators or collimator
families that are to be sliced are now set in the collimator database file. See Section 6.12.2.

One-Sided Collimators

This feature has been removed from the main collimation block. The collimators or collimator fam-
ilies that are to be treated as one-sided are now set in the collimator database file. See Section 6.12.2.

Beta-Beating BETA BEAT xbeat xbeat phase ybeat ybeat phase

In case of beta-beating:

xbeat float Offset in x for the computation of collimator.

xbeat phase float Phase offset in x for the computation of collimator.

ybeat float Offset in y for the computation of collimator.

ybeat phase float Phase offset in y for the computation of collimator.
These values default to 0.

Pencil Beam PENCIL ipencil offset rmsx rmsy distr

Resets original distribution to pencil beam distribution on the collimator database ID specified by
ipencil. The formats are described below. Setting ipencil to 0, disables this feature. These values
default to 0.

distr = 0 offset = 0

Pencil Beam Distribution rmsx = 0

rmsy = 0

distr = 0 offset = center of rectangle

Rectangular Distribution rmsx = spread of impact parameter (uniform)

rmsy = spread parallel to jaw surface

distr = 1 offset = mean of Gaussian distribution

Gaussian Distribution rmsx = spread of impact parameter (Gaussian)

rmsy = spread parallel to jaw surface (Gaussian)

distr = 2 offset = mean of Gaussian distribution

Half Gaussian Distribution rmsx = spread of impact parameter (uniform)

rmsy = spread parallel to jaw surface (Gaussian)

Note: The distribution with distr = 2 is used when wanting to simulate the loss of a magnet.

2One-sided collimators (only positive x)
3One-sided collimators (only positive x)

71

Chapter 6: Special Elements

Dedicated Collimator Study DO SELECT true|false name

Do a dedicated study of selected collimator. This value defaults to false.

Nominal Beta DO NOMINAL true|false

Switches on or off the use of design β values of collimators. This value defaults to false.

Emittance Drift EMIT DRIFT driftx drifty

Apply an emittance drift in the x and y direction, respectively. These values default to 0.

Alignment Errors ALIGNERR [PRIM|SEC] rms tilt sys tilt rms offset sys offset

Apply errors to primary or secondary collimator tilt and offset. These values default to 0.

rms tilt float RMS value of tilt to apply.

sys tilt float Systematic value of tilt to apply.

rms offset float RMS value of offset to apply.

sys offset float Systematic value of offset to apply.

Alignment Errors to Gaps ALIGNERR GAP rmserror gap

The RMS error of collimator gap. These values default to 0.

Alignment Errors Random Seed ALIGNERR SEED seed

The random number seed to use for alignemnt errors. This value defaults to 0.

Systilt SYSTILT ANTI true|false

Deduce SYSTILT to RMSTILT instead of adding. This value defaults to false.

Cut Sigmas SIGSECUT sigma xy sigma r

Sigma cuts for tracks2.dat controlled by the WRITE TRACKS flag. Cut in square sigmas x/y for
saving particles (e.g. 64 for a cut at 8 σx/σy). Cut in square sigmas radial for saving particles (e.g.
90.25 for a cut at 9.5 σr). These values default to 1.

File Write Flags WRITE * true|false

Switches on or off the writing of various output files, listed below. All flags default to false.

WRITE DIST Writes the beam distribution to file before and after tracking.

WRITE IMPACT Writes the impact parameters for each collimator.

WRITE SECOND Writes a secondary halo file based on normalised amplitude.

WRITE AMPL Writes checking files for amplitude, closed orbit.

WRITE EFFIC Writes the efficiency files.

WRITE TRACKS Writes secondary/tertiary halo files.

WRITE CRYCOORD Writes crystal coordinate file(s).

72

6.12 Collimation

6.12.2 The Collimator Database

Collimators require specific settings, which are provided in a dedicated collimator database. The file
is specified with the COLLDB keyword in the COLL block in fort.3. See Section 6.12.1.

Only the new database format is described in this section, but it is possible to load a file with the
old format. The old format has been deprecated due to having a single column of parameters that are
not straight-forward to read (by humans) and difficult to extend with new features. If an old database
file is specified, a converted database is written with the same file name plus an added extension .new.
New features added to the collimation module will not be supported by the old format.

Database Structure

The database is split into two sections. The first (main) section lists all the collimators and their
default parameters. The second section, separated from the first by the keyword SETTINGS, contains
additional settings for specific collimators or families of collimators. The second section is parsed
following similar logic to the fort.3 input block, but has a different set of keywords. The second
section is optional.

6.12.2.1 Main Database Section

The main section of the database consists of a list of collimator family declarations, followed by a list
of collimators. The family declaration is optional, but it makes it easier to assign parameters to a
group of collimators instead of specifying each one individually. In the main section, this is used to
provide the default collimator opening.

The collimator family settings are povided similarly to the NISG FAM keyword in the COLL block
in fort.3. The keyword takes a family name, a collimator opening setting, and a collimator stage as
input parameters. Note that the sigma settings in fort.3 overrides the settings of the database.

The collimator stage is not required, and defaults to UNKNOWN. Each collimator stage has a number
associated with it that is an exponent of 2 (se table below). In files like coll ellipse.dat and
tracks2.dat, the sum of these are printed, meaning the information of what collimator stages a
particle (that has not been absorbed) has hit can be extracted. Only the first three characters of the
collimator stage is required, the rest of the word is optional for clarity.

PRIMARY 1 Primary collimators

SECONDARY 2 Secondary collimators

TERTIARY 4 Tertiary collimators

OTHER 8 Any other collimator

CRYSTAL 16 Crystal collimators

UNKNOWN 32 The collimator stage is unknown (default)

The collimator key settings are provided in a table of either 6 or 8 columns. The latter two columns
are optional. The formats are as follows:

73

Chapter 6: Special Elements

elemname char The single element name of the collimator.

opening char/float The family name as defined above, or if no family, the collimator opening
in units of sigma.

material char(4) The material of the collimator.

length float The length of the collimator in metres.

angle float The skew angle (i.e. about the longitudinal axis) of the collimator in
degrees.

offset float The offset of the collimator on the cleaning plane in metres.

beta x float The Twiss βx of the collimator in metres (optional).

beta y float The Twiss βy of the collimator in metres (optional).

Example

Families

NSIG_FAM tcp3 12.000000 PRIMARY

NSIG_FAM tcsg3 15.600000 SECODNARY

NSIG_FAM tcsm3 999.000000 SECODNARY

NSIG_FAM tcla3 17.600000 TERTIARY

Collimators

name opening mat. length[m] angle[deg] offset[m] beta_x[m] beta_y[m]

tclx.4r1.b1 tclp Iner 1.000000 0.000000 0.000000 6812.605863 4597.092632

tcl.5r1.b1 tclp CU 1.000000 0.000000 0.000000 902.616764 1935.588447

tcl.6r1.b1 tclp Iner 1.000000 0.000000 0.000000 142.965006 1166.200842

tctph.4l2.b1 tcth2 Iner 1.000000 0.000000 0.000000 84.519178 104.259232

tctpv.4l2.b1 tctv2 Iner 1.000000 90.000000 0.000000 86.619339 103.111681

tdi.4l2.b1 tdi CU 4.000000 90.000000 0.000000 144.175250 96.678174

tclia.4r2 tcli C 1.000000 90.000000 0.000000 98.565386 160.118523

tclib.6r2.b1 tcli C 1.000000 90.000000 0.000000 149.324152 63.396485

tcp.6l3.b1 tcp3 C 0.600000 0.000000 0.000000 131.520626 144.694013

tcsg.5l3.b1 tcsg3 C 1.000000 0.000000 0.000000 54.604612 298.623904

tcsg.4r3.b1 tcsg3 C 1.000000 0.000000 0.000000 26.209714 395.196297

tcsg.a5r3.b1 tcsg3 C 1.000000 170.799865 0.000000 35.867692 344.111324

tcsg.b5r3.b1 tcsg3 C 1.000000 11.400000 0.000000 45.537821 312.677533

tcla.a5r3.b1 tcla3 Iner 1.000000 90.000000 0.000000 142.529342 176.013077

tcla.b5r3.b1 tcla3 Iner 1.000000 0.000000 0.000000 151.614782 168.687046

tcla.6r3.b1 tcla3 Iner 1.000000 0.000000 0.000000 129.435749 168.706418

tcla.7r3.b1 tcla3 Iner 1.000000 0.000000 0.000000 66.935067 92.241046

tcth.6l5.b1 tcth5 CuCD 1.000000 0.000000 0.000000 1262.953872 303.824116

tctv.6l5.b1 tctv5 CuCD 1.000000 90.000000 0.000000 1322.390819 361.810773

tctxh.4l5.b1 tcth5 CuCD 1.000000 0.000000 0.000000 4673.450003 7076.790857

6.12.2.2 Additional Collimator Settings

Further collimator settings can be provided at the bottom of the database file separated by the
SETTINGS keyword. Currently, only one-sided collimators can be specified in this section.

One-Sided Collimators ONESIDED name 1|2

One-sided treatment of collimators can be achieved by setting this flag. The name can either be
a collimator name or a family name. The last parameter specifies either jaw 1 (i.e. at x¿0 in the
collimator reference system) or jaw 2 (i.e. at x¡0 in the collimator reference system). If jaw 2 is
selected, the collimator is rotated by 180 degrees, as only the positive x side is treated when one-sided
is enabled.

Example

SETTINGS

ONESIDED tcdqa.a4r6.b1 1

ONESIDED tcdqa.c4r6.b1 1

ONESIDED tcdqa.b4r6.b1 1

74

6.12 Collimation

Jaw Fit Profile JAW PROFILE name fac0 [... fac5]

Adds a named fit profile with factors si up to fifth order on the form:

Pi = A

[
s0 + s1xi +

s2x
2
i

L
+ s3x

3
i + s4x

4
i + s5x

5
i

]
(6.4)

where Pi is the profile of the i-th slice, A is a scaling factor, L is the length of the collimator, and

xi =
L(i− 1)

N
(6.5)

where N is the number of slices. The scaling factors default to zero, and only the 0-th order factor is
required.

Jaw Fit JAW FIT target nslices fit1 fit2 [scale1 scale2 [recentre1 recentre2]]

Apply a fit defined with JAW PROFILE to the two jaws of a target collimator or family of colli-
mators. The number of slices is required, and so are the prfoile names fit1 and fit2 for collimator
jaw 1 and 2, respectively. The scaling factors scale1 and scale2 are optional, and default to one.
It is also possible to move the collimator such that the opening corresponds to the smallest gap after
the jaw fit profile has been applied. This can be enabled by setting the logical flags recentre1 and
recentre2 for the two jaws. These flags default to off.

Example

SETTINGS

JAW_PROFILE FIT_A -1.0e-5 -2.4e-3 4.3e-3 -4.1e-3 1.8e-3 3.0e-4

JAW_PROFILE FIT_B -1.0e-5 -2.4e-3 4.3e-3 -4.1e-3 1.8e-3 3.0e-4

JAW_FIT tcsg7 15 FIT_A FIT_B 1.0 1.0 on on

Crystal Collimators CRYSTAL name Bend XDim YDim Thick Tilt MisCut Orient

This flag enables the collimator or collimator family specified in name to be treated as a crystal
collimator. Crystal collimators require an additional set of parameters described in the following:

Bend float Bending radius of the crystal collimator in [m].

XDim float Transverse dimension along the X axis of the crystal collimator in [m].

YDim float Transverse dimension along the Y axis of the crystal collimator in [m].

Thick float Thickness of the amorphous layer of the crystal collimator in [m].

Tilt float Tilt of the crystal collimator in [rad] with respect to its default orien-
tation (calculated as the divergence of the beam at that location, i.e.
optimal orientation for channeling).

MisCut float Miscut angle of the crystal collimator in [rad].

Orient integer Used only for Si crystal collimators. Its value is either 1 (strip crystal,
110 planes) or 2 (quasi-mosaic crystal, 111 planes).

All the parameters default to zero. Additional details on the physics principles of crystal collimation
and benchmark against experimental data can be found in [55, 56, 57, 58, 59, 60].

The main output file is the cry interaction.dat file. This file is enabled with the WRITE CRYCOORD

flag in fort.3. In addition, if the DEBUG flag is set in the SETTINGS block (see Section 3.4), a
cry entrance.dat and cry exit.dat file is written as well.

Example

SETTINGS

CRYSTAL cry.h.b1 61.54 2.0e-3 50.0e-3 0.0 0.0 0.0 1

75

Chapter 6: Special Elements

6.12.3 Collimation with Geant4

It is possible to use the particle-matter scattering physics of Geant4 within SixTrack. To do this, the
G4COLLIMATION flag must be added at build time, with an appropriate Geant4 library existing in
your path. Many standard collimation features are currently not implemented. Particle longitudinal
dynamics are also not currently implemented. The GNT4 block specified below must be used in addition
to the standard collimation block in the standard fort.3 file.

Keyword GNT4

Data lines Variable, see below.

Format This module uses a keyword, value format. See below.

Select Physics List PHYSICS phys

The PHYSICS flag selects which physics list to use in Geant4. If no flag is specified, the simulation
will default to FTFP BERT. Any Geant4 physics list is allowed. Please see http://geant4-userdoc.
web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/index.html for more details.

phys char The name of the physics list to use.

Select Particles to Return to SixTrack RETURN type

The RETURN flag selects which types of particles to return back to SixTrack after performing
collimation. Only charged particles are returned; neutral particles are always killed. Possible options
are STABLE, which will return all stable particles, IONS, which takes back all ions (not including
protons), and to specify by individual PDG id numbers. Both particles and anti-particles should be
specified separately. Multiple copies of the RETURN flag can be used to precisely select which particles
are of interest.

If no flag is specified, all particles are returned, including ones that should decay.

type char/int The particles to send back to SixTrack after tracking through Geant4.

Select Relative Energy Cut RELENERGYCUT cut

The RELENERGYCUT flag selects an energy cut as a fraction of the energy of the reference particle.
For example, 0.5 will cut at half the energy of the reference particle.

cut float The cut value to use.

Select Absolute Energy Cut ABSENERGYCUT cut

The ABSENERGYCUT flag selects an absolute energy cut, and if a particle’s energy goes below this
value, it will be killed. This value is specified in GeV.

cut float The cut value to use in GeV.

Select Range Cut RANGECUT MM cut

The RANGECUT MM flag selects a range cut for particle production in Geant4. This value is specified
in mm. The unit of this cut may change in the future.

cut float The cut value to use in mm.

76

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/index.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/index.html

6.12 Collimation

Enable Debugging Output DEBUG

The DEBUG flag enables some additional debugging output in Geant4. Warning: the level of output
can be very verbose with a large number of particles.

6.12.4 Old Input Format

The old input block format is illustrated in the following example, and the associated variable which
each value is described in Table 6.14.

COLLIMATION

.true.

50 7000000

3 5 0.958 0.0015 0.0 0.0 "nothing" 1.0 129e-4 75.5

.true. 15.0 18.0 18.0 20.0 6.0 7.0 7.0 10.0 1 0.0 999.0 8.0 7.5 999.0

8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 5.0 15.0

0 19789.0 20150.0 1 1

-1.3899e-6 -9.345e-5 5.05324e-3 -1.6595e-2 2.15955e-2 -9.96261e-3 1.0

-1.3899e-6 -9.345e-5 5.05324e-3 -1.6595e-2 2.15955e-2 -9.96261e-3 1.0

0.503E-09 0.503E-09

.false. .false. 0 .true. TCP.C6L7.B1 .false. .true. .true. .true. .true.

0.0 0.0 0.0 0.0

0 0 0 0 0 0 0 0 0 0 .false.

.false. 6.003 0.0015

0.0 0.0 .false. .false.

0 0.0025 0.0 0.0 0

"CollDB_V6.500_lowb_st.b1.data" 1

.true. .false. WAbsVertLowbcoll 101 1 1.

NEXT

Old Collimator Database Format

The collimator database is stored in files named CollDB V6.500 [type] st.[beam].data, with
[type] being either inj for injection case or low b for collision case, and [beam] being b1 or b2. These
files contain mechanical and optical data related to the collimators planned for LHC. (Note that at
present only Phase I collimators have a length different from zero)

A sample block of either one of these input files follows:

TCP.D6L7.B1 <-- collimator name in capital letters

tcp.d6l7.b1 <-- collimator name in minimal letters

5.7 <-- collimator nominal opening (in sigma units)

C <-- collimator material (C = graphite, CU = copper, W=tungsten)

0.2000000000000000 <-- collimator length [m]

1.5710000000000000 <-- collimator angle [rad]

0.0000000000000000 <-- collimator offset [m]

90.4467000000000070 <-- design Beta x [m]

156.4360000000000070 <-- design Beta y [m]

<-- line jump to next block

The introduction of the optic parameter β allows studies of error scenarios (orbit distortion, beta-
beating) and/or to see the effect of misaligned collimators. This structure is then repeated within the
file for each of the collimators to be included in the study.

Table 6.14: Old Collimation Input Format

Ln Keyword Type Description

1 DO COLL logical Switches on/off the collimation studies.

(The table continues on the next page)

77

Chapter 6: Special Elements

Ln Keyword Type Description

2 NLOOP integer Number of samples. No longer in use. Fixed to 1.

MYENOM float Energy of the beam to be tracked.

3 DO THISDIS integer Selects the type of distribution of the particles to be tracked (see
below).

MYNEX float Ax normalized amplitude of particles (in sigma units) in the x
direction.

MDEX float dAx smear (in sigma units) of the beam halo around Ax (in x
direction).

MYNEY float Ay normalized amplitude of particles (in sigma units) in the y
direction.

MDEY float dAy smear (in sigma units) of the beam halo around Ay (in y
direction).

FILENAME DIS char Name of the distribution file to be read if DO THISDIS = 4/6.

ENERROR float Energy spread of the tracked beam. Read only if DO THISDIS = 3.

BUNCHLENGTH float Bunch length of the tracked beam in millimeters. Read only if
DO THISDIS = 3.

4 DO NSIG logical If TRUE use collimators settings from fort.3. If FALSE from
CollDB V6.500 [type] st.[beam].data.

NSIG TCP3 float Opening of the primary collimator in IR3 in sigma units.

NSIG TCSG3 float Opening of the secondary graphite collimator in IR3 in sigma units.

NSIG TCSM3 float Opening of the secondary metallic collimator in IR3 in sigma units.

NSIG TCLA3 float Opening of the active absorbers in IR3 in sigma units.

NSIG TCP7 float Opening of the primary collimators in IR7 in sigma units.

NSIG TCSG7 float Opening of the secondary graphite collimator in IR7 in sigma units.

NSIG TCSM7 float Opening of the secondary metallic collimator in IR7 in sigma units.

NSIG TCLA7 float Opening of the active absorbers collimator in IR7 in sigma units.

NSIG TCLP float Opening of the physics debris collimator in sigma units.

NSIG TCLI float Opening of the absorbers for injection protection in sigma units.

NSIG TCDQ float Opening of the beam dump protection collimator in sigma units4.

NSIG TCSTCDQ float Opening of secondary collimator dedicated to beam dump in sigma
units.

NSIG TDI float Opening of the injection protection collimator in sigma units.

5 NSIG TCTH1 float Opening of the horizontal tertiary collimator in IR1 in sigma units.

NSIG TCTH2 float Opening of the horizontal tertiary collimator in IR2 in sigma units.

NSIG TCTH5 float Opening of the horizontal tertiary collimator in IR5 in sigma units.

NSIG TCTH8 float Opening of the horizontal tertiary collimator in IR8 in sigma units.

NSIG TCTV1 float Opening of the vertical tertiary collimator in IR1 in sigma units.

NSIG TCTV2 float Opening of the vertical tertiary collimator in IR2 in sigma units.

NSIG TCTV5 float Opening of the vertical tertiary collimator in IR5 in sigma units.

NSIG TCTV8 float Opening of the vertical tertiary collimator in IR8 in sigma units.

NSIG TCXRP float Opening of the Roman Pots in sigma units5.

NSIG TCRYO float Opening of the collimators in the DS regions in sigma units.

(The table continues on the next page)

4One-sided collimators (only positive x)
5One-sided collimators (only positive x)

78

6.12 Collimation

Ln Keyword Type Description

6 N SLICES float Surface model of the jaw: number of slices in which each jaw
should be cut.

SMIN SLICES float Surface model of the jaw: s position for the start of the slicing.

SMAX SLICES float Surface model of the jaw: s position for the end of the slicing.

RECENTER1 float Surface model of the jaw: moving the 1st jaw to the new smallest
opening.

RECENTER2 float Surface model of the jaw: moving the 2nd jaw to the new smallest
opening.

7 FIT1 1 float Surface model of the jaw: Polynomial fit 0th order for the 1st jaw.

FIT1 2 float Surface model of the jaw: Polynomial fit 1st order for the 1st jaw.

FIT1 3 float Surface model of the jaw: Polynomial fit 2nd order for the 1st jaw.

FIT1 4 float Surface model of the jaw: Polynomial fit 3rd order for the 1st jaw.

FIT1 5 float Surface model of the jaw: Polynomial fit 4th order for the 1st jaw.

FIT1 6 float Surface model of the jaw: Polynomial fit 5th order for the 1st jaw.

SSF1 float Surface model of the jaw: Polynomial fit scaling for the 1st jaw.

8 FIT2 1 float Surface model of the jaw: Polynomial fit 0th order for the 2nd jaw.

FIT2 2 float Surface model of the jaw: Polynomial fit 1st order for the 2nd jaw.

FIT2 3 float Surface model of the jaw: Polynomial fit 2nd order for the 2nd jaw.

FIT2 4 float Surface model of the jaw: Polynomial fit 3rd order for the 2nd jaw.

FIT2 5 float Surface model of the jaw: Polynomial fit 4th order for the 2nd jaw.

FIT2 6 float Surface model of the jaw: Polynomial fit 5th order for the 2nd jaw.

SSF2 float Surface model of the jaw: Polynomial fit scaling for the 2nd jaw.

9 DISTEMITX0 float Normalised emittance in the horizontal plane for distribution.

DISTEMITY0 float Normalised emittance in the vertical plane for distribution.

COLGAPEMITX0 float Normalised emittance in the horizontal plane for collimator gaps.

COLGAPEMITY0 float Normalised emittance in the vertical plane for collimator gaps.

10 DO SELECT logical Does dedicated study of selected collimator, see NAME SEL.

DO NOMINAL logical Switches on/off the use of design β values of collimators.

RND SEED integer Seed studied. If set to 0, seed will be selected from system clock for
every run.

DOWRITE DIST logical Saves the initial distribution to be tracked.

NAME SEL char Name as in the fort.2 file of the collimator one wants a dedicated
study.

DO ONESIDE logical Switches on/off all TCPs being one-sided. Only positive jaw. If the
negative jaw is to be used, it is necessary to turn collimator by 180
degrees in the collimator database file
CollDB V6.500 [type] st.[beam].data.

DOWRT IMPACT logical Saves the impact parameters for each collimator.

DOWRT SECOND logical Writes a secondary halo file based on normalised amplitude.

DOWRT AMPL logical Writes checking files for amplitude, closed orbit.

DOWRT EFFIC logical Writes the efficiency files.

11 XBEAT float Offset in x for the computation of collimator in case of
beta-beating.

XBEATPHASE float Phase offset in x for the computation of collimator in case of
beta-beating.

(The table continues on the next page)

79

Chapter 6: Special Elements

Ln Keyword Type Description

YBEAT float Offset in y for the computation of collimator in case of
beta-beating.

YBEATPHASE float Phase offset in y for the computation of collimator in case of
beta-beating.

12 RMSTILT PRIM float RMS value of tilt to apply to primary collimators.

RMSTILT SEC float RMS value of tilt to apply to secondary collimators.

SYSTILT PRIM float Systematic value of tilt to apply to primary collimators.

SYSTILT SEC float Systematic value of tilt to apply to secondary collimators.

RMSOFFS PRIM float RMS value of offset to apply to primary collimators.

RMSOFFS SEC float RMS value of offset to apply to secondary collimators.

SYSOFFS PRIM float Systematic value of offset to apply to primary collimators.

SYSOFFS SEC float Systematic value of offset to apply to secondary collimators.

OFFTILT SEED float Random number seed to be used for the simulation.

RMSERROR GAP float RMS error of collimator gap.

DO MINGAP logical If TRUE the particle distribution is generated at the collimator
with the smallest gap (to be used with sheet/pencil beam).

13 RADIAL logical Switches on/off the radial distribution.

NR float Size of the beam to be tracked in number of radial sigmas.

NDR float Smear of the beam to be tracked in number of radial sigmas.

14 DRIFTSX float Apply an emittance drift in the x direction.

DRIFTSY float Apply an emittance drift in the y direction.

CUT INPUT logical This value is no longer used, and is ignored.

SYSTILT ANTI logical Deduce SYSTILT to RMSTILT instead of adding.

15 IPENCIL integer Resets original distribution to pencil beam distribution on selected
collimator.

PENC OFFSET float Size in sigma units of the desired impact parameter.

PENC RMSX float See table below.

PENC RMSY float See table below.

PENC DISTR integer See table below.

16 COLL DB char Name of the collimator database.

IBEAM integer This value is no longer used, and is ignored.

17 DOWRITETRACKS logical Writes secondary/tertiary halo files.

CERN logical This value is no longer used, and is ignored.

CASTORDIR char This value is no longer used, and is ignored.

JOBNUMBER integer This value is no longer used, and is ignored.

SIGSECUT2 float Cut in square sigmas x/y for saving particles (e.g. 64 for a cut at 8
σx/σy).

SIGSECUT3 float Cut in square sigmas radial for saving particles (e.g. 90.25 for a cut
at 9.5 σr).

6.13 Fringe Fields

Note: This module is experimental, and not yet ready for production.
This method allows for the usage of a longitudinal description of the quadrupole magnetic field,

adapted for each magnet specifically selected for the study, without changing the reference optics of

80

6.13 Fringe Fields

SixTrack [49, 50, 51]. This Fringe Field module is controlled by the FFIE block.

Keyword FFIE

Data lines Variable, see below.

Format This module uses a keyword, value format. See below.

Select Quadrupole FFQN quadname in ex

The FFQN flag selects which quadrupole (name) has a longitudinal description in additional files
that will be loaded in the study and link it to the type of Fringe Field that will be used (additional
file).

quadname char Name of quadrupole. Must be the same as in the list of single elements.

in integer Index of the fringe field to use at the beginning of the quadrupole.

ex integer Index of the fringe field to use at the end of the quadrupole.

Select Skipped Multipole FFMS multname

The FFMS flag specify the name of the multipole to skip in the tracking, in order to not increase
the integrated non-linearities if multipole kicks are already added for the quadrupole in the lattice.

multname char Name of multipole that will be skipped in the main lattice. Must be
the same as in the list of single elements.

Profile Files FFFI file length quad length tot [aperture]

The FFFI flag is followed by the files where the different Fringe Field vector potential values are
saved. The fringe field vector potential profile is saved using the format shown in Table 6.15.

file char Name of the fringe field profile file. See next table for proper formatting.

length quad float Length inside the quadrupole, i.e. integrated length of the equivalent
quadrupole for this file.

length tot float Total length of integration inside the file.

aperture float The physical aperture of the quadrupole, or the maximum apeture at
which you trust the representation of the Vector Potential. This pa-
rameter is optional. By defualt it is fixed as 0.080m.

Table 6.15: Input parameter in the Fringe Field profile files.

Arg. Unit Description

z m Longitudinal position of the kick.

i – Exponent of x in the Horner polynomial representation of the vec-
tor potential.

j – Exponent of y in the Horner polynomial representation of the vec-
tor potential.

k – Exponent of z in the Horner polynomial representation of the vec-
tor potential. Always 0 in case of magnetic quadrupole.

Ax m−(1+i+j) Coefficient of the Horner polynomial of the vector potential for
the axis x.

81

Chapter 6: Special Elements

Ay m−(1+i+j) Coefficient of the Horner polynomial of the vector potential for
the axis y.

Az m−(1+i+j) Coefficient of the Horner polynomial of the vector potential for
the axis z.

82

Chapter 7

External Tools

SixTrack supports interfacing with external libraries and simulation tools. This chapter describes how
to use these tools with SixTrack.

7.1 Pythia Integration

Note: This module should be considered experimental. It is not yet fully tested for correct physics.
Pythia8 is “a standard tool for the generation of high-energy collisions, comprising a coherent set

of physics models for the evolution from a few-body hard process to a complex multihadronic final
state” [45]. Version 8 is rewritten in c++ as a library, which makes it suitable for direct integration
into SixTrack 5 via the update and extended c-interface available in Fortran2008. The integration
was made specifically for the Scatter module to function as an event generator for single diffractive
scattering.

The Pythia8 library is built using the buildLibraries.sh script, and linking with SixTrack is
provided with the PYTHIA compiler flag. When the PYTHIA block is present in fort.3, a new generator
becomes available to the Scatter module.

Note that the proton mass used by PYTHIA may not be the same as the proton mass in SixTrack.
This may cause differences in the energy to momentum conversion. The mass from PYTHIA is printed
to stdout during execution, and can also be found in the scatter summary.dat file.

Particle Species SPECIES beam1 beam2

Set the particle species for Beam 1 and Beam 2 (or the target, if not a beam). These are the species
used for the PYTHIA event generator, and in principle can be anything that PYTHIA supports, even
if SixTrack cannot track it.

Supported particle species are: PROTON, ANTIPROTON, NEUTRON, ANTINEUTRON, PION+, PION-, PION0,
PHOTON, ELECTRON, POSITRON, MUON-, and MUON+.

Beam Energy ENERGY beam1 [beam2]

The energy of the beams in MeV. If only Beam 1 is specified, the value is taken as the centre of
mass energy by PYTHIA.

Use Tracked Particles REALBEAM on|off

By default, PYTHIA generates events for head on collisions at reference energy. The event is
then projected back onto the tracked particle in SixTrack. If, instead, you want to send the actual
tracked particle to SixTrack, together with a sample particle generated from a beam distribution, set
the REALBEAM flag to “on”.

83

Chapter 7: External Tools

Process Selection PROCESS type [crossSection]

The scattering process for the event generator can be set with this keyword. One process for each
line. If the MODES are set to MANUAL, the cross sections can be specified as a second argument.

Available process types are:

• Elastic: EL, ELASTIC

• Single diffractive: SD, SINGLEDIFF,SINGLEDIFFRACTIVE

• Double diffractive: DD, DOUBLEDIFF,DOUBLEDIFFRACTIVE

• Central diffractive: CD, CENTRALDIFF,CENTRALDIFFRACTIVE

• Non-diffractive: ND, NONDIFF,NONDIFFRACTIVE

Coulomb COULOMB on|off [tmin]

Enable or disable the Coulomb part of the elastic scattering generator. A tmin is required, but if
it is not provided here, it defaults to 5× 10−5.

Total Cross Section SIGTOTAL crossSection

The total cross section can be provided in units of millibarn. This is only relevant when the MODES

are set to MANUAL. The total cross section is then sent to PYTHIA with the cross sections provided
with the PROCESS settings.

Total Cross Section Mode SIGTOTALMODE mode

Set the total cross section mode for PYTHIA. The options are: MANUAL, DL, MBR, ABMST, and
RPP2016. Alternatively, an integer value can be provided. For a description of these options, and their
integer equivalents, please consult the PYTHIA manual [45].

Diffractive Cross Section Mode SIGDIFFMODE mode

Set the diffractive cross section mode for PYTHIA. The options are: MANUAL, SAS, MBR, and ABMST.
Alternatively, an integer value can be provided. For a description of these options, and their integer
equivalents, please consult the PYTHIA manual [45].

Random Seed SEED value

The random number seed to send to the PYTHIA library. This has no relation to the internal
SixTrack random seeds.

Settings File FILE fileName

If the PYTHIA block does not provide sufficient settings, a PYTHIA settings file can be set instead
using this command.

84

7.1 Pythia Integration

Example

PYTHIA--

SPECIES PROTON PROTON

ENERGY 7000000 7000000

SEED 41

PROCESS ELASTIC

PROCESS SINGLEDIFFRACTIVE

NEXT

SCATTER---

GEN sc_elastic PPBEAMELASTIC 0.046 18.52 4.601 2.647 0.2 8.0

GEN sc_pythia PYTHIA 27.0

PRO ipFLAT FLAT 3e25 938.0 7000000

ELEM ip1_scatter ipFLAT auto 1.0 sc_elastic

ELEM ip5_scatter ipFLAT auto 1.0 sc_pythia

NEXT

85

Chapter 7: External Tools

86

Chapter 8

Organising Tasks

In this chapter, the input data blocks used to organise the input structure are described.

8.1 Random Fluctuation Starting Number

If besides mean values for the multipole errors (Gaussian) random errors should be considered, this
input data structure is used to set the start value for the random generator.

Keyword FLUC

Data lines 1

Format izu0 mmac mout mcut (integers)

Format Description

izu0 Start value for the random number generator

mmac Support for multiple starting seeds has been removed. This value must be 1.

mout A binary switch for various purposes, so all options, as described below, can be
combined.
mout = 0 : multipole errors internally created

mout = 1 : multipole errors read-in from external file

External multipole errors are read-in from file 16 into the array of random values.
To activate these values one has to set to a value of 1 the relevant r.m.s.-positions
of the corresponding multipole blocks (6.1). The systematic components are added
as usual and multipoles not found in the fort.16 are treated as for (mout = 0).
An error is only detected if there are too few sets of multipoles in fort.16.

mout = 2: the geometry and strength file is written to file fort.4 in the same for-
mat as the input file fort.2; the multipole coefficients are written to file fort.9;
name, misalignments and tilt is written to file fort.27 and finally name, random
single multipole strength and both random transverse misalignments are written
to file fort.31.
mout = 4: Name, horizontal and vertical misalignment and also the element tilt
are read-in from file fort.8.
mout = 8: Name and 3 Random numbers for single kick strength and both ran-
dom transverse misalignments and also the value of the tilt are read-in from file
fort.30.

mcut The random distribution can be cut by mcut sigma of the distribution. No cuts
are applied for mcut = 0.

87

Chapter 8: Organising Tasks

Remarks

1. The RANECU random generator [26] is used as it produces machine independent sequences of
random numbers.

2. If the starting point has to be changed or another non-linear element is to be inserted, this can be
done without changing the once chosen random distribution of errors by using the Organisation
of Random Numbers input block.

3. The description of an accelerator is fully contained in 4 files: fort.2 (geometry), fort.3 (track-
ing parameters and definition of multipole blocks), fort.16 (multipole errors) and fort.30

(random numbers of the single multipole kick, the horizontal and vertical misalignment and the
value of the tilt). This block allows to write out the files fort.4, fort.9, fort.27, fort.31
which may serve as the input files fort.2, fort.16, fort.8 and fort.30 respectively. The file
fort.30 supersedes fort.8 if both files are read in.

8.2 Organisation of Random Numbers

Working on a lattice for an accelerator often requires to introduce new non-linear elements. In those
cases simply introducing this new element means that the previously chosen random distribution of
the errors will be changed and with it often the linear parameters. This input data block is mainly
used to avoid this problem by reserving extra random numbers for the new elements. It also allows to
change the observation point without affecting the machine. The random values of different nonlinear
elements including blocks of multipoles can be set to be equal to allow to vary the number of nonlinear
kicks in one magnet which clearly should have the same random distribution for each multipolar kick.
Finally, multipole sets with different name can be made equal with this input data block.

Keyword ORGA

Data lines Variable

Format ele1 ele2 ele3

The data lines can be set in three different ways described below.

Method 1 Ele1 = “name” where name 6= MULT

Ele2 = ignored

Ele3 = ignored

The nonlinear element or multipole set will have its own set of random numbers.

Method 2 Ele1 = “name1” where name1 6= MULT

Ele2 = “name2”

Ele3 = ignored

The nonlinear element or multipole block Ele1 has the same random number set
as those of Ele2, if it follows Ele2 as the first non-linear element in the structure
list (5.2.1).

Method 3 Ele1 = MULT

Ele2 = “name2”

Ele3 = “name3”

The multipole set “name3” is set to the values of the set “name2”. random errors
are not influenced in this case.

Remarks

88

8.3 Combination of Elements

1. A simple change of the starting point, by placing a GO somewhere in structure, used to change the
machine optics as the random numbers were shifted, too. Simply calling this block even without
a data line, will always fix the sequence of random numbers to start at the first multipole in the
structure.

2. This input data block must follow the definition of the multipole block, otherwise multipoles
cannot be set equal (option 3).

3. Do not use the keyword MULT in the single element list (5.1).

8.3 Combination of Elements

It is often necessary to use several families of magnetic elements with a certain ratio R of magnetic
strength to perform corrections like tune adjustment (9.2), chromaticity correction (9.3) or resonance
compensation (9.8). The Combination of Elements input block allows such a combination of elements.
The maximum number of elements is defined by the parameter NCOM (see Appendix A.2).

Keyword COMB

Data lines Variable

Format e0 R1 e1 ... Rn en

Format Description

e0 Reference element which appears in the input of the processing procedure

e1, ..., en Elements to be combined with e0

Rj Ratio of the magnetic strength of element ej to that of element e0

89

Chapter 8: Organising Tasks

90

Chapter 9

Processing

This chapter comprises all the input blocks that do some kind of pre- or post-processing.

9.1 Linear Optics Calculation

The linear optics calculation input block is used to make a print-out of all linear parameters (magnet
lengths, β and α functions, tunes, dispersion and closed orbit) in the horizontal and vertical planes at
the end of each element or linear block. The number of elements or blocks can be chosen.

Keyword LINE

Data lines ≥ 1

Format First line: mode num blocks ilin ntco E I E II

Other lines: name(1), ..., name(nlin)

Format Description

mode char ELEMENT for a printout after each single element (5.1).

BLOCK for a printout after each structure block (5.2).

num blocks integer The number of the blocks in the structure to which the linear parameter
will be printed. If this number is set to zero or is larger than the number
of blocks, the complete structure will be calculated.

ilin integer Logical switch to calculate the traditional linear optics calculation in
4D (1 = ilin) and with the DA approach 6D (2 = ilin).

ntco integer A switch to write out linear coupling parameters.

ntco = 0: no write-out.

ntco 6= 0: write-out of all linear coupled (4D) parameters including
the coupling angle. These parameters (name, longitudinal position, the
phase advances at that location, 4 β-, α- and γ-functions, 4 angles for
coordinates and momenta respectively, plus the coupling angle [rad])
are written in ascii format on file linopt coupled.dat. This write-out
happens every ntco turns.

E I, E II floats The two eigen-emittances to be chosen to determine the coupling angle.
They are typically set to be equal.

names char For nlin ≤ nele element and block names the linear parameters are
printed whenever they appear in the accelerator structure.

Remarks

91

Chapter 9: Processing

• To make this block work the Tracking Parameter block (4.2) has to used as well.

• When the ELEMENT 0 option is used, a file linopt dump.dat is written with the longitudinal
position, name, element type, multipole strength, β functions and phase advances in the hori-
zontal and vertical phase space respectively. This file is used as input for the SODD program [22]
to calculate de-tuning and distortion terms in first and second order. A full program suite can
be found at: /afs/cern.ch/group/si/slap/share/sodd

• If the BLOCK option has been used, the tunes may be wrong by a multiple of 1/2. This option is
not active in the DA part (2 = ilin), which also ignores the (NTCO) option.

9.2 Tune Variation

This input block initializes a tune adjustment with zero length quadrupoles. This is normally done
with two families of focusing and defocusing quadrupoles. It may be necessary, however, to have a
fixed phase advance between certain positions in the machine. This can be done with this block by
splitting the corresponding family into two sub-families which then are adjusted to give the desired
phase advance.

Keyword TUNE

Data lines 2 or 4

Format Line 1: name1 Qx iqmod6

Line 2: name2 Qy

Line 3 (optional): name3 ∆Q

Line 4 (optional): name4 name5

Format Description

name1, name2 char Names of focusing and defocusing quadrupole families respectively
(in the single element list (5.1.1).

Qx, Qy floats Horizontal and vertical tune including the integer part.

iqmod6 integer Switch to calculate the tunes in the traditional manner (1 =

iqmod6) and with the DA approach including the beam-beam kick
(2 = iqmod6). FixMe: This is out of date and does not match the
source code.

name3 char Name of the second sub-family, where the first sub-family is one of
the above (name1 or name2). This second sub-family replaces the
elements of the first sub-family between the positions marked by
name4 and name5.

∆Q float Extra phase advance including the integer part (horizontal or ver-
tical depending on the first sub-family) between the positions in
the machine marked by name4 and name5.

name4, name5 char Two markers in the machine for the phase advance ∆Q with the
elements of the second sub-family between them

Remarks

The integer has to be included as the full phase advance around the machine is calculated by the
program.

92

9.4 Orbit Correction

9.3 Chromaticity Correction

The chromaticity can be adjusted to desired values with two sextupole family using this input block.

Keyword CHRO

Data lines 2

Format Line 1: name1 Q′x ichrom

Line 2: name2 Q′y

Format Description

name1, name2 char Names (in the single element list (5.1.2) of the two sextupole fam-
ilies.

Q′ float Desired values of the chromaticity: Q′ = δQ

δ(∆p
po

)
.

ichrom integer Logical switch to calculate the traditional chromaticity calculation
(1) and with the DA approach including the beam-beam kick (2).
Setting this flag to 3 switches on both.

Remarks

To make the chromaticity correction work well a small momentum spread is required (DE0 in table
(3.1)). It sometimes is required to optimize this spread.

9.4 Orbit Correction

Due to dipole errors in a real accelerator, a closed orbit different from the beam axis is unavoidable.
Even after careful adjustment, one always will be left over with some random deviation of the closed
orbit around the zero position. A closed orbit is introduced by non-zero strengths of b1 and a1

components of the multipole block (6.1), horizontal and vertical dipole kicks (5.1.2), or displacements of
non-linear elements (5.2.2). This input data block allows the correction of a such a random distributed
closed orbit using he first two types in a “most effective corrector strategy” [27]. For that purpose,
correctors have to be denoted by HCOR and VCOR, and monitors by HMON and VMON for the horizontal
and vertical plane respectively. After correction, the orbit is scaled to the desired r.m.s. values, unless
they are zero.

The horizontal orbit displacement, measured at the horizontal monitors, will be written to fort.28

– together with the monitor number, in fort.29. The same is done for the vertical closed orbit
displacement.

Keyword ORBI

Data lines ≥ 1

Format First line: sigmax sigmay ncorru ncorrep

Other lines: HCOR namec, HMON namem, VCOR namec or VMON namem.

Format Description

sigmax, sigmay Desired r.m.s.-values of the randomly distributed closed orbit.

ncorru Number of correctors to be used.

ncorrep Number of corrections.

93

Chapter 9: Processing

If ncorrep=0, the correction is iterated until ITCO iterations or after the
both desired r.m.s.-values have been reached (see table 3.1).

HCOR=namec Horizontal correction element of name namec.

HMON=namem Horizontal monitor for the closed orbit of name namem.

VCOR=namec Vertical correction element of name namec.

VMON=namem Vertical monitor for the closed orbit of name namem.

Remarks

• Elements can have only one extra functionality: either horizontal corrector, horizontal monitor,
vertical corrector or vertical monitor. If the number of monitors in a plane is smaller than the
number of correctors it is likely to encounter numerical problems.

• The HCOR, HMON, VCOR, and VMON must be separated from the following name by at least one
space.

9.5 Decoupling of Motion in the Transverse Planes

Skew quadrupole components in the lattice create a linear coupling between the transverse planes
of motion. A decoupling can be achieved with this block using four independent families of skew-
quadrupoles, which cancel the off-diagonal parts of the transfer map. As these skew quadrupoles also
influence the tunes an adjustment of the tunes is performed at the same time.

Keyword DECO

Data lines 3

Format Line 1: name1,name2,name3,name4

Line 2: name5 Qx

Line 3: name6 Qy

Format Description

name1,2,3,4 char Names of the four skew quadrupole families.

name5,6 char Names of focusing and defocusing quadrupole families respectively (in
the single element list (5.1.1).

Qx, Qy floats Horizontal and vertical tune including the integer part.

Remarks

A decoupling can also be achieved by compensating skew-resonances (9.8). The two approaches,
however, are not always equivalent. In the resonance approach the zeroth harmonic is compensated,
whilst a decoupling also takes into account the higher order terms.

9.6 Sub-Resonance Calculation

First order resonance widths of multipoles from second to ninth order are calculated following the
approach of Guignard [10]. This includes resonances, which are a multiple of two lower than the order
of the multipole. The first order detuning including feed-down from closed orbit is calculated from all
multipoles up to to tenth order.

Keyword SUBR

Data lines 1

Format n1 n2 Qx Qy Ax Ay Ip length

94

9.8 Resonance Compensation

Format Description

n1, n2 integers Lowest and highest order of the resonance.

Qx, Qy floats Horizontal and vertical tune including the integer part.

Ax, Ay floats Horizontal and vertical amplitudes in mm.

Ip integer Is a switch to change the nearest distance to the resonance
e = nxQx+ nyQy. In cases of structure resonances a change of p by
one unit may be useful.

ip = 0: e is unchanged.

ip = 1: (e± 1) = nxQx+ nyQy − (p± 1).

length float Length of the accelerator in meters

9.7 Search for Optimum Places to Compensate Resonances

To be able to compensate a specific resonance, one has to know how a correcting multipole affects the
cosine and sine like terms of the resonance width at a given position in the ring. This input data block
can be used to find best places for the compensation of up to three different resonances, by calculating
the contribution to the resonance width for a variable number of positions. For each position, the
effect of a fixed and small change of magnetic strength on those resonance widths is tested.

Keyword SEAR

Data lines ≥ 2

Format Line 1: Qx Qy Ax Ay length

Line 2: npos n ny1 ny2 ny3 ip1 ip2 ip3

Other lines: name1, ..., namen

Format Description

Qx, Qy floats Horizontal and vertical tune including the integer part.

Ax, Ay floats Horizontal and vertical amplitudes in mm.

length float Length of the accelerator in m.

npos integer Number of positions to be checked.

n integer Order of the resonance.

ny1,ny2,ny3 integers Define three resonances of order n via:

nxQx+ nyQy = p with |nx|+ |ny| = n.

ip1,ip2,ip3 integers The distance to a resonance is changed by an integer ip for each
of the three resonances:

e = nxQx+ nyQy − (p+ ip).

namei char The i-th name of a multipole of order n, which has to appear in
the single element list (5.1.2).

9.8 Resonance Compensation

The input block allows the compensation of up to three different resonances of order n simultaneously.
The chromaticity and the tunes can be adjusted. For mostly academic interest, there is also the
possibility to consider sub-resonances, which come from multipoles, which are a multiple of 2 larger

95

Chapter 9: Processing

than the resonance order n. However, it must be stated that the sub-resonances depend differently on
the amplitude compared to resonances where the order of the resonances is the same as that of the
multipoles.

Keyword RESO

Data lines 6

Format Line 1: nr n ny1 ny2 ny3 ip1 ip2 ip3

Line 2: nrs ns1 ns2 ns3

Line 3: length Qx Qy Ax Ay

Line 4: name1, ..., name6

Line 5: nch name7 name8

Line 6: nq name9 name10 Qx0 Qy0

Format Description

nr integer Number of resonances (0 to 3).

n integer Order of the resonance, which is limited to
nrco= 5 (see list of parameters in Appendix A.2).
normal: 3 ≤ n ≤ nrco; skew: 2 ≤ n ≤ nrco.

ny1,ny2,ny3 integers Define three resonances of order n via: nxQx+ nyQy = p with
|nx|+ |ny| = n.

ip1,ip2,ip3 integers The distance to the resonance e can be changed by an integer
value: e = nxQx+ nyQy − (p+ ip).

nrs integer Number of sub-resonances (0 to 3).

ns1,ns2,ns3 integers Order of the multipole with ns ≤ 9 and (ns− n)/2 ∈ N.

length float Length of the machine in meters.

Qx, Qy floats Horizontal and vertical tune including the integer part.

Ax, Ay floats Horizontal and vertical amplitudes in mm.

name1-6 char Names (5.1.2) of the correction multipoles for the first, second and
third resonance.

nch integer Switch for the chromaticity correction (0 = off, 1 = on).

name7,8 char Names (5.1.2) of the families of sextupoles to correct the chro-
maticity.

nq integer Switch for the tune adjustment (0 = off, 1 = on).

name9,10 char Names (5.1.1) of the families of quadrupoles to adjust the tune.

Qx0, Qy0 floats Desired tune values including the integer part.

9.9 Differential Algebra

This input block initiates the calculation of a one turn map using the LBL Differential Algebra
package [1]. The use of this block inhibits post-processing. The same differential algebra tools allow
a subsequent normal form analysis (see [18]). A four-dimensional version integrated in SixTrack is
available as described in sections 9.10 and 9.11.

96

9.10 Normal Forms

Keyword DIFF

Data lines 1 or 2

Format Line 1: nord nvar preda nsix ncor

Line 2: name(1),...,name(ncor)

Format Description

nord integer Order of the map.

nvar integer Number of the variables (2 to 6).

nvar = 2,4,6: two- and four-dimensional transverse motion and full
six-dimensional phase space respectively.

nvar = 5: four-dimensional transverse motion plus the relative momen-
tum deviation ∆p

po
as a parameter.

preda float Precision needed by the DA package, usually set to preda= 1e-38.

nsix integer Switch to calculate a 5× 6 instead of a 6× 6 map. This saves compu-
tational time and memory space, as the machine can be treated up to
the cavity as five-dimensional (constant momentum).

nsix = 0: 6× 6 map.

nsix = 1: 5× 6 map.

(nvar must be set to 6; 6D closed orbit must not be calculated, i.e.
iclo6 = 0 (4.3) and the map calculation is stopped once a cavity has
been reached and being evaluated.)

ncor integer Number of zero-length elements to be additional parameters besides
the transverse and/or longitudinal coordinates (i.e. two-, four-, five- or
six-dimensional phase space).

name(i) char Ncor names (5.1.2) of zero-length elements (e.g dipole kicks, quadrupole
kicks, sextupoles kicks etc.)

Remarks

• For nsix = 1, the map can only be calculated till a cavity is reached.

• If the 6D closed orbit is calculated, the 5× 6 map cannot be done. nsix is therefore forced to 0.

• If nvar is set to 5, the momentum dependence is determined without the need for including a
fake cavity. With other words: the linear blocks are automatically broken up into single linear
elements so that the momentum dependence can be calculated.

• If a DA map is needed at some longitudinal location, one just has to introduce an element
denoted DAMAP at that place in the structure, DAMAP has also to appear as a marker (zero length,
element type = 0) in the single element list (5.1.2). This extra map is written to file fort.17.

9.10 Normal Forms

All the parameters to compute the Normal Form of a truncated one turn map are given in the Normal
Form input block. Details on these procedures including the next block 9.11 can be found in reference
[28].

97

Chapter 9: Processing

Keyword NORM

Data lines 1

Format nord nvar

Format Description

nord integer Order of the Normal Form.

nvar integer Number of variables.

Remarks

• The Normal Form input block has to be used in conjunction with the Differential Algebra input
block that computes the one turn map of the accelerator.

• The value of the parameter nord should not exceed the order specified for the transfer map plus
one.

• The value of the parameter nvar should be equal to the number of coordinates used to compute
the map plus eventually the number of correctors specified in the Differential Algebra input
block.

• the value 1 for the off-momentum order is forbidden. This case corresponds to the linear chro-
maticity correction. It is in fact corrected by default when par1 = 1 or par2 = 2.

9.11 Corrections

Note: The CORR block is deprecated as of SixTrack 5.0-RC3.

9.12 Post-Processing

It has been seen in the past that the tracking data hold a large amount of information which should
be extracted for a thorough understanding of the nonlinear motion. It is therefore necessary to store
the tracking data turn by turn and post-process it after the tracking has been finished. The following
quantities are calculated:

1. Lyapunov exponent analysis: This allows to decide if the motion is of regular or chaotic
nature, and, in the latter case, that the particle will ultimately be lost. This is done with the
following procedure:

(a) Start the analysis where the distance in phase space of the two particles reaches its mini-
mum.

(b) Study the increase in a double logarithmic scale so that the slope in a regular case is always
one, while a exponential increase stays exponential when we have chaos.

(c) Average the distance in phase space to reduce local fluctuations, as we are interested in a
long range effect.

(d) Make a weighted linear fit with an increasing number of averaged values of distance in
phase space, so that an exponential increase results in a slope that is larger than one and
is increasing. (The weighting stresses the importance of values at large turn numbers).

2. Analysis of the tunes: This is done either by the averaged phase advance method leading to
very precise values of the horizontal and vertical tunes. An FFT analysis is also done. With
the second method, one can evaluate the relative strength of resonances rather than achieve a
precise tune measurement. In both cases, the nearby resonances are determined.

98

9.12 Post-Processing

3. Smear: The smear of the horizontal and vertical emittances, and the sum of the emittances,
are calculated in case of linearly coupled and un-coupled motion.

4. Nonlinear Invariants: A rough estimate of the nonlinear invariants are given.

5. Plotting: The processed tracking data can be plotted in different ways:

(a) The distance of phase space as a function of amplitude.

(b) Phase space plots.

(c) Stroboscoped phase space.

(d) FFT amplitudes.

6. Summary: The post-processing results for a complete tracking session with varying initial
parameters are summarised in a table at the end of the run.

Keyword POST

Data lines 4

Format Line 1: comment title

Line 2: iav nstart nstop iwg dphix dphiy iskip iconv imad cma1 cma2

(general parameters)

Line 3: Qx0 Qy0 ivox ivoy ires dres ifh dfft

(parameters for the tune calculation)

Line 4: kwtype itf icr idis icow istw iffw nprint ndafi

(integer parameters for the plotting)

Format Description

iav integer Averaging interval of the values of the distance in phase space.
Typically a tenth of the total turn number should be used as this
interval.

nstart,nstop integers Start and stop turn number for the analysis of the post-processing
(0 0 = all data used).

iwg integer Switch for the weighting of the slope calculation of the distance in
phase space (0 = off, 1 = on).

dphix,dphiy floats Horizontal and vertical angle interval in radians that is used to
stroboscope phase space. This stroboscoping of one of the two
phase space projections is done by restricting the angle in the
other phase space respectively to lie inside ± dphix or ± dphiy.

iskip integer This parameter allows to reduce the number of data to be pro-
cessed: only each iskip sample of data will be used.

iconv integer If iconv is set to 1, the tracking data are not normalised linearly.
Sometimes it is necessary to compare normalised to unnormalised
data as the later will be found in the real machine.

imad integer This parameters is useful when Mad-X data shall be analysed
(imad set to one).

cma1,cma2 floats To improve the Lyapunov analysis for Mad-X data, and in the case
that the motion is 6D but the 6D closed orbit is not calculated the
off-momentum and the path-length difference (σ = s− vo × t) can
be scaled with cma1 and cma2 respectively (see also 4.4). Please
set both to 1. when the 6D closed orbit is calculated.

99

Chapter 9: Processing

Qx0, Qy0 floats Values of the horizontal and vertical tune respectively (integer
part) to be added to the averaged phase advance and to the Q
values of the FFT analysis.

ivox, ivoy integers The tunes from the average phase advance are difficult to be cal-
culated when this phase advance is strongly changing from turn
to turn and when the tune is close to 0.5, as then the phase may
become negative leading to a deviation of one unit. This problem
can partly be overcome by setting these switches in the following
way:

tune close to an integer: ivox, ivoy = 1.

tune close to half an integer: ivox, ivoy = 0.

ires, dres int,float For the calculated tune values from the average phase advance
method and the FFT-routine the closest resonances are searched
up to ires’th order and inside a maximum distance to the reso-
nance dres, so that nxQx+ nyQy < dres and nx+ ny ≤ ires.

ifh, dfft int,float For the FFT analysis, the tune interval can be chosen with ifh. To
find resonances with the FFT spectrum, all peaks below a fraction
dfft of the maximum peak are accepted.

ifh = 0: 0 ≤ Q ≤ 1.

ifh = 1: 0 ≤ Q ≤ 0.5.

ifh = 2: 0.5 ≤ Q ≤ 1.

kwtype integer Disabled, set to 0.

Terminal type, e.g. 7878 for the Pericom graphic terminals. For
details, consult the HPLOT manual [8].

itf integer Switch to get PS file of plots:

itf = 0: off

itf = 1: on

icr integer Disabled, set to 0

Switch to stop after each plot (0 = no stop, 1 = stop after each
plot).

idis, icow integers Switches (0 = off) to select the different plots. If all values are set

istw, iffw to zero, the HBOOK/HPLOT routine will not be called.

idis = 1: plot of distance in phase space.

icow = 1: a set of plots of projections of the six-dimensional phase
space and the energy E versus the turn number.

istw = 1: plot of the stroboscoped phase space projection by re-
stricting the phase in the other phase space projection.

iffw = 1: plots of the horizontal and vertical FFT spectrum with
linear amplitude scale.

iffw = 2: plots of the horizontal and vertical FFT spectrum with
logarithmic amplitude scale.

nprint integer Switch to stop the printing of the post-processing output to unit
6 (0 = printing off, 1 = printing on).

ndafi integer Number of particle pairs to be processed, starting from first pair.

Remarks

1. The post-processing can be done in two ways:

100

9.12 Post-Processing

(a) directly following a tracking run by adding this input block to the input blocks of the
tracking,

(b) as a later run where the tracking parameter file fort.3 consists of only the Program Version
input block 3.2 (using the FREE option) and of this input block specifying the post-processing
parameters followed by ENDE as usual.

2. The HBOOK/HPLOT routines are only used at the start of the main program for initialisation
and termination. The actual plots are done in the post-processing subroutine. The routines are
activated only if at least one of the plotting parameters (idis, icow, istw, iffw) is set to
one.

101

Chapter 9: Processing

102

Chapter 10

Extra Output Files

For some studies, extra output from the simulation is desired. How to do this is described below.

10.1 Dumping of Beam Population

The DUMP block allows the beam population (i.e. the position in phase-space for all the particles)
to be written to file. This can be done in any SINGLE ELEMENTS which are directly mentioned in
the STRUCTURE INPUT part of fort.2 (BLOCs cannot be used). The particles are dumped just after
the kick is applied, and how often to dump (every turn, every second turn, etc.) is user-selectable.
Please note that each single element can only be selected once; however it is possible to overcome this
limitation by placing multiple markers with different names in the same position in the sequence (by
editing fort.2).

Keyword DUMP

Data lines Variable, one for each element for which dump is active.

Format element name frequency unit format (filename) (first last)

or HIGH

or FRONT

Format Description

element name char One of the single elements, or ALL to dump at the exit of all sin-
gle elements, or StartDUMP to dump at the injection point. Note
that if ALL or StartDUMP is in use, these cannot be used as single
element names.

frequency integer How often the beam population should be dumped in number of
turns.

unit integer This value is ignored. Unit numbers are now assigned automati-
cally.

format integer A switch specifying the output format. See table (10.3).

filename char The name of the file to write to. The filename may be shared be-
tween different DUMP outputs, as long as they have the same format
and element name is not ALL. This argument may be omitted (un-
less first and last are present, if so, then filename must also be
present), and if so the output file is named dump element name.

first integer The first turn where this dump should be active. This argument
may be omitted if last is also omitted, and if so it defaults to
turn 1.

103

Chapter 10: Extra Output Files

last integer The last turn where this dump should be active, –1 meaning “untill
the end of the simulation”. This argument may be omitted if first
is also omitted, and if so it defaults to -1.

HIGH keyword If present anywhere in the DUMP block, this triggers high-precission
output, meaning more digits in the output files.

FRONT keyword If present anywhere in the DUMP block, this keyword triggers the
DUMPed particles to be dumped in front of the element, i.e. before
the kick. This works for all elements, including BLOCs, when com-
bined with the ALL as element name. Note that FRONT is not yet
supported for thick tracking, and trying to use this combination
will produce a run-time error.

Conventions

Table 10.2: The following table shows a summary of the quantities used in describing the output
format. The units are declared explicitly for each dump.

Name Variable Unit Symbol Description

x xv1(j) [mm] x horizontal position

y xv2(j) [mm] y vertical position

xp yv1(j) [1/1000] Px
P ≈ x

′ approximated horizontal angle

yp yv2(j) [1/1000]
Py

P ≈ y
′ approximated vertical angle

sigma sigmv(j) [mm] σ = s− β0ct longitudinal offset (sometimes called z)

psigma n/a [1] pσ = E−E0
β0P0c

canonical conjugate of σ

delta dpsv(j) [1] δ = P−P0
P0

canonical conjugate of σ

rv rvv(j) [1] rv = β0

β velocity ratio

rpp oidpsv(j) [1] rp = P0
P momentum ratio

zeta n/a [mm] ζ = σ/rv longitudinal offset conjugate with δ

mass nucm(j) [MeV/c2] m mass

mtc mtc(j) [1] q
q0
m0
m mass to charge ratio

P ejfv(j) [MeV/c] P momentum

E ejv(j) [MeV] E energy

E0 e0 [MeV] E0 reference energy

P0 e0f [MeV/c] P0 reference momentum

Table 10.3: The following formats, set by the format option, are accepted:

#/Pos Description

0 General format

Header No header.

Lines turn structure element idx single element idx single element name s

x[m] xp[rad] y[m] yp[rad] P[GeV/c] (E-E0)[eV] t[s]

(The table continues on the next page)

104

10.1 Dumping of Beam Population

#/Pos Description

1 Format for aperture check

Header # particleID turn s[m] x[mm] xp[mrad] y[mm] yp[mrad] (E-E0)/E0[1]

ktrack

Lines particleID turn s[m] x[mm] xp[mrad] y[mm] yp[mrad] (E-E0)/E0 ktrack

2 Modified format for aperture check

Header #1 (single element)

DUMP format #2, bez=bez(i), number of particles=napx, dump

period=ndumpt(i), first turn=dumpfirst(i), last turn=dumplast(i),

HIGH=T/F, FRONT=T/F

Header #1 (all elements)

DUMP format #2, ALL ELEMENTS, number of particles=napx, dump

period=ndumpt(i), first turn=dumpfirst(i), last turn=dumplast(i),

HIGH=T/F, FRONT=T/F

Here bez is the name of the SINGLE ELEMENT, and napx the number of particles
being tracked, ndumpt(i) the dump frequency as described above, and dumpfirst(i)
and dumplast(i) the first and last turn as descirbed below.

HIGH and FRONT is normally false, unless this (global) option is active, as described
below.

Header #2 # particleID turn s[m] x[mm] xp[mrad] y[mm] yp[mrad] sigma[mm]

(E-E0)/E0[1] ktrack

If there are multiple single elements attached to the file, the headers are repeated.

Lines As described in the header, one per particle and per turn.

3 Modified format for aperture check (Binary)

Header No header.

A number of Fortran records describing which elements are used and the current
dump period is added one per relevant line in the DUMP block.

Lines particleID turn s[m] x[mm] xp[mrad] y[mm] yp[mrad] sigma[mm]

(E-E0)/E0 ktrack

The Fortran code SixTest/readDump3/readDump3.f90 can be used to convert
these files into the Format 2 (sans headers).

4 Beam means

Header #1 Same as for Format 2.

Header #2 # napx turn s[m] <x>[mm] <xp>[mrad] <y>[mm] <yp>[mrad] <sigma>[mm]

<(E-E0)/E0>[1]

If there are multiple single elements attached to the file, the headers are repeated.

Lines As described in the header; one per turn.

5 Beam mean and sigma

Header #1 The same as for format 2.

Header #2 # napx turn s[m] <x>[mm] <xp>[mrad] <y>[mm] <yp>[mrad] <sigma>[mm]

<(E-E0)/E0>[1] <x^2> <x*xp> <x*y> <x*yp> <x*sigma> <x*(E-E0)/E0>

<xp^2> <xp*y> <xp*yp> <xp*sigma> <xp*(E-E0)/E0> <y^2> <y*yp>

<y*sigma> <y*(E-E0)/E0> <yp^2> <yp*sigma> <yp*(E-E0)/E0> <sigma^2>

<sigma*(E-E0)/E0> <((E-E0)/E0)^2>

(The table continues on the next page)

105

Chapter 10: Extra Output Files

#/Pos Description

If there are multiple single elements attached to the file, the headers are repeated.
A number of lines describing which elements are used and the current dump period
is added one per relevant line in DUMP block.

Lines As described in the header; one per turn. For the “product” quantities, the units
are the product of the units of the “normal” ones.

6 Beam mean and sigma (canonical)

Header #1 The same as for format 2.

Header #2 # napx turn s[m] <x>[m] <px>[1] <y>[m] <py>[m] <sigma>[m]

<psigma>[1] <x^2> <x*px> <x*y> <x*py> <x*sigma> <x*psigma> <px^2>

<px*y> <px*py> <px*sigma> <px*psigma> <y^2> <y*py> <y*sigma>

<y*psigma> <py^2> <py*sigma> <py*psigma> <sigma^2> <sigma*psigma>

<psigma^2>

If there are multiple single elements attached to the file, the headers are repeated.
A number of lines describing which elements are used and the current dump period
is added one per relevant line in DUMP block.

Lines As described in the header; one per turn. For the “product” quantities, the units
are the product of the units of the “normal” ones. Note that pσ = ∆E/ (β0P0c).
For more details, see the physics manual [16].

7 Normalized coordinates

Dumps the particle trajectories in normalised coordinates. If the coordinates are
dumped at the start of the sequence (StartDUMP), the normalization matrix as
used for the initialization of the particle amplitudes is used. This means, that if
4D optics are chosen, the 4D matrix is used, if 6D optics is chosen, the matrix
obtained from the 6D optics calculation is chosen. For every other element except
StartDUMP, the 6D optics are used independent of the tracking method chosen. In
this case the 6D optics needs to be run and the following lines have to be inserted
in fort.3:

DUMP

element_name_1 1 unit_1 7 filename_1 first_turn_1 last_turn_1

...

NEXT

LINE

ELEMENT 0 2 1 emit_1 emit_2

NEXT

If there are multiple single elements attached to the file, the headers are repeated.

Header #1 The same as for format 2.

Header #2 Closed orbit x,xp,y,yp,σ,δ, units are [mm,mrad,mm,mrad, 1].

Header #3 Matrix of eigenvectors (TA Matrix or tamatrix). Eigenvectors are normalized,
rotated and ordered as in the Ripken formalism and described in the SixTrack
physics manual, Chapter “Optics Calculation”. The matrix tamatrix is in canon-
ical variables x,px,y,py,ζ,δ, units are [mm,mrad,mm,mrad, 1].

Header #4 Inverse of ta-matrix inv(tamatrix) used for normalization where

znorm = inv(tamatrix) · z (10.1)

Matrix inv(tamatrix) and z is given in canonical variables x,px,y,py,ζ,δ, units are
[mm,mrad,mm,mrad, 1].

Header #5 Header with units of normalized particle coordinates:

(The table continues on the next page)

106

10.2 FMA Analysis

#/Pos Description

particleID turn s[m] nx[1.e-3 sqrt(m)] npx[1.e-3 sqrt(m)] ny[1.e-3

sqrt(m)] npy[1.e-3 sqrt(m)] nsigma[1.e-3 sqrt(m)] ndp/p[1.e-3

sqrt(m)] ktrack

Lines As described in the header, one per particle and per turn.

8 Normalized coordinate (binary)

Header No header.

A number of Fortran records describing which elements are used and the current
dump period is added one per relevant line in DUMP block. Format 8 is format 7
without header and in binary format.

Lines # particleID turn s[m] nx[1.e-3 sqrt(m)] npx[1.e-3 sqrt(m)] ny[1.e-3

sqrt(m)] npy[1.e-3 sqrt(m)] nsigma[1.e-3 sqrt(m)] ndp/p[1.e-3

sqrt(m)] ktrack

The Fortran code SixTest/readDump3/readDump3.f90 can be used to convert
these files into the Format 2 (sans headers).

9 Beam mean and sigma (normalized coordinates)

Header #1 The same as for format 2.

Header #2 # napx turn s[m] <nx>[1.e-3 sqrt(m)] <npx>[1.e-3 sqrt(m)]

<ny>[1.e-3 sqrt(m)] <npy>[1.e-3 sqrt(m)] <nsigma>[1.e-3 sqrt(m)]

<npsigma>[1.e-3 sqrt(m)] <nx^2> <nx*npx> <nx*ny> <nx*npy>

<nx*nsigma> <nx*npsigma> <npx^2> <npx*ny> <npx*npy> <npx*nsigma>

<npx*npsigma> <ny^2> <ny*npy> <ny*nsigma> <ny*npsigma> <npy^2>

<npy*nsigma> <npy*npsigma> <nsigma^2> <nsigma*npsigma> <npsigma^2>

If there are multiple single elements attached to the file, the headers are repeated.
A number of lines describing which elements are used and the current dump period
is added one per relevant line in DUMP block.

101 Binary format for debugging (format not stable)

Header No header.

A number of Fortran records describing which elements are used and the current
dump period is added one per relevant line in the DUMP block.

Lines particleID turn s[m] x[mm] xp[mrad] y[mm] yp[mrad] z[mm] (E-E0)/E0

ktrack E[MeV] P[MeV/c] delta(j)[1] rpp[1] rvv[1] nucm[MeV] mtc[1]

e0[MeV] e0f[MeV/c]

Examples

DUMP

/ALL 1 663 2

/CRAB5 1 659 0

ip1 1 660 2 IP1_DUMP.dat

ip5 1 662 2

mqml.10l4.b1..1 1 661 2 MQ_DUMP.dat

NEXT

10.2 FMA Analysis

The FMA block generates the basic files needed for frequency map analysis (FMA). Explicitly, it
returns one output file with calculated tunes and amplitudes for the files specified in the DUMP block,
see Sec. 10.1. For the calculation of the tunes (Q1, Q2 and Q3) in normalized phase space, the
normalization matrix is extracted from the LINE block (linear optics calculation in 6D, 9.1). In
case the particles are dumped at the beginning of the sequence (StartDUMP), the closed orbit and

107

Chapter 10: Extra Output Files

normalization matrix used also for the initialization of the particles is used. In this case, the LINE

block is not needed. The tunes Q1, Q2 and Q3 are then calculated with the routine specified in the
FMA block either in physical coordinates (x,x′,y,y′,z,dE/E) or normalized phase space coordinates
and dumped to the file fma sixtrack together with the minimum, maximum and average normalized
particle amplitudes and phases.

To use normalised coordinates for the FMA analysis is always possible in case of 6D tracking
(remember to put the LINE block for other elements than the start of the sequence). In case of 4D
tracking, the following limitations apply:

• The FMA analysis is only implemented for the start of the sequence (StartDUMP). For other
elements the normalization matrix would need to be obtained from the LINE block, which has
not been checked in case of 4D optics.

• 4D tracking with scan in energy is disabled as in this case the normalization matrix would need
to be saved for each element and particle, which requires a huge amount of memory breaking
other parts of the code.

In general it is also recommended to already normalize the coordinates in DUMP as this is faster than
in FMA.

Keyword FMA

Data lines Variable, one for each file with particle amplitudes and tune calculation method, and one for each flag given.

Format filename 1 method 1 (fma flag norm 1 (fma first turn fma last turn))

OR NoNormDUMP

The FMA block has to be proceeded by the LINE block (calculation of the normalization matrix)
and the DUMP block (dump particle coordinates).

DUMP

element_name_1 1 unit_1 2 filename_1 first_turn_1 last_turn_1

element_name_2 1 unit_2 2 filename_2 first_turn_2 last_turn_2

NEXT

LINE

ELEMENT 0 2 1 emit_1 emit_2

NEXT

FMA

filename_1 method_1 fma_flag_norm_1 fma_first_turn_1 fma_last_turn_1

filename_2 method_2 fma_flag_norm_2 fma_first_turn_2 fma_last_turn_2

NEXT

For the DUMP block (Sec. 10.1) the frequency has to be 1 (dump every turn) and the file format has
to be 2 or 3. For the linear optics calculation 9.1, the optics needs to be calculated at each element
(mode ELEMENT), the number-of-blocks is then 0 and 6D linear optics calculation is required (ilin
= 2) in order to decouple the 6D motion.

Format Description

filename One of the output files specified in the FMA block preceding DUMP block.

method Method used to calculate the tune. Available methods are: TUNELASK,

TUNEFIT, TUNENEWT1, TUNEABT, TUNEABT2, TUNEFFT, TUNEFFTI,

TUNENEWT, TUNEAPA, NAFF. A short description of the different meth-
ods is given in Table 10.5.

fma flag norm Optional flag for calculating the tunes with physical (x,xp,y,yp,ζ,δ) or nor-
malized coordinates in case physical coordinates are used in DUMP. The
default is using normalized coordinates (fma flag norm = 1). For using
physical coordinates explicitly set (fma flag norm = 0). See Description
for the conditions under which normalization is available.

108

10.2 FMA Analysis

fma first turn,

fma last turn

Turns used for FMA analysis. As the DUMP files are used as input for the
FMA analysis fma first turn must be larger first turn in the DUMP block
and fma last turn must be smaller than last turn in the DUMP block. If
fma last turn = -1 the last turn number in the dump file is taken as the
last turn number, including the last turn tracked if the last setting of the
dump equals -1. By default, FMA will use the same turns as for the DUMP.

NoNormDUMP A flag for disabling the NORM filename* output files. This saves disk space
and speeds up the calculation of the FMA. If used, the flag should be alone
on a one line of the FMA input block in fort.3. Note that the capitalization
must be correct for the flag to be recognized.

Output file format

The FMA block returns the output files NORM filename* containing the normalized phase space
coordinates, where filename are the filenames specified in the DUMP block, and the file fma sixtrack

containing the initial, average, minimum and maximum amplitudes and the calculated tunes for each
specified filename and method. The structure of the NORM filename* is described in Table 10.6 and
of the fma sixtrack in Table 10.7.

109

Chapter 10: Extra Output Files

Table 10.5: Available tune calculation methods in SixTrack.

Library Method Description

PLATO [30, 31] TUNELASK Compute the tune of a 2d map by means of laskar method. A first
indication of the position of the tune is obtained by means of a FFT.
Refinement is obtained through a newton procedure.

TUNEFIT Computes the tune using a modified apa algorithm. The first step
consists of taking the average of the tune computed with the APA
method, then a best fit is performed.

TUNENEWT1 Computes the tune using a discrete version of laskar method. It
includes a newton method for the search of the frequency.

TUNENEWT Computes the tune using a discrete version of laskar method. It
includes a newton method for the search of the frequency.

TUNEABT Computes the tune using FFT interpolated method.

TUNEABT2 Computes the tune using the interpolated FFT method with hanning
filter.

TUNEFFT Computes the tune as the FFT on a two dimensional plane, given
n iterates of a map. The FFT is performed over the maximum mft
which satifies 2mft <= n, where the maximum number of iterates is
fixed in the parameter n.

TUNEFFTI Computes the tune as the FFT on a two dimensional plane, given
n iterates of a map. The FFT is performed over the maximum mft
which satifies 2mft <= n. Then, the FFT is interpolated fitting the
three points around the maximum using a Gaussian. The tune is
computed as the maximum of the Gaussian.

TUNEAPA Computes the tune as the average phase advance on a two dimen-
sional plane, given n iterates of a map.

NAFF [32, 33] NAFF Computes the tune using the laskar method. The first estimation
of the tune is obtained with an FFT and the precise value is deter-
mined by maximizing the Fourier integral. A Hann window of first
and second order for the transverse and longitudinal motion are used
respectively.

110

10.2 FMA Analysis

Table 10.6: Format of the NORM files

Line Number Type Description

1 Header Closed orbit x,x′,y,y′,z,dE/E, units are [mm,mrad,mm,mrad, 1].

2–38 Header Matrix of eigenvectors (tamatrix). Eigenvectors are normalized, ro-
tated and ordered as in the Ripken formalism. The matrix tamatrix is
in canonical variables x,px,y,py,ζ,δ, units are [mm,mrad,mm,mrad, 1].

39–75 Header Inverse of ta-matrix inv(tamatrix) used for normalization where
znorm = ta · z. Matrix inv(tamatrix) is given in canonical variables
x,px,y,py,ζ,δ, units are [mm,mrad,mm,mrad, 1].

76 Header Header with units:

id turn pos[m] nx[1.e-3 sqrt(m)] npx[1.e-3 sqrt(m)]

ny[1.e-3 sqrt(m)] npy[1.e-3 sqrt(m)] nsig[1.e-3 sqrt(m)]

ndp/p[1.e-3 sqrt(m)] kt

77–EOF Lines See header in line 76: particle id, turn number position s[m],

normalized coordinates [10−3√m], ktrack (type of element)

Table 10.7: Format of the fma sixtrack file

Line Number Type Description

1–2 Header Header with units and description:

eps0*,eps2*,eps3* all in 1.e-6*m, phi* [rad]

inputfile method id q1 q2 q3 eps1 min eps2 min eps3 min

eps1 max eps2 max eps3 max eps1 avg eps2 avg eps3 avg eps1 0

eps2 0 eps3 0 phi1 0 phi2 0 phi3 0 norm flag first turn

last turn

3–EOF Lines See header in line 1-2: The lines are ordered as particles 1-npart for
(inputfile1,method1), then particles 1-npart for (inputfile2,method2),
etc.. The minimum (min), maximum (max) and average (avg) are taken
over the number of turns in the inputfile (fiel specified in the FMA and
DUMP block). Units are µm for eps* and rad for phi*, where phi* is
the angle in the normalized phase space coordinates.

Example

An input block to compare the tunes at element IP3 calculated over the interval [1, 4096] and
[5905, 10000], and using the method TUNELASK would look like:

DUMP

IP3 1 1030 2 IP3_DUMP_1 1 4096

IP3..1 1 1031 2 IP3_DUMP_2 5905 10000

IP3..2 1 1032 2 IP3_DUMP_3 1 4096

IP3..3 1 1033 2 IP3_DUMP_4 5905 10000

NEXT

LINE

ELEMENT 0 2 1 3.75 3.75

NEXT

FMA

IP3_DUMP_1 TUNELASK

IP3_DUMP_2 TUNELASK 1 512 1024

IP3_DUMP_3 TUNELASK 0

IP3_DUMP_4 TUNELASK 0 512 1024

NEXT

111

Chapter 10: Extra Output Files

where for IP3 DUMP 1 and IP3 DUMP 2 the tunes are calculated using normalized coordinates (default)
and for IP3 DUMP 3 and IP3 DUMP 4 the physical coordinates are used (fma norm flag = 0). For
IP3 DUMP 2 and IP3 DUMP 4 the turns from 512 to 1024 are used for the FMA analysis. This is
particularly useful for detecting the maximum diffusion in tunes by taking the maximum over difference
over several moving windows.

Note that all element names have to be different due to a limitation in DUMP module. This
means practically, that one needs to insert additional markers (here IP3..1 etc.) in the SixDesk
[35, 36] mask file prior to the SixTrack run. It is important to install the additional markers after
cycling the machine if the machine is cycled at the location of the additional (e.g. IP3), as they are
installed in front of the element given in the from statement in the cycle command.

10.3 File Hash

The hash module can optionally compute the MD5 digest of a selected set of output files listed in a
HASH block. The hash values are written to the output file hash.md5. The hash values are computed
just before the ZIPF file compression routine is called, so the hash file can be included in the final
archive.

During initialisation, the module will perform a self test to ensure it generates valid md5 hashes
according to the RFC1321 standard. If this is not achieved, the module is disabled, and the hash.md5

file contains an error message instead.
The primary purpose of this module is for validation of results for BOINC and the test suite.

Keyword HASH

Data lines Variable, one for each file to be hashed.

Usage

The module accepts a single keyword, MD5SUM, followed by a file name, followed by either “text” or
“binary”. This can be repeated multiple times. The “text” flag is used on Windows to strip carriage
returns from the file before hashing. If the md5sum tool is installed on the user’s computer, the results
can be validated with the command:

md5sum -c hash.md5

Example

HASH

MD5SUM final_state.dat text

MD5SUM fort.10 text

NEXT

10.4 ZIPFile Combined and Compressed Output

In order to retrieve extra simulation output such as DUMP or FMA from BOINC, it is necessary to pack
the output files into a single file with a special name that will be retrieved. This can be achieved with
the ZIPF block, which packs the listed files into a compressed archive at the end of the simulation.
The ZIPF block can always be present in fort.3, but if SixTrack was not built with the ZLIB option,
no archive file will be produced.

The ZIPF block can take two optional arguments, otherwise everything else is interpreted as a file
name to be packed into the archive file. Multiple file names can be specified on a single line, and are
separated by a space character. If the file name contains a space, it must be wrapped in single or
double quotes.

Note that if one of the files do not exist at the end of the simulation, it will be silently skipped
and not included in the archive.

112

10.5 HDF5 Output

Keyword ZIPF

Data lines Variable, see below.

Archive Name OUTFILE

This keyword can be used to set the file name of the archive file. If this keyword is omitted, the
archive file will be named “Sixout.zip”.

Compression Level ZIPLEVEL

This keyword can be used to set the compression level. A value of 0 will just pack the files, and
not compress them. A value of 9 is the highest level of compression, and also the slowest, The default
value is 3.

Example

ZIPF

OUTFILE Sixout.zip

ZIPLEVEL 3

fma_sixtrack IP3_DUMP_1 fort.90

NEXT

10.5 HDF5 Output

The HDF5 block allows for writing certain outputs to a HDF5 file instead of regular text or binary files.
HDF5 files can be easily read and manipulated with for instance MATLAB or Python. MATLAB has
native support, while Python support is available through h5py.

The SixTrack HDF5 option is enabled through the HDF5 compiler flag, and controlled via the HDF5

block.

Note: SixTrack HDF5 support is experimental.

Keyword HDF5

Data lines Variable, see below.

Format This module uses a keyword, value format. See below.

Debugging DEBUG

This statement switches on extra “debugging” output for the HDF5 module. This can be useful if
debugging the code or if debugging the input.

Precision SINGLE, DOUBLE

The precision of float numbers for the file. If omitted, the value defaults to DOUBLE.
The output precision is independent of the internal precision of SixTrack set at compile time. If

necessary, the float values will be converted on the fly. Quad precision is currently not available.
The precision of integers is the same as the internal Fortran precision defined by the compiler.

Generally, this is 32 bits.

113

Chapter 10: Extra Output Files

Output File FILE filename truncate

The name of the file to write to. Spaces are allowed as long as quote marks are used. The truncate
flag is optional, either .true. or .false.. If true, any existing file will be truncated. If false, any
existing file will throw an error. Default value is .false.. If truncation is disabled, and the file exists,
the root group must be unique for the current run. This allows the option to write multiple simulation
runs to the same file with different root groups.

Root Group ROOT groupname

The name of the root group (folder) for where to write the simulation data. The default value is
“/”, that is, all data is written into block specific groups at the root of the file. Setting root group
allows several runs to use the same output file as long as the root group is unique.

For further information on how HDF5 uses groups and datasets, see the HDF5 manual [17].

Chunking CHUNK chunksize

HDF5 files written by SixTrack uses data chunking. Chunking allows for writing data into related
block. For instance, for DUMP, the chunck size is hard coded to the nuber of particles. This can
improve read performance as the particle data will then be written in a single chunk per turn. For
non-predictable outputs, like log files, a default chunk value can be set. The chunk size should be
close to the number of entries expected to be written per turn. If none is specified, the defualt value
is 10.

For further information on HDF5 chunking, see the HDF5 manual [17].

Compression GZIP level

The level of compression to use for data chunks written to the HDF5 file. Allowed values are −1
to disable gzip compression, and 0 to 9 for none to maximum compression.

0 No compression

1 Best compression speed; least compression

2-8 Compression improves; speed degrades

9 Best compression ratio; slowest speed

Note that 0 does not turn off use of the gzip, it just instructs the filter to perform no action. To
disable GZIP, either ommit the line, or set the level to −1. For more detail, see the HDF5 manual [17].

Enable HDF5 ENABLE blockname

HDF5 output needs to be specifically enabled for the blocks where it is to be used instead of ASCII
or binary data dumps. The blockname takes the four first characters of the block for which to enable
HDF5. An further characters are ignored, but may be used for clarity like for othe rblock declarations.
In other words, ENABLE SCAT and ENABLE SCATTER are equally valid.

HDF5 output is currently available only for SCATTER, DUMP, APERTURE and COLLIMATION.

Write Flag WRITE type

Certain special outputs are possible through the WRITE flag:

OPTICS Dumps the linear optics to the root group of the file.

TRACKS2 Writes the collimation tracks2 output to the root group of the file.

114

10.6 ROOT Output

Example:

The following is an example of a valid HDF5 block:

HDF5

DEBUG

DOUBLE

GZIP 1

CHUNK 50

FILE data.hdf5 .true.

ROOT test

ENABLE SCATTER

ENABLE DUMP

WRITE OPTICS

NEXT

10.6 ROOT Output

Keyword ROOT

Data lines Variable, see below.

Format This module uses a keyword, value format. See below.

Select output to enable ENABLE type

The ENABLE flag selects which output to enable for root. Since a large run or parameter scan
usually uses multiple copies of SixTrack, a lot of information is the same between each run, e.g. the
accelerator layout. It is suggested to only enable the full output on a single run, and reduced output
on all others.

type char The type of output to enable.

ALL Writes all possible output.

ACCEL Writes a description of the accelerator layout

COLL Writes the energy and nucleons lost on each collimator.

COLDB Writes the contents of the collimation database.

APER Writes particles lost on the aperture.

OPTICS Writes the linear optics of the machine.

FLUKA Writes additional information on insertion lengths required for usage
with the FLUKA coupling.

PIPE Writes a description of the physical beam pipe from the aperture mod-
ule.

Enable writing directly to eos EOS

The EOS flag enables writing directly to the CERN eos filesystem directly via xrootd instead of as
normal files.

Selection of the output file path PATH loc

The PATH flag selects the path (folder) of where the output files should be written to.

loc char The folder where output should be written to.

115

Chapter 10: Extra Output Files

Selection of the output file name PREFIX pre

The PREFIX flag selects the first part of the output filename. Added to this is the run number
(defined below). This is then followed by the file extension ”.root”.

pre char The first part of the output file name.

Selection of the output run number RUN number

The RUN flag selects the run number to be added to the root output file name. This is usually the
random number seed.

number integer The output run number.

10.7 Simulation Meta Data and Timing Output

SixTrack produces two text files containing meta data and timing data for the last run simulation.
Both these files are in a fixed column width format, making them straightforward to parse with other
tools.

META: The file sim meta.dat contains information about the SixTrack executable such as version
information, build details and execution time. The file also contains initial values and values calculated
during tracking that may be useful for further post-processing.

TIME: The file sim time.dat contains information about the execution time of the last SixTrack
run. There are a number of time stamp at key points during execution written to the file. In addition,
the total tracking time is extracted, and various averages computed based on number of particles,
turns or the size of the lattice.

116

Appendix

117

Appendix A

List of Default Values

A.1 Default Tracking Parameters

Some of the parameters for tracking are set to non-zero values. This is done for instance to avoid
as much as possible program errors such as division by zero due to an erroneous input. The default
values for the Iteration Errors are described in Section 3.6, Table 3.1.

Table A.1: Default Tracking Parameters

Description Value § Page

1 General Aperture Limitations (horizontal and vertical) 1000 mm 6.3 40

2 Starting in the Accelerator Structure at Element Number 1 5.2.1 36

3 Number of Turns in the forward Direction 1 4.2 13

4 Initial horizontal Amplitude 0.001 mm

5 Horizontal and vertical Phase Space Coupling Switches on 1

6 Flat Bottom, Ramping and Flat Top Printout after Turn Number 1

7 Printout of Coordinates (file 6) after Turn Number 10000

8 Kinetic Energy [MeV] of the Reference Particle 10−6 4.3 16

9 Harmonic Number 1 4.4 18

10 Momentum Compaction Factor 0.001

11 Length of the Machine 1 km

12 Mass of the Particle (Proton) 938.2723128 MeV/c2

13 Momentum Correction Factor for Distance in Phase Space 1

14 Path-length Correction Factor for Distance in Phase Space 1

15 Averaging Turn Interval for Post-processing 1 9.12 98

119

Appendix A: List of Default Values

A.2 Default Size Parameters

SixTrack 5 automatically scales the arrays related to the machine description and number of tracked
particles, while earlier versions used fixed size arrays. However, many other parameters are still fixed
and are defined as parameters in the module parpro in the source code. They are generally large
enough for their intended purpose, but if these are found to be too small, they can be adjusted in the
source at the top of the file source/common modules.f90.

Table A.2: Default Size Parameters

Description Value Name § Page

1 Maximum Number of Coordinates used in the Correction Routines 6 MPA

2 Number of Single Elements auto NELE 5.1 27

3 Number of Blocks of Linear Elements auto NBLO 5.2 35

4 Number of Linear Elements per Block 280 NELB

5 Total Number of Elements in the Structure auto NBLZ 5.2.1 36

6 Number of Accelerator Super-periods 16 NPER

7 Total Number of Random Values auto NZFZ 8.1 87

8 Number of Random Values for the basic Set of Nonlinear Elements 2000000 NRAN

9 Number of Random Values for inserted Nonlinear Elements 20000 8.2 88

10 Number of Random Values for each Inserted Nonlinear Element 500 MRAN

Number of Nonlinear Elements that can be inserted 20

11 Limit Number of Particles for Vectorisation auto NPART

12 Maximum Number of Elements for Combined Tasks 100 NCOM 8.3 89

13 Maximum Resonance Compensation Order 5 NRCO 8.3 89

14 Total Number of Data for Processing 20000 NPOS 9.12 98

15 Number of Intervals for Calculation of Lyapunov Exponents 10000 NLYA

16 Number of Intervals for Calculation of Invariants 1000 NINV

17 Number of Data for Plotting 20000 NPLO

18 Maximum Pole Order of Multipole Block 20 MMUL 6.1 39

19 Maximum Number of extra Parameters of the DA Map 10 MCOR 9.9 96

20 Maximum Order of DA Calculation 15 NEMA 9.9 96

21 Maximum Number of Monitors for Micado Closed Orbit Correction 600 NMON1 9.4 93

22 Maximum Number of Correctors for Micado Closed Orbit Correction 600 NCOR1 9.4 93

23 Maximum Number of Beam–Beam Elements 500 NBB 6.6 54

24 Maximum Number of Slices for 6D Beam–Beam Kick 99 MBEA 6.6 54

25 Maximum Number of “Phase Trombone” Elements auto NTR 5.1.9 31

120

Appendix B

Input and Output Files

The program uses a couple of files for its input and output procedures.

Table B.1: List of Input and Output Files.

File Unit Input Output File Type Contents

2 X Ascii Geometry and Strength Parameters

3 X Ascii Tracking Parameters

4 X Ascii Geometry and strength Parameters (format as
file fort.2)

6 X Ascii Standard Output

8 X Ascii Name, hor., ver. Misalignment and Tilt

9 X Ascii Internally used multipoles Format:
a16, 2× {6× (1p, 3d23.15), (1p, 2d23.15)}

10 X X Ascii Summary of Post-processing (auxiliary)

12 X Ascii End coordinates of all particles. Format:
(15× F10.6)

13 X Ascii Start coordinates for a prolongation

14 X Ascii Horizontal FFT spectrum for detailed
analysis. Format: (2× F10.6)

15 X Ascii Vertical FFT spectrum for detailed analysis.
Format: (2× F10.6)

16 X Ascii External multipole errors. Format:
a16, 2× {6× (1p, 3d23.15), (1p, 2d23.15)}

17 X Ascii Additional Map at location of interest

18 X Ascii One turn map with differential algebra

19 X X Ascii Internal use for Differential Algebra

20 X Meta-file PS-file of selected Plots

21 X Ascii Factorisation of the one turn map

121

Appendix B: Input and Output Files

File Unit Input Output File Type Contents

22 X Ascii Transformation in the Normal Form
coordinate

23 X Ascii Hamiltonian in action variables

24 X Ascii Tune-shift in action coordinates

25 X Ascii Tune-shift in Cartesian coordinates

26 X Binary Binary version of unit 18

27 X Ascii Name, hor., ver. misalignment and tilt

28 X Ascii Horizontal closed orbit displacement,
measured at monitors

29 X Ascii Vertical closed orbit displacement, measured
at monitors

30 X Ascii Name, random strength, misalignments and
tilt

31 X Ascii Name, random strength, misalignments and
tilt

33 X Ascii Guess values for 6D closed orbit search

90 X Binary Tracking Data singletrackfile.dat

In addition to those files listed in the table, DUMP uses arbitrary file unit numbers as determined
by the input file. The collimation module also uses many input/output files at various units, which
are not listed here.

122

Appendix C

Data Structure of the Data Files

A common data structure for the programs MAD-X and SixTrack is agreed on1. Besides some minor
differences this allows a straightforward post-processing of data from either program. Each binary
data file has a header which holds a description of the run with comments, tracking parameters and
50 additional parameters for future purposes, six of which are already specified in SixTrack.

1 Historically, SixTrack wrote one such file per particle pair (files fort.90, fort.89, . . .), however recent versions of
SixTrack always produce a single singletrackfile.dat containing all the data, by interleaving the contents of the old
files in one large file as discussed below. Files of the old (MAD-X and Sussix compatible) format can be generated from
this new format by running the tool splitSingletrack in the folder containing the singletrackfile.dat. This splits
the combined singletrackfile.dat into one file for each pair.

This chapter describes the old format used for single particle pairs, followed by a description of the built-in postpro-
cessing tool output.

123

Appendix C: Data Structure of the Data Files

Table C.1: Header of the Binary Data Files

Data Type Bytes Description

Character 80 General title of the run

Character 80 Additional title

Character 8 Date

Character 8 Time

Character 8 Program name

Integer 4 First particle in the file

Integer 4 Last particle in the file

Integer 4 Total number of particles

Integer 4 Code for dimensionality of phase space 1,2,4
are hor., vert. and longitudinal respectively

Integer 4 Projected number of turns

Float 8 Horizontal Tune

Float 8 Vertical Tune

Float 8 Longitudinal Tune

Float 6 * 8 Closed Orbit vector

Float 6 * 8 Dispersion vector

Float 36 * 8 Six-dimensional transfer map

50 additional parameters

Float 8 Maximum number of different seeds

Float 8 Actual seed number

Float 8 Starting value of the seed

Float 8 Number of turns in the reverse direction

(IBM only)

Float 8 Correction factor for the Lyapunov
(σ = s− v0 × t)

Float 8 Correction factor for the Lyapunov (∆p/p0)

Float 8 Start turn number for ripple prolongation

Float 43 * 8 Dummies

124

Following this header the tracking data are written in n samples of mine numbers preceded by
the turn number. In the MAD-X format, the number of samples in is not restricted, whilst SixTrack
writes only up to two samples for the two particles for the Lyapunov exponent method. Up to 64
particles (two per file) can be treated in the vectorised version of SixTrack.

Table C.2: Format of the Binary Data

Data Type Bytes Description

Integer 4 Turn number

One or two samples of 9 values are following

Integer 4 Particle number

Float 8 Angular distance in phase space (<= 1)

Float 8 x (mm)

Float 8 x′ (mrad)

Float 8 y (mm)

Float 8 y′ (mrad)

Float 8 Path-length (σ = s− v0 × t) (mm)

Float 8 Relative momentum deviation ∆p/p0

Float 8 Energy (MeV)

Note that in case the “Single Track File” option is enabled at compile time, multiple of these files
(normally one per particle pair) are interleaved in a single file. This is done by writing first all headers
in order (i.e. first the header for initial particle/final particle 1/2, then 3/4, 5/6 etc.) and then the
same for the tracking data. The “total number of particles” field can always be read from the first
header record, which gives the number of header records present in the file. The two file formats are
equivalent, i.e. they contain exactly the same data, and it is thus possible to convert losslessly between
them.

Some of the post processing data is written in Ascii format to file fort.10. This can be used for
instance for plotting purposes. Each time the post processing routine is called 60 double precision
numbers (some of them still dummy) are added to the file.

The file with the errors (in: fort.16, out: fort.9) has the following format:

first line name of element;

line 2–7 normal multipoles order 1–18;

line 8 normal multipoles of order 19 and 20;

line 9–14 skew multipoles order 1–18;

line 15 skew multipoles of order 19 and 20.

The strength definition is according to block 6.1 and to be effective in fort.3. The random values
of the corresponding multipole block have to be set to 1.0. A word of caution: when writing on file
fort.9 the total multipole strength is used, i.e. systematic and random part combined. File fort.16

and fort.9 might therefore be different. When using fort.9 as input (fort.16), the systematic part
in fort.3 has to be set to 0.0.

Misalignment and tilt are in file fort.8 and fort.27 as input and output respectively. The
format is (a16,2x,1p,2d14.6,d17.9), i.e. name, horizontal misalignment, vertical misalignment and
tilt. The misalignment is in units of [mm] the tilt in units of [mrad]. The files fort.30 (in) and
fort.31 (out) have the random single non-linear element kick, misalignments and tilt in the format:
(a8,1p,d19.11,2d14.6,d17.9). Misalignment and tilt in file fort.8 or fort.30 is automatically
activated, while the random strength (strength definition same as in block 5.1) needs an entry in
the fourth column in the geometry file fort.2. Files fort.28 and fort.29 hold integer counter and
closed orbit displacement at a horizontal or vertical monitor respectively.

125

Appendix C: Data Structure of the Data Files

Table C.3: Post Processing Data

Column Description

1 Maximum turn number

2 Stability Flag (0=stable, 1=lost)

3 Horizontal Tune

4 Vertical Tune

5 Horizontal β-function

6 Vertical β-function

7 Horizontal amplitude 1st particle

8 Vertical amplitude 1st particle

9 Relative momentum deviation ∆p/p0

10 Final distance in phase space

11 Maximum slope of distance in phase space

12 Horizontal detuning

13 Spread of horizontal detuning

14 Vertical detuning

15 Spread of vertical detuning

16 Horizontal factor to nearest resonance

17 Vertical factor to nearest resonance

18 Order of nearest resonance

19 Horizontal smear

20 Vertical smear

21 Transverse smear

22 Survived turns 1st particle

23 Survived turns 2nd particle

24 Starting seed for random generator

25 Synchrotron tune

26 Horizontal amplitude 2nd particle

27 Vertical amplitude 2nd particle

28 Minimum horizontal amplitude

29 Mean horizontal amplitude

30 Maximum horizontal amplitude

31 Minimum vertical amplitude

32 Mean vertical amplitude

33 Maximum vertical amplitude

34 Minimum horizontal amplitude (linear decoupled)

35 Mean horizontal amplitude (linear decoupled)

36 Maximum horizontal amplitude (linear decoupled)

37 Minimum vertical amplitude (linear decoupled)

38 Mean vertical amplitude (linear decoupled)

39 Maximum vertical amplitude (linear decoupled)

40 Minimum horizontal amplitude (nonlinear decoupled)

41 Mean horizontal amplitude (nonlinear decoupled)

42 Maximum horizontal amplitude (nonlinear decoupled)

43 Minimum vertical amplitude (nonlinear decoupled)

126

Column Description

44 Mean vertical amplitude (nonlinear decoupled)

45 Maximum vertical amplitude (nonlinear decoupled)

46 Emittance Mode I

47 Emittance Mode II

48 Secondary horizontal β-function

49 Secondary vertical β-function

50 Q′x
51 Q′y

52–58 Dummy

59–60 Internal use

As an option the 4D linear parameters can be dumped to file fort.11 when the linear optics
block 9.1 is activated. This can be used for instance for a post-processing of linear coupling. 25 values
are written in a binary format.

Table C.4: 4D Linear Parameters

Column Description

1 Name of the element

2 Longitudinal Position [m]

3 Horizontal phase advance

4 Vertical phase advance

5 Primary horizontal β-function [m]

6 Secondary horizontal β-function [m]

7 Secondary vertical β-function [m]

8 Primary vertical β-function [m]

9 Primary horizontal α-function [rad]

10 Secondary horizontal α-function [rad]

11 Secondary vertical α-function [rad]

12 Primary vertical α-function [rad]

13 Primary horizontal γ-function [m]

14 Secondary horizontal γ-function [m]

15 Secondary vertical γ-function [m]

16 Primary vertical γ-function [m]

17 Primary horizontal phase of x-coordinate [pi]

18 Secondary horizontal phase of x-coordinate [pi]

19 Secondary vertical phase of y-coordinate [pi]

20 Primary vertical phase of y-coordinate [pi]

21 Primary horizontal phase of x′-coordinate [pi]

22 Secondary horizontal phase of x′-coordinate [pi]

23 Secondary vertical phase of y′-coordinate [pi]

24 Primary vertical phase of y′-coordinate [pi]

25 Coupling angle [pi]

127

Appendix C: Data Structure of the Data Files

Column Description

26 Dx [mm]

27 D′x [mrad]

28 Dy [mm]

29 D′y [mrad]

When external multipole errors are read in (see section 8.1), the program expects a complete list
of magnet errors to file fort.16. The format of each set of multipole errors is given in table C.5. The
definition of the multipole coefficients should be as described in section 6.1.

Table C.5: Format of file with external errors, fort.16, and internal errors written to fort.9

Row Description

1 Name of multipole set

2 B1 B2 B3

3 B4 B5 B6

4 B7 B8 B9

5 B10 B11 B12

6 B13 B14 B15

7 B16 B17 B18

8 B19 B20

9 A1 A2 A3

10 A4 A5 A6

11 A7 A8 A9

12 A10 A11 A12

13 A13 A14 A15

14 A16 A17 A18

15 A19 A20

With the parameter mout set to 2 or 3 in the “Random Fluctuation” block (8.1), the internally
used multipoles are written to file fort.9 in the same format as above. This file can therefore be used
as an input fort.16 file for a subsequent run.

The file fort.34 is written when the “Linear Optic Block” (see section 9.1) is invoked with the
ELEMENT 0 option.

Table C.6: Format of file fort.34 for detuning and distortion calculation with external program
“SODD” [22]

Column Description

1 Longitudinal position [m]

2 Type n of Multipole (n > 0 => erect, n < 0 => skew)

3 Multipole strength [mrad ·mm(1−|n|)]

4 Horizontal β-function [m]

128

Column Description

5 Vertical β-function [m]

6 Horizontal phase advance

7 Vertical phase advance

The last line serves as the end of the structure: Length of the accelerator, fake name END, fake
type 100, β functions and phase advances at the end of the accelerator for the horizontal and vertical
plane respectively.

129

Appendix C: Data Structure of the Data Files

130

Bibliography

[1] LBL diffential algebra package and LieLib routines courtesy of É. Forest.

[2] G. Ripken and F. Schmidt, “A symplectic six-dimensional thin-lens formalism for tracking”,
CERN SL 95–12 (AP)(1995), DESY 95–063 (1995);
G. Ripken and F. Schmidt, “Construction of Nonlinear Symplectic Six-Dimensional Thin-Lens
Maps by Exponentiation”, DESY 95–189 (1995), http://cern.ch/Frank.Schmidt/report/ripken2.
pdf;
D.P. Barber, K. Heinemann, G. Ripken and F. Schmidt, “Symplectic Thin - Lens Transfer Maps
for SixTrack: Treatment of Bending Magnets in Terms of the Exact Hamiltonian”, DESY 96–156
(1995), http://cern.ch/Frank.Schmidt/report/ripken3.pdf.

[3] A. Wrulich, “RACETRACK, A computer code for the simulation of nonlinear motion in acceler-
ators”, DESY 84–026 (1984).

[4] B. Leemann and É. Forest, “Brief description of the tracking codes FASTRAC and THINTRAC”,
SSC Note SSC–133.

[5] G. Ripken, “Nonlinear canonical equations of coupled synchro-betatron motion and their solu-
tion within the framework of a nonlinear 6-dimensional (symplectic) tracking program for ultra-
relativistic protons”, DESY 85–084 (1985).

[6] D.P. Barber, G. Ripken and F. Schmidt, “A nonlinear canonical formalism for the coupled
synchro-betatron motion of protons with arbitrary energy”, DESY 87–036 (1987);
G. Ripken and F. Schmidt, “A symplectic six-dimensional thin-lens formalism for tracking”,
CERN/SL/95–12 (AP), DESY 95–063 (1995), http://cern.ch/Frank.Schmidt/report/ripken.pdf;

[7] R. Brun and D. Lienart, “HBOOK User Guide”, CERN Program Library Y250 (1987).

[8] R. Brun and N.C. Somon, “HPLOT User Guide”, CERN Program Library Y251 (1988).

[9] R. Bock, R. Brun, O. Couet, N.C. Somon, C.E. Vandoni and P. Zanarini, “HIGZ User Guide”,
CERN Program Library Q120.

[10] G. Guignard, “A general treatment of resonances in accelerators”, CERN 78–11 (1978).

[11] M. Berz, “Differential algebra description of beam dynamics to very high orders”, Particle Accel-
erators, 1989, Vol. 24, pp. 109–124.

[12] M. Berz, “DAFOR – Differential Algebra Precompiler Version 3, Reference Manual”, MSUCL–755
(1991).

[13] F. Schmidt and M. Vaenttinen, “Vectorisation of the single particle tracking program SixTrack”,
CERN SL Note 90–20 (1990) (AP).

[14] F. Schmidt, “Untersuchungen zur dynamischen Akzeptanz von Protonenbeschleunigern und ihre
Begrenzung durch chaotische Bewegung”, DESY HERA 88–02, (1988).

131

http://cern.ch/Frank.Schmidt/report/ripken2.pdf
http://cern.ch/Frank.Schmidt/report/ripken2.pdf
http://cern.ch/Frank.Schmidt/report/ripken3.pdf
http://cern.ch/Frank.Schmidt/report/ripken.pdf

Bibliography

[15] H. Grote, “A MAD–SixTrack interface”, SL Note 97–02 (AP).

[16] SixTrack Physics Manual, http://sixtrack.web.cern.ch/SixTrack/

[17] HDF5 Software Documentation, https://support.hdfgroup.org/HDF5/doc/H

[18] M. Berz, É. Forest and J. Irwin, “Normal form methods for complicated periodic systems: a
complete solution using differential algebra and lie operators”, Particle Accelerators, 1989, Vol.
24, pp. 91–107.

[19] M. Bassetti and G.A. Erskine, “Closed expression for the electrical field of a two-dimensional
Gaussian charge”, CERN–ISR–TH/80–06.

[20] K. Hirata, H. Moshammer, F. Ruggiero and M. Bassetti, “Synchro-Beam interaction”, CERN SL-
AP/90-02 (1990) and Proc. Workshop on Beam Dynamics Issues of High-Luminosity Asymmetric
Collider Rings, Berkeley, 1990, ed. A.M. Sessler (AIP Conf. Proc. 214, New York, 1990), pp. 389-
404;
K. Hirata, H. Moshammer and F. Ruggiero, “A symplectic beam-beam interaction with energy
change”, KEK preprint 92-117 A (1992) and Part. Accel. 40, 205-228 (1993);
K. Hirata, “BBC User’s Guide; A Computer Code for Beam-Beam Interaction with a Crossing
Angle, version 3.4”, SL-Note 97-57 AP.

[21] L.H.A. Leunissen, F. Schmidt and G. Ripken, “6D Beam–Beam Kick including Coupled Motion”,
LHC Project Report 369, http://cern.ch/Frank.Schmidt/report/ripken new.pdf.

[22] F. Schmidt, “SODD: A Computer Code to calculate Detuning and Distortion Function Terms in
First and Second Order”, CERN SL/Note 99–009 (AP), http://cern.ch/Frank.Schmidt/report/
sodd manual.pdf

[23] H. Grote and F.C. Iselin, “The MAD program (Methodical Accelerator Design), Version 8.10,
User’s Reference Manual”, CERN SL 90–13 (AP) (Rev. 4), http://cern.ch/Hans.Grote/mad/
mad8/doc/mad8 user.ps.gz.

[24] R. Molloy and S. Blitz, “Fringe Field Effects on Bending Magnets, Derived for, TRANS-
PORT/TURTLE”, FERMILAB-TM-2564-AD-APC-PPD, http://lss.fnal.gov/archive/test-tm/
2000/fermilab-tm-2564-ad-apc-ppd.pdf

[25] private communication.

[26] F. James, “A Review of Pseudorandom Number Generators”, CERN DD/ 88/22, 1988.

[27] B. Autin and Y. Marti, “Closed Orbit Correction of A.G. Machines Using a Small Number of
Magnets”, CERN–ISR–MA/73–17.

[28] M. Giovannozzi, “Description of software tools to perform tune-shift correction using normal
forms”, CERN SL Note 93–111 (AP).

[29] F. Schmidt, F. Willeke and F. Zimmermann, “Comparison of methods to determine long-term
stability in proton storage rings”, 1991, Particle Accelerators, Vol. 35, pp. 249–256.

[30] R. Bartolini, A. Bazzani, M. Giovannozzi, W. Scandale, E. Todesco, “Tune evaluation in simula-
tions and experiments”, Part. Accel. 52 147

[31] M. Giovannozzi, E. Todesco, A. Bazzani and R. Bartolini (1997), “PLATO: a program library
for the analysis of nonlinear betatronic motion”, Nucl. Instrum. and Methods A 388 1

132

http://sixtrack.web.cern.ch/SixTrack/
https://support.hdfgroup.org/HDF5/doc/H
http://cern.ch/Frank.Schmidt/report/ripken_new.pdf
http://cern.ch/Frank.Schmidt/report/sodd_manual.pdf
http://cern.ch/Frank.Schmidt/report/sodd_manual.pdf
http://cern.ch/Hans.Grote/mad/mad8/doc/mad8_user.ps.gz
http://cern.ch/Hans.Grote/mad/mad8/doc/mad8_user.ps.gz
http://lss.fnal.gov/archive/test-tm/2000/fermilab-tm-2564-ad-apc-ppd.pdf
http://lss.fnal.gov/archive/test-tm/2000/fermilab-tm-2564-ad-apc-ppd.pdf

Bibliography

[32] J. Laskar, C. Froeschle and C. Celletti, “The measure of chaos by the numerical analysis of the
fundamental frequencies. Application to the standard mapping”, Physica D, vol. 56, pp 253-269,
1992.

[33] S. Kostoglou, N. Karastathis, Y. Papaphilippou, D. Pellegrini and P. Zisopoulos, “Development
of computational tools for noise studies in the LHC”, 2017, Proceedings of IPAC’17, Copenhagen,
Denmark, 2017.

[34] SixTrack build manual, see SixTrack website, http://sixtrack.web.cern.ch/SixTrack/

[35] SixDesk manual, see SixTrack website, http://sixtrack.web.cern.ch/SixTrack/

[36] SixDesk manual, https://www.overleaf.com/1345694dwypbp#/3325092/

[37] J. B. Garcia et al., “Long term dynamics of the high luminosity Large Hadron Collider with crab
cavities”, 2016, PHYSICAL REVIEW ACCELERATORS AND BEAMS 19, 101003 (2016).

[38] K. Sjobak, H. Burkhardt, R.D. Maria, A. Mereghetti and A. Santamaria, “General functionality
for turn-dependent element properties in SixTrack”, 2015, Procedings of IPAC’13, Richmond,
VA, USA, May 2015.

[39] K. Sjobak, V.K. Berglyd Olsen, R. De Maria, M. Fitterer, A. Santamara Garca, H. Garcia-
Morales, A. Mereghetti, J.F. Wagner, S.J. Wretborn, “Dynamic simulations in SixTrack”, CERN

[40] S. Russenschuck, “Field computation for Accelerator Magnets”, Wiley-VCH, 2010

[41] P. Burla, Q. King and J.G. Pett, “Optimisation of the current ramp for the LHC”, Proceedings
of the 1999 Particle Accelerator Conference, New York, 1999.

[42] T. Trenkler, J.B. Jeanneret, “K2, A software package evaluating collimation systems in circular
colliders (manual)”, CERN SL/94105 (AP), 1994.

[43] G. Robert-Demolaize, R. Assmann, S. Redaelli, F. Schmidt, “A new version of SixtTrack with
collimation and aperture interface”, CERN, Geneva, Switzerland (PAC 2005).

[44] R. Assmann, J.B. Jeanneret, D. Kaltchev, “Status of Robustness Studies for the LHC Collima-
tion”, APAC 2001.

[45] T. Sjstrand, S. Mrenna, P. Skands, “A Brief Introduction to PYTHIA 8.1 ”, Comput. Phys.
Comm. 178 (2008) 852 [arXiv:0710.3820].

[46] T. Sjstrand, S. Mrenna, P. Skands, “PYTHIA 6.4 Physics and Manual”, JHEP05 (2006) 026.

[47] V. Vlachoudis et al., “Status of Fluka coupling to Sixtrack”, Proceedings of Tracking for Colli-
mation Workshop (WP5), CERN, Geneva, Switzerland (in publication).

[48] A. Mereghetti, Performance Evaluation of the SPS Scraping System in View of the High Lumi-
nosity LHC, Ph. D. thesis, UniMAN, Manchester, UK (2015).

[49] B. Dalena et al., “Fringe Field Modeling for the High Luminosity LHC Large Aperture
quadrupole”, Proceedings of IPAC14, Dresden, Germany, June 2014, paper TUPRO002, pp. 993–
996.

[50] T. Pugnat et al., “Accurate and Efficient Tracking in Electromagnetic Quadrupoles”, Proceedings
of IPAC18, Vancouver, Canada, June 2014, paper THPAK004, pp. 3207.

[51] A. Simona et al., “High order time integrators for the simulation of charged particle motion in
magnetic quadrupoles”, Elsevier, February 2019.

133

http://sixtrack.web.cern.ch/SixTrack/
http://sixtrack.web.cern.ch/SixTrack/
https://www.overleaf.com/1345694dwypbp#/3325092/

Bibliography

[52] F. James, “RANLUX: A FORTRAN Implementation of the High Quality Pseudorandom
Number Generator of Luscher”. Comput.Phys.Commun. 79 (1994): 11114.DOI:10.1016/0010-
4655(94)90233-X.

[53] F. James, “A Review of Pseudorandom Number Generators”, Computer Physics Communications
60, no. 3 (1 October 1990): 32944. DOI:10.1016/0010-4655(90)90032-V.

[54] P. LEcuyer, “Efficient and Portable Combined Random Number Generators”, Commun. ACM
31, no. 6 (June 1988): 742751. DOI:10.1145/62959.62969.

[55] V. Previtali, “Performance Evaluation of a Crystal-enhanced Collimation System for the LHC”,
Ph. D. thesis, EPFL, Lausanne, Switzerland (2010).

[56] D. Mirarchi, “Crystal collimation for LHC”, Ph. D. thesis, Imperial College, London, UK (2015).

[57] D. Mirarchi et al., “A crystal routine for collimation studies in circular proton accelerators”, Pro-
ceedings of the 6th International Conference Channeling: “Charged & Neutral Particles Channel-
ing Phenomena”, Capri, Italy (2014).

[58] D. Mirarchi et al., “Crystal implementation in SixTrack for proton beams”, ICFA Mini-Workshop
on Tracking for Collimation in Particle Accelerators, CERN, Geneva, Switzerland (2015).

[59] F. Forcher, “An improved simulation routine for modelling coherent high-energy proton interac-
tions with bent crystals”, Bachelor thesis, UniPD, Padova, Italy (2017).

[60] R. Rossi, “Experimental Assessment of Crystal Collimation at the Large Hadron Collider”,
Ph. D. thesis, Università La Sapienza’, Roma, Italy (2018).

134

List of Tables

1.1 External Routines . 2

2.1 An overview of the reference particle variables used in SixTrack. 5
2.2 An overview of the particle arrays used in SixTrack, and their definition. 5

3.1 Iteration Errors . 9

4.1 Available arguments in the SIMU block. 12
4.4 Initial Coordinates of the 2 Particles . 17
4.7 Available keyword/value sets in the DIST block. 20
4.8 Available column formats in the DIST block. 22
4.9 Available fill methods in the DIST block. 25
4.10 Format of the ASCII file containing the distribution to be read by the DIST block. . . 26
4.11 The format of the ASCII file where the distribution read by the DIST block is echoed.

See also Table 10.2 in DUMP for a more detailed description of the variables. 26

5.1 Different Types of Linear Elements . 28
5.2 Different Types of Non-linear Elements . 28

6.2 Aperture types and specifiers. Only the mandatory specifiers are reported. 41
6.3 Other input options of the LIMI block. Options are listed in alphabetical order. 42
6.4 Columns of the aperture losses.dat file. The number between parentheses refers to

the case SixTrack is compiled for coupling to Fluka, i.e. if the FLUKA compilation flag
is on. A ’-’ means that a given column is not available when SixTrack is compiled the
FLUKA compilation flag. 43

6.6 Available function types in DYNK. 45
6.7 Element types and attributes available in DYNK . 50
6.11 Input parameters for the WIRE block. 58
6.12 Input parameters for ELEN block. 61
6.14 Old Collimation Input Format . 77
6.15 Input parameter in the Fringe Field profile files. 81

10.2 The following table shows a summary of the quantities used in describing the output
format. The units are declared explicitly for each dump. 104

10.3 The following formats, set by the format option, are accepted: 104
10.5 Available tune calculation methods in SixTrack. 110
10.6 Format of the NORM files . 111
10.7 Format of the fma sixtrack file . 111

A.1 Default Tracking Parameters . 119
A.2 Default Size Parameters . 120

B.1 List of Input and Output Files. 121

135

List of Tables

C.1 Header of the Binary Data Files . 124
C.2 Format of the Binary Data . 125
C.3 Post Processing Data . 126
C.4 4D Linear Parameters . 127
C.5 Format of file with external errors, fort.16, and internal errors written to fort.9 . . 128
C.6 Format of file fort.34 for detuning and distortion calculation with external program

“SODD” [22] . 128

136

	Title Page
	Acknowledgements
	Contents
	Introduction
	Versions and Service
	Evolution of SixTrack
	SixTrack Input Structure
	Input Format
	Input Values
	Command Line Arguments

	Conventions
	Tracking
	Normalisation Matrix

	General Input
	Main Input Files
	Program Version
	Print Selection
	Settings
	Comment Line
	Iteration Errors
	MAD-X to SixTrack Conversion

	Initial Conditions for Tracking
	Simulation Parameters
	Tracking Parameters
	Initial Coordinates
	Synchrotron Oscillation
	Tracking with Ions
	Random Numbers
	Initial Distribution
	Column Formats
	Filling the Columns
	Support for the Old DIST Format

	Machine Geometry
	Single Elements
	Linear Elements
	Non-Linear Elements
	Multipole Blocks
	Generalized RF-Multipoles
	Solenoid
	Cavities
	Beam–Beam Lens
	Wire
	``Phase-trombone'' or Matrix Element
	AC Dipole
	Dipole Edge
	Crab Cavity
	RF Multipole
	Electron Lens
	Scattering Point
	Beam Position Monitor
	X-Rotation
	Y-Rotation
	S-Rotation

	Block Definitions
	Structure Input
	Format 1: List of Single Elements
	Format 2: Multi-Column List of Elements

	Displacement of Elements

	Special Elements
	Multipole Coefficients
	Generalized RF-Multipoles
	Aperture Limitations
	General Description
	Specifying Aperture Marker
	Other Input Options
	Format of aperture_losses.dat File
	Example

	Power Supply Ripple
	Dynamic Kicks
	FUN Statements
	SET Statement
	Additional Flags
	Output File dynksets.dat
	Examples

	Beam–Beam Element
	Wire
	``Phase Trombone'' Element
	Beam Distribution EXchange (BDEX)
	Communication protocols

	Electron Lens
	Format of Radial Profile

	Scattering
	Module Flags
	Element, Target and Process Definitions

	Collimation
	Collimation Input Block
	The Collimator Database
	Main Database Section
	Additional Collimator Settings

	Collimation with Geant4
	Old Input Format

	Fringe Fields

	External Tools
	Pythia Integration

	Organising Tasks
	Random Fluctuation Starting Number
	Organisation of Random Numbers
	Combination of Elements

	Processing
	Linear Optics Calculation
	Tune Variation
	Chromaticity Correction
	Orbit Correction
	Decoupling of Motion in the Transverse Planes
	Sub-Resonance Calculation
	Search for Optimum Places to Compensate Resonances
	Resonance Compensation
	Differential Algebra
	Normal Forms
	Corrections
	Post-Processing

	Extra Output Files
	Dumping of Beam Population
	FMA Analysis
	File Hash
	ZIPFile Combined and Compressed Output
	HDF5 Output
	ROOT Output
	Simulation Meta Data and Timing Output

	Appendix
	List of Default Values
	Default Tracking Parameters
	Default Size Parameters

	Input and Output Files
	Data Structure of the Data Files
	Bibliography
	Keyword Index
	List of Tables

