
EUROPEAN LABORATORY FOR PARTICLE PHYSICS
CERN – SL Division

CERN/SL/94–56 (AP)
Update November 2017

SixTrack

Version 4.7.16

Single Particle Tracking Code Treating Transverse Motion with

Synchrotron Oscillations in a Symplectic Manner

User’s Reference Manual

F. Schmidt, update by A. Alekou, M. Fitterer, J.F. Wagner, S.J. Wretborn, R. De Maria,
S. Kostoglou, K. Sjobak and T. Persson

Abstract

The aim of SixTrack is to track two nearby particles taking into account the full six–dimensional phase
space including synchrotron oscillations in a symplectic manner. It allows to predict the long–term
dynamic aperture which is defined as the border between regular and chaotic motion. This border
can be found by studying the evolution of the distance in phase space of two initially nearby particles.
Parameters of interest like nonlinear detuning and smear are determined via a post–processing of the
tracking data. An analysis of the first order resonances can be done and correction schemes for several
of those resonances can be calculated. Moreover there is the feature to calculate a one–turn map to
very high order and the full six–dimensional case, using the LBL differential algebra. This map allows
a subsequent theoretical analysis like normal form procedures which are provided by É. Forest [1].

The linear elements are usually treated as thick elements in SixTrack. In that case there is at
least one non–zero length element in the structure file which is not a drift–element. If the accelera-
tor, however, is modelled exclusively with drifts and kicks SixTrack automatically uses the thin–lens
formalism according to G. Ripken [2]. A common header of output data and the format of these data
has been found for MAD and SixTrack tracking data.

Geneva, Switzerland
August 24, 2018

Contents

1 Introduction 2

2 Versions and Service 4
2.0.1 Evolution of SixTrack . 5

3 Input Structure 6
3.1 General Input . 6

3.1.1 Program Version . 6
3.1.2 Print Selection . 6
3.1.3 Comment Line . 7
3.1.4 Iteration Errors . 7
3.1.5 MAD – SixTrack Conversion . 8

3.2 Machine Geometry . 8
3.2.1 Single Elements . 8

3.2.1.1 Linear Elements . 8
3.2.1.2 Nonlinear Elements . 9
3.2.1.3 Multipole Blocks . 10
3.2.1.4 Cavities . 10
3.2.1.5 Beam–Beam Lens . 10
3.2.1.6 Wire . 11
3.2.1.7 “Phase–trombone” or matrix element 11
3.2.1.8 AC dipole . 12
3.2.1.9 Dipole edge . 12
3.2.1.10 Crab Cavity . 12
3.2.1.11 RF multipole . 13
3.2.1.12 Electron Lens . 14
3.2.1.13 Scattering point . 14
3.2.1.14 Beam Position Monitor . 14
3.2.1.15 Other element types . 14

3.2.2 Block Definitions . 14
3.2.3 Structure Input . 15
3.2.4 Displacement of Elements . 16

3.3 Special Elements . 16
3.3.1 Multipole Coefficients . 16
3.3.2 Aperture Limitations . 17
3.3.3 Power Supply Ripple . 18
3.3.4 Dynamic Kicks . 18
3.3.5 Beam–Beam Element . 28
3.3.6 Wire . 30
3.3.7 “Phase Trombone” Element . 32
3.3.8 Electron lens . 32
3.3.9 Scattering . 33

3.4 Organising Tasks . 35

i

CONTENTS ii

3.4.1 Random Fluctuation Starting Number . 35
3.4.2 Organisation of Random Numbers . 36
3.4.3 Combination of Elements . 36

3.5 Processing . 37
3.5.1 Linear Optics Calculation . 37
3.5.2 Tune Variation . 38
3.5.3 Chromaticity Correction . 38
3.5.4 Orbit Correction . 39
3.5.5 Decoupling of Motion in the Transverse Planes 40
3.5.6 Sub–resonance Calculation . 40
3.5.7 Search for Optimum Places to Compensate Resonances 41
3.5.8 Resonance Compensation . 41
3.5.9 Differential Algebra . 42
3.5.10 Normal Forms . 43
3.5.11 Corrections . 44
3.5.12 Post–processing . 45

3.6 Initial Conditions for Tracking . 47
3.6.1 Tracking Parameters . 48
3.6.2 Initial Coordinates . 51
3.6.3 Synchrotron Oscillation . 52

3.7 Extra output files . 53
3.7.1 Dumping of beam population . 53
3.7.2 FMA analysis . 56
3.7.3 ZIPFile combined and compressed output . 60

4 Acknowledgement 62

A List of Keywords 63

B List of Default Values 66
B.1 Default Tracking Parameters . 66
B.2 Default Size Parameters . 67

C Input and Output Files 68

D Data Structure of the Data–Files 71

E Tracking Examples 76
E.1 Input Example . 76
E.2 Output Example . 78
E.3 Plot Example . 80

Bibliography 87

List of Tables

2.1 External Routines . 4

3.1 Iteration Errors . 7
3.2 Different Types of Linear Elements . 8
3.3 Different Types of Nonlinear Elements . 9
3.4 Available function types in DYNK. 20
3.5 Element types and attributes available in DYNK. 24
3.6 Input parameters for WIRE block. 31
3.7 Input parameters for ELEN block. 32
3.8 Tune-shift correction parameters . 45
3.9 Initial Coordinates of the 2 Particles . 52
3.10 Available tune calculation methods in SixTrack. 58
3.11 Format of the NORM files . 59
3.12 Format of the fma sixtrack file . 59

A.1 List of Keywords . 63

B.1 Default Tracking Parameters . 66
B.2 Default Size Parameters . 67

C.1 List of Input and Output Files. 68

D.1 Header of the Binary Data–Files . 71
D.2 Format of the Binary Data . 72
D.3 Post–processing Data . 73
D.4 4D Linear Parameters . 74
D.5 Format of file with external errors # 16 and internal errors written to # 9 75
D.6 Format of file # 34 for detuning and distortion calculation with external program

“SODD” [21] . 75

1

Chapter 1

Introduction

The Single Particle Tracking Code SixTrack is optimised to carry two particles 1 through an accelerator
structure over a large number of turns. It is an offspring of RACETRACK [3] written by Albin Wrulich
and its input structure has been changed as little as possible so that slightly modified RACETRACK
input files or those of other offsprings like FASTRAC [4] can be read in.

The main features of SixTrack are:

1. Treatment of the full six–dimensional motion including synchrotron motion in a symplectic
manner [5]. The energy can be ramped at the same time considering the relativistic change of
the velocity [6].

2. Detection of the onset of chaotic motion and thereby the long–term dynamic aperture by eval-
uating the Lyapunov exponent.

3. Post–processing procedure allowing

• calculation of the Lyapunov exponent

• calculation of the average phase advance per turn

• FFT analysis

• resonance analysis

• calculation of the average, maximum and minimum values of the Courant–Snyder emittance
and the invariants of linearly coupled motion

• calculation of smear

• plotting using the CERN packages HBOOK, HPLOT and HIGZ [7, 8, 9]

4. Calculation of first–order resonances and of correction schemes for the resonances [10].

5. Calculation of the one–turn map using the differential algebra techniques. The original DA
package by M.Berz [11] has been replaced by the package of LBL [1]. The Fortran code is
transfered into a Map producing via the (slightly modified) “DAFOR” code [12].

6. The code is vectorised, with two particles, the number of amplitudes, the different relative
momentum deviations ∆p

po
in parallel [13].

7. Operational improvements:

• free format input

• optimisation of the calculation of multipole kicks

• improved treatment of random errors

• each binary data–file has a header describing the history of the run (Appendix D)

1Two particles are needed for the detection of chaotic behaviour.

2

CHAPTER 1. INTRODUCTION 3

The SixTrack input is line oriented. Each line of 80 characters is treated as one string of input in
which a certain sequence of numbers and character strings is expected to be found. The numbers and
character strings must be separated by at least one blank, floating point numbers can be given in any
format, but must be distinguished from integer numbers. Omitted values at the end of an input line
will keep their default values (B.1), and lines with a slash “/” in the first column will be ignored by
the program.

For detailed questions concerning rounding errors, calculation of the Lyapunov exponent and
determination of the long–term dynamic aperture, see [14].

In chapter 3, the input structure of SixTrack is discussed in detail. To facilitate the use of the
program, a set of appendices are added, giving a list of keywords (Appendix A), a list of default
values (Appendix B), the input and output files (Appendix C), a description of the data structure of
the binary data–files (Appendix D) and tracking examples (Appendix E).

Chapter 2

Versions and Service

There are two versions: for element by element tracking there is a vector version, and there is a
version to produce a one–turn map using the LBL Differential Algebra package. In both cases the
input structure file # 2 is used to determine if the thick or thin linear element mode has to be used.

To use the power of the Differential Algebra, for instance to calculate the 6–D closed orbit in an
elegant fashion, the tracking versions may also be equipped with a low order map facility to avoid the
otherwise huge demand on memory.

It must be mentioned that in the linear thin–lens version dipoles have to be treated in a special
way. See section 3.2.1.3 for details.

To convert MAD files into SixTrack input a special conversion program mad 6t [15] has been
developed (see also 3.1.5).

The following subroutines are taken from various packages:

Table 2.1: External Routines

Package Routine Purpose

NAGLIB E04UCF, E04UDM, E04UEF, X04ABF using internally Normal Forms

HBOOK HBOOK2, HDELET, HLIMIT, HTITLE graphic basics

HPLOT HPLAX, HPLCAP, HPLEND, HPLINT, graphic options

HPLOPT, HPLSET, HPLSIZ, HPLSOF

HIGZ IGMETA, ISELNT, IPM, IPL graphic output

All versions can be downloaded from the web. The project webpage is found at http://sixtrack.
web.cern.ch/, and primary source repository is located at https://github.com/SixTrack/SixTrack.
Older versions can be found at http://cern.ch/Frank.Schmidt/Source.

In case of problems, please see the CERN SixTrack egroups “sixtrack-users” and “sixtrack-developers”.
If these are not accessible to you, you are welcome to contact the coordinators: Riccardo De Maria
and Kyrre Sjobak, as well as the original developer Frank Schmidt. Our contact details are available
from the CERN phonebook.

If you think you have found a defect in the program, please create a report on the issue tracker
at https://github.com/SixTrack/SixTrack/issues. Note that for this to be usefull, you need to
describe what the program is doing, what you expected it to do, and an example which demonstrates
the unwanted behaviour. Plase also look through the issues that are already listed, and see if it is
known. If so, you are welcome to add a comment to the issue, which may influence its priority or give
additional and useful information to the developers.

The most up to date version of the documentation can always be found on the GitHub repository

4

http://sixtrack.web.cern.ch/
http://sixtrack.web.cern.ch/
https://github.com/SixTrack/SixTrack
http://cern.ch/Frank.Schmidt/Source
https://github.com/SixTrack/SixTrack/issues

CHAPTER 2. VERSIONS AND SERVICE 5

mentioned above. Additionally, various older documentation can be found at http://cern.ch/Frank.
Schmidt/Documentation/doc.html.

2.0.1 Evolution of SixTrack

Lastly, I would like to give a short historical overview how the versions of SixTrack have evolved.

• Version 1

The first version has been an upgrade of RACETRACK [3] to include the full 6D formalism for
long linear elements by G. Ripken [5].

• Version 2

The DA–package and the Normal Form techniques [11, 17] have been added to allow the produc-
tion of high–order one–turn Taylor maps and their analysis. The 6D thin–lens formalism [2] has
also been included to speed–up the tracking without appreciable deterioration of the accelerator
model for very large Hadron colliders like the LHC.

• Version 3

For the present version the beam–beam kick à la Bassetti and Erskine [18] has been included
together with the 6D part by Hirata et al. [19]. Moreover, this 6D part has been upgraded to
include the full 6D linear coupling [20]. Lastly, the LBL DA–package has replaced the original
one by Berz and all operations, needed to set–up the accelerator structure, are now performed
with the help of Forest’s LieLib package [1].

• Version 4 – in preparation

Upgrading the program to FORTRAN90. This is of interest in particular as É. Forest has
wrapped his tools in this more powerful language. Using operator overloading it will be possible
to perform the map production with a code which is almost identical to that which does the
normal tracking.

Update version history

http://cern.ch/Frank.Schmidt/Documentation/doc.html
http://cern.ch/Frank.Schmidt/Documentation/doc.html

Chapter 3

Input Structure

The idea of RACETRACK input is to use a sequence of input blocks, each block with a specific
keyword in the first line, the keyword “NEXT” in the last line and the input data in the lines in
between. The keyword “ENDE” ends this sequence, and all blocks after this keyword are ignored.
This system makes it easy to read input and allows easy change and addition of input blocks. It was
therefore also used in SixTrack.

3.1 General Input

3.1.1 Program Version

Description The Program Version input block determines if all of the input will be in the input
file # 3 or if the geometry part of the machine (see 3.2) will be in a separate file # 2. The latter
option is useful if tracking parameters are changed but the geometry part of the input is left as it is.
The geometry part can be produced directly from a MAD input file (see 3.1.5).

Keyword FREE or GEOM

Number of data lines 0

Format keyword comment title

keyword The first four characters of the first line of the input file # 3 are reserved for the keyword
(FREE for free format input with all input in file # 3; GEOM if the geometry part is in file #
2)

comment Following the first four characters, 8 characters are reserved for comments

title The next 60 characters are interpreted as the title of the output file # 6

3.1.2 Print Selection

Description Use of the Print Selection input block causes the printing of the input data to the
output file # 6. It is advisable to always use this input block to have a complete protocol of the
tracking run.

Keyword PRIN

Number of data lines 0

6

CHAPTER 3. INPUT STRUCTURE 7

3.1.3 Comment Line

Description An additional comment can be specified with this block. It will be written to the
binary data files (Appendix D) and will appear in the post–processing output as well.

Keyword COMM

Number of data lines 1

Format A string of up to 80 characters.

3.1.4 Iteration Errors

Description For the processing procedures, the number of iterations and the precision to which
the processing is to be performed are chosen with the Iteration Errors input block. If the input block
is left out, default values will be used.

Keyword ITER

Number of data lines 1 to 4

Format Each data line holds three values as in table 3.1, except for the fourth line one which
the horizontal and vertical aperture limits can be additionally specified. This has been added to avoid
artificial crashes for special machines.

Table 3.1: Iteration Errors
data integer double default number of demanded variations of
line value iterations for precision of
1 ITCO 50 closed orbit

calculation
DMA 1e-12 closed orbit

displacements
DMAP 1e-15 derivative

of closed orbit
displacements

2 ITQV 10 Q adjustment
DKQ 1e-10 quadrupole

strengths
DQQ 1e-10 tunes

3 ITCRO 10 chromaticity
correction

DSM0 1e-10 sextupole
strengths

DECH 1e-10 chromaticity
correction

4 DE0 1e-9 momentum spread
for chromaticity
calculation

DED 1e-9 momentum spread
for evaluation
of dispersion

DSI 1e-9 desired orbit
r.m.s. value;
compensation of
resonance width

APER(1) 1000[mm] horizontal
aperture
limit

APER(2) 1000[mm] vertical
aperture
limit

CHAPTER 3. INPUT STRUCTURE 8

3.1.5 MAD – SixTrack Conversion

Description A converter has been developed [15] which is directly linked to MAD8. It produces
the geometry file # 2; an appendix to the parameter file # 3 which defines which of the multipole
errors are switched on; the error file # 16 and the file # 8 which holds the transverse misalignments
and the tilt of the nonlinear kick elements. It also produce a file (unit 34) with linear lattice functions,
phase advances and multipole strengths needed for resonance calculations for the program SODD [21].

3.2 Machine Geometry

3.2.1 Single Elements

Description The Single Elements input block defines the name and type of linear and nonlinear
elements, the inverse bending radius or multipole strength respectively, and the strength and length
of the elements. Linear and nonlinear elements are distinguished by length; linear elements have a
nonzero length and nonlinear elements have zero length. Both kinds of elements can appear in the
input block in arbitrary order. The input line has a different format for linear and nonlinear elements.
Moreover, the multipoles, being a set of nonlinear elements, are treated in a special way. The maximum
number of elements is set as a parameter (see Appendix B.2).

Keyword SING

Number of data lines variable

Format See the following three sections.

3.2.1.1 Linear Elements

Description Each linear single element has a name, type, inverse bending radius, focusing and a
nonzero length.

Format name type %−1 K length

name May contain up to sixteen characters

type As shown in the table 3.2

%−1 Inverse bending radius in m−1

K Focusing strength in m−2

length Magnet length in meters

Table 3.2: Different Types of Linear Elements
type %−1 K description

0 0 0 drift length magnet
1 X 0 horizontal (rectangular) bending
2 0 X quadrupole (– focusing, + defocusing)
3 X 0 horizontal (sector) bending
4 X 0 vertical (rectangular) bending
5 X 0 vertical (sector) bending
6 X X horizontal combined function magnet
7 X X vertical combined function magnet
8 X 0 edge focusing

CHAPTER 3. INPUT STRUCTURE 9

Remarks

1. For the horizontal plane the bending radius is defined to be negative (% < 0). This is different
from other programs like MAD [22].

2. K < 0 corresponds to a horizontal focusing quadrupole.

3. For the length of an edge focusing element (type=8) the same value must be used as for the
corresponding bending magnet. A sector bending magnet is transformed into a rectangular
magnet with an edge focusing element of positive length on either side, while for the opposite
transformation a negative length is required.

4. It is important to note that the splitting of a rectangular magnet, which is sometimes necessary
if multipole errors are to be introduced, does change the linear optics. It is therefore advisable
to replace the rectangular magnet with a sector magnet, which can be split without affecting the
linear optics, and make an overall transformation into a rectangular magnet via edge focusing
elements. Do not forget to use the total length of dipole as the length of the edge focusing
element.

3.2.1.2 Nonlinear Elements

Format name type Kn–strength r.m.s.–strength length

name May contain up to sixteen characters

type As shown in table 3.3

Kn–strength Average multipole strength

r.m.s.–strength Random multipole strength

length Must be = 0

Table 3.3: Different Types of Nonlinear Elements

type strength description

0 – observation point (for instance
for aperture limitations)

1 b1[rad ·m0] horizontal bending kick
–1 a1 vertical bending kick

2 b2[rad ·m−1] normal quadrupole kick
–2 a2 skew quadrupole kick
...

10 b10[rad ·m−9] normal 20th pole
–10 a10 skew 20th pole

Remarks

1. Because the horizontal bending magnet is defined to have a negative bending radius, the sign
for normal elements is different from other programs like MAD, while skew elements have the
same sign.

2. Again contrary to other programs the factor (n− 1)! is already included in the multipole strength,
which is defined as follows:

• for normal elements bn(SixTrack) = −1
(n−1)!Lelementbn(MAD)

• for skew elements an(SixTrack) = 1
(n−1)!Lelementan(MAD)

CHAPTER 3. INPUT STRUCTURE 10

3. Unlike in RACETRACK, the horizontal and vertical displacements do not fit into the 80 charac-
ter input lines of SixTrack. They have to be introduced in a separate Displacements of Elements
input block (see 3.2.4).

3.2.1.3 Multipole Blocks

Description A set of normal, normal–r.m.s., skew and skew–r.m.s. errors can be combined effec-
tively. The actual values for the strengths have to be given in a separate Multipole Coefficient input
block (see 3.3.1) which must have the same name. To consider the curvature of dipoles which are
replaced by drifts and dipole kicks this block is used in two different ways.

Format name type cstr cref length

• Marker for high order kick (default)

name May contain up to sixteen characters

type Must be = 11

cstr The bending strength given in the Multipole Coefficient input block (3.3.1) is multiplied
with this factor.

cref The reference radius given in the Multipole Coefficient input block (3.3.1) will be multiplied
by this factor. If it is zero the multipole block will be ignored.

length Must be = 0

• Default + dipole curvature

name May contain up to sixteen characters

type Must be = 11

cstr The bending strength [rad] of horizontal or vertical dipole.
Internally the value is set to one to allow the processing of a multipole block (3.3.1).

cref The length [m] of the dipole that is approximated by a kick. Internally this value is set to
one to allow the processing of a multipole block (3.3.1).

length

– length = -1 : horizontal dipole

– length = -2 : vertical dipole

Remark The definition of the multipole strength in a block will be given in (3.3.1).

3.2.1.4 Cavities

Format name type u0 harm lag

name May contain up to sixteen characters

type Type identifier is +12 and −12 for above and below transition energy respectively.

u0 Circumference voltage in [MV]

harm Harmonic number

lag Lag angle [degrees] in the cavity (zero is default)

3.2.1.5 Beam–Beam Lens

Depending on the setting in the BEAM block of fort.3 (Section 3.3.5), there are two ways to define a
beam beam lens in the SINGLE ELEMENTS list.

CHAPTER 3. INPUT STRUCTURE 11

When the EXPERT flag is set in the BEAM block, the parameters of the beam–beam lens is defined
there. In this case, only the element name and type and the location within the lattice remian in the
fort.2 element definition.

Format name type

name May contain up to sixteen characters

type 20

The rest of the parameters are ignored and should be set to zero.

When the EXPERT flag is not set, the “traditional” format is used:

Format name type h-sep v-sep strength-ratio σ hor2 σ ver2 σ lon2

name May contain up to sixteen characters

type 20

h-sep Horizontal beam–beam separation [mm]

v-sep Vertical beam–beam separation [mm]

strength-ratio Strength ratio with respect to the nominal beam–beam kick strength. This is useful,
in particular for 4D, to allow for splitting one beam–beam kick into several (longitudinally close
by) kicks.

σ hor2 when the flag lhc = 2 is set in the BEAM block of the fort.3 file, this column represent the
horizontal σ for the strong beam [mm2]

σ ver2 when the flag lhc = 2 is set in the BEAM block of the fort.3 file, this column represent the
vertical σ for the strong beam [mm2]

σ lon2 this variable is for future purposes, at the present it is always equal to zero.

Remark These beam–beam elements become active when the “Beam–Beam” input block 3.3.5 is
used.

3.2.1.6 Wire

Format name type

name May contain up to sixteen characters

type 15

Remark The “wire” elements become active when the WIRE input block 3.3.6 is used. All param-
eters except name and type have to be set to zero, otherwise SixTrack aborts. The parameters for the
wire are defined in the WIRE input block.

3.2.1.7 “Phase–trombone” or matrix element

Format name type

name May contain up to sixteen characters

type 22

CHAPTER 3. INPUT STRUCTURE 12

Remark These “trombone” elements become active when the “Phase Trombone Element” input
block 3.3.7 is used.

3.2.1.8 AC dipole

Format name type ACdipAmp Qd ACdipPhase

name May contain up to sixteen characters

type Type identifier is +16 and −16 for horizontal and vertical AC dipoles respectively.

ACdipAmp Maximum excitation amplitude [Tm].

Qd Excitation frequency in units of [2× π].

ACdipPhase Phase of the harmonic excitation in radians.

Remark The length of the ramps and the flat top are specified in the “Displacement” block 3.2.4.
The energy introduced in the “Initial coordinates” block 3.6.2 is used to compute the deflection angle.

3.2.1.9 Dipole edge

Format name type r21 r43

name May contain up to sixteen characters

type Type identifier 24

r21 Horizontal edge focusing.

r43 Vertical edge focusing.

Remark MAD-X is outputting the correct format when using the dipedge element. An ex-
ample of the hard edge model is described in the physics guide [16], which gives r21 = −r43.
Note that the values of the vertical edge focusing is dependent on the modeling of the fringe
fields [23]. A particle with position x1, y1 and angle x′1, y

′
1 will have the angle x′2, y

′
2 after passing

through the dipedge element. The following equations describe their relation:

x′2 = x′1 + x1
r21

1 + δ
(3.1)

y′2 = y′1 + y1
r43

1 + δ
(3.2)

3.2.1.10 Crab Cavity

Format name type Voltage Frequency Phase

name May contain up to sixteen characters

type Type identifier is +23 and −23 for horizontal and vertical crab cavities respectively.

Voltage Crab Cavity voltage [MV].

Frequency Crab Cavity frequency [MHz].

Phase Phase of the excitation in radians.

CHAPTER 3. INPUT STRUCTURE 13

Remark – How to use the crab cavity from MadX (using rfmultipole) to SixTrack:
In the Mad-X script write:
MULT.1, FREQ=<freq in MHz>., KNL={V [MV]/E0[MeV]}, PNL={phase}, TILT=<H: 0; V:PI/2.>;

where phase is 0.25 (phase for multipoles in SixTrack). As an example, to have the effect of a vertical
Crab Cavity of f = 400 MHz, V = 6 MV, beam energy [MeV]: BEAM -> PC/1e3, use the following
line:
MULT.1, FREQ=400., KNL=6./BEAM -> PC/1e3, PNL=0.25, TILT=PI/2.;

This creates the following line in fort.2:
mult.1d -23 6.000000000e+00 4.000000000e+02

(cont.) 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00

If you don’t want to have a vertical Crab Cavity then just remove the TILT, and if you don’t want to
have CC but a simple dipole field then remove the FREQ parameter.

3.2.1.11 RF multipole

Provides a kick in the form of

∆x′ + i∆y′ =
k

1 + δ
(x+ iy)n cos(φ− 2πft) (3.3)

∆δ =P0
k

1 + δ

(x+ iy)n+1

(n+ 1)!
cos(φ− 2πft) (3.4)

Format name type name kick frequency phase

name Limited to sixteen characters.

type 26: normal quadrupole , -26 skew quadrupole, 27: normal sextupole, -27 skew sextupole, 28:
normal octupole, -28 skew octupole;

kick maximum normalized kick k

frequency frequency f in [MHz]

Remark How to use the RF multipoles (from MadX to SixTrack):

• 2nd order multipole (quadrupole):
In the Mad-X script write:
MULT.1, KNL={0,-0.06*1e-3}, PNL={0, 0.25};
where -0.06*1e-3 is the b2 value in units of Tm/mn−1.
This gives the following single element in fort.2:
mult.1q 26 6.000000000e-05 400.000000000e+00 -1.570796327e+00

(cont.) 0.000000000e+00 0.000000000e+00 0.000000000e+00

• 3rd order multipole (sextupole):
In the Mad-X script write:
MULT.1, FREQ=400., KNL={0,0,1159.*1e-3}, PNL={0,0,0.25};
where 1159.*1e-3 is the b3 value in units of Tm/mn−1.
This gives the following single element in fort.2:
mult.1s 27 -5.795000000e-01 4.000000000e+02 -1.570796327e+00

(cont.) 0.000000000e+00 0.000000000e+00 0.000000000e+00

• 4th order multipole (octupole):
In the Mad-X script write:
MULT.1, FREQ=400., KNL={0,0,0,-4.*1e-3}, PNL={0,0,0,0.25};
where -4.*1e-3 is the b4 value in units of Tm/mn−1.
This gives the following single element in fort.2:
mult.1o 28 6.666666667e-04 4.000000000e+02 -1.570796327e+00

(cont.) 0.000000000e+00 0.000000000e+00 0.000000000e+00

CHAPTER 3. INPUT STRUCTURE 14

Remark The values of b2, b3, and b4 used in the above examples were taken from Table II of
paper [36].

The effect of these multipoles was checked on a beam of particles with x = x′ = y′ = 0,
and y = 1, 2, and 3 mm, with different z positions. The effect on y′ was linear, quadratic and
cubic with y when using b2, b3, or b4, respectively, as expected. Furthermore, the amplitude of
the y′ agrees with the analytical formulas found in the appendix of this paper [36] under “Normal
quadrupole/sextupole/octupole”.

Important note: Bρ and the factorial (n − 1)! are already included in K2, K3 etc of Mad-X, i.e.
b3 = 1159·10−3 in Mad-X results in a kick as if b3 is 1159·10−3/(n−1)!. So in order for this paper’s [36]
analytical equations to be compatible with Mad-X, the equations for normal quadrupole should read
as

∆x′ = − b2
(2− 1)! Bρ

. . . .

3.2.1.12 Electron Lens

Format name type

name May contain up to sixteen characters

type 29

Remark The “e-lens” elements become active when the ELEN input block 3.3.8 is used. All pa-
rameters except name and type have to be set to zero in the list of single elements, otherwise SixTrack
aborts. The parameters for the e-lens are defined in the ELEN input block.

3.2.1.13 Scattering point

Format name type

name May contain up to sixteen characters

type 40

Remark The “scattering” elements become active when the SCAT(ter) input block 3.3.9 is used.
All parameters except name and type have to be set to zero in the list of single elements, otherwise
SixTrack aborts. The parameters of the scattering are defined in the SCAT(ter) input block.

3.2.1.14 Beam Position Monitor

Format BPMname 0 0 0 0

BPMname Must start with “BP” and maybe followed by forteen characters.

Remark This element dumps the coordinates of the 1st particle to the file with name BPMname.
The file contains 7 columns: x,x′, y,y′, ct,δp/p and E. Usual SixTrack units are used. Any number of
BPM elements can be used but the names must differ.

3.2.1.15 Other element types

Some other elements, such as dipole edge (24), solenoid (25), multipole RF kicks (±26, ±27, ±28) are
accepted by SixTrack, but they are not currently supported by the development team or tested for
correctness. It is therefore advised to not use these elements.

3.2.2 Block Definitions

Description In four–dimensional transverse tracking, the linear elements between nonlinear el-
ements can be combined to a single linear block to save computing time.

CHAPTER 3. INPUT STRUCTURE 15

Keyword BLOC

Number of data lines variable but at least one

Format

• first data line: mper msym(1) . . . msym(mper) (integers)

• from second data line on: block–name {element–name}

mper Number of super–periods. The following set of blocks is considered a super–period . The
accelerator consists of mper super–periods.

msym(i) ± 1 for each super–period. If msym(i)=1, the i ’th super–period will be built up in the
order in which linear elements appear in the blocks below. If msym(i)=–1, the super–period will
be built up in reverse order.

block–name The name of the block with up to sixteen characters

element–name The element names have to appear as a linear element in the list of “single elements”
(3.2.1.1). If one line is too short to contain all the elements of a block, a line with additional
elements to the same block can be added. At least 5 (five) blanks must appear at the begin-
ning of the extra line so that names of blocks and names of linear elements in a block can be
distinguished.

Remarks

1. When synchrotron oscillation is introduced, the linear elements can no longer be lumped into
one block, because in that case even a drift length magnet is a nonlinear element with respect
to the longitudinal plane. However, the block structure is still kept to make use of the speed–up
in case one can restrict the studies to the four–dimensional case.

2. The maximum number of blocks and the maximum number of entries in each block are defined
as parameters (Appendix B.2).

3. The inversion of a super–period (msym(i)= –1) is presently no longer allowed.

3.2.3 Structure Input

Description The model of the accelerator is put together by constructing a sequence of blocks
of linear elements, nonlinear elements, observation points, and possibly a cavity with the keyword
“CAV” used if this name does not appear in the list of single elements (3.2.1) with type ±12. In that
case, its parameters are given in the Synchrotron Oscillations input block (3.6.3).

Format { structure–element | CAV | GO }

structure–element Structure elements must appear as nonlinear and observation elements in the
single element list or in the list of blocks of the Block Definition input block (3.2.2).

CAV A cavity can be introduced by a keyword “CAV”. This element does not appear in the single
element list (3.2.1).

GO Starting point: the keyword “GO” denotes where the tracking is started and where the tracked
coordinates are recorded at each turn.

Remark Repetition of parts of the structure is indicated by parentheses with a multiplying factor
N in front of them. If the left parenthesis “(“ occurs in a line of input, the factor N is expected to be
found in the preceding characters. If the characters are blank, N is set to 1. The right parenthesis “)”
signals the end of the sequence to be repeated.

CHAPTER 3. INPUT STRUCTURE 16

3.2.4 Displacement of Elements

Description This block allows to displace nonlinear elements in horizontal and vertical posi-
tions. With the r.m.s. values of the horizontal and vertical displacements it is possible to achieve a
displacement that is different from element to element.

To simulate a measured closed orbit at the position of nonlinear elements, it is convenient to use
the Displacement of Elements input block instead of trying to produce a closed orbit by dipole kicks.

Keyword DISP

Number of data lines variable

Format name xd xdrms yd ydrms

name Name of the element which is displaced

xd Horizontal displacement [mm]

xdrms R.m.s. of horizontal displacement [mm]

yd Vertical displacement [mm]

ydrms R.m.s. of vertical displacement [mm]

In the case of an AC dipole these variables are not meant for displacing this element but are used
for the following AC dipole parameters:

Format name nfree nramp1 nplato nramp2

name May contain up to sixteen characters

nfree Number of turns free of excitation at the begining of the run.

nramp1 Number of turns to ramp up the excitation amplitude from 0 to ACdipAmp.

nplato Number of turns of constant excitation amplitude.

nramp2 Number of turns to ramp down the excitation amplitude.

Remark In RACETRACK the displacements had been included in the Single Element input
block (3.2.1). In SixTrack they must be given in the separate Displacement of Elements input block
because of the limited length of one line of input.

3.3 Special Elements

One advantage of SixTrack, that has been adopted from RACETRACK, is that it easily allows to
define elements for a specific purpose. The special elements implemented till now are found in this
section. All Special Elements should be written in the fort.3 file.

3.3.1 Multipole Coefficients

Description Sets of normal and skew multipoles of up to tenth order, each with an r.m.s. value,
can be combined with this block. The multipole kick is calculated using a Horner scheme which
saves considerably in computation time. Moreover, using the multipole block reduces the number of
elements in the single element list (3.2.1).

Keyword MULT

CHAPTER 3. INPUT STRUCTURE 17

Number of data lines 2 to 12

Format

• first data line: name R0 δ0

• data lines 2 to 12: Bn r.m.s.–Bn An r.m.s.–An

name Name of the multipole block which must appear in the list of single elements (3.2.1.3).

R0 Reference radius (in mm) at which the magnet errors are calculated. This makes it convenient to
use values from field measurements.

δ0 Bending strength of the dipole (in mrad). Field errors of line 2–11 are taken to be relative to the
bending strength.

Remarks

1. The Bn and An are related to the bn, an of the single nonlinear element (3.2.1.2) in the following
way:

bn = δ0BnR
1−n
0 103n−6; an = δ0AnR

1−n
0 103n−6

2. The sign convention and the factorial (n!) are treated as for the single nonlinear elements in
(3.2.1.2).

3. Multipoles of different names can be set to be equal using the “ORG” input block.

4. 22–poles are included (n = 11). By enlarging the parameter “MMUL”(Appendix B.2) up to
40–poles (MMUL=20) can be treated. To make the change of MMUL effective, it is of course
necessary to recompile the program.

3.3.2 Aperture Limitations

Description This input data block is used to introduce additional collimators or aperture limi-
tations in the machine. Each nonlinear element can be used for this purpose. Rectangular or elliptical
shapes of the aperture limitations are allowed. On top of that there is a general (rectangular) aperture
check at each non–zero length element. The general aperture values are chosen to be large enough
(B.1) to define the short–term dynamic aperture.

Keyword LIMI

Number of data lines variable

Format name type–of–limitation xaper yaper

name The name of any nonlinear (zero length) element in the Single Element input block (3.2.1.2)
except multipole blocks (3.2.1.3).

type–of–limitation Two types of aperture limitations are allowed:
“RE” for a rectangular aperture shape, i.e.

xi < xaper, yi < yaper

“EL” for an elliptical aperture shape, i.e.

x2
i

xaper2
+

y2
i

yaper2
< 1

xaper Aperture in the horizontal plane in mm

yaper Aperture in the vertical plane in mm

CHAPTER 3. INPUT STRUCTURE 18

3.3.3 Power Supply Ripple

The RIPP block is been deprecated since release 4.5.20, and the functionality is now provided by the
DYNK block (3.3.4). A fort.3 file containing a RIPP block is therefore no longer valid, and will result
in an error message. The description below is therefore only provided as a reference for those who
need to convert old input files.

Description If power supply ripple is to be considered this input data block can be used. A nonlinear
quadrupole is expected as a ripple element (type=2 and zero length in the single element list (3.2.1.2)),
but in principle other nonlinear elements are also allowed. Ripple depth, ripple frequency and starting
phase of the ripple frequency are the input parameters.

Keyword RIPP

Number of data lines variable

Format name ripple–depth ripple–frequency start–phase nrturn

name Name of the nonlinear element in the “single element” block (3.2.1.2)

ripple–depth Maximum kick strength of the ripple element, a quadrupole kick is usually expected

ripple–frequency Given in number of turns (a real value is allowed) of one ripple period

start–phase Initial phase of the ripple element

nrturn Initial number of turns, for prolongation runs the number of turn already done

3.3.4 Dynamic Kicks

Description The DYNamic Kicks module [37] allows time-dependent modification of the settings
of single elements. The supported elements and attributes are listed in Table 3.5. The settings can
be computed on-the fly using several functions, loaded from input files or a combination, as described
in Table 3.4.

Further, unless explicitly switched off using a NOFILE statement, DYNK produces an output file
“dynksets.dat”. This file contains the setting of all elements and attributes for which DYNK is active.
It is written in all turns of the simulation, even if DYNK is not active in that exact turn.

Keyword DYNK

Number of data lines variable

Format There are four types of statements possible in a DYNK block, listed below. On top of this,
lines starting with “/” are treated as a comment and ignored.

FUN FUN function-name function-type arg1 arg2 arg3 . . .
This statement defines a function, i.e. something which when evaluated produces a numerical value
which can be used to set the value of an element attribute. The functions in DYNK all have a
unique name, and they may take up to 7 arguments (a limitation imposed by the internal parameter
getfields n max fields). The function type must be one of those listed in Table 3.4. A function may
be defined so that it uses the result of another function, which must be defined above it in the
DYNK block. This requirement avoids any possibility for infinite recursion. The functions are only
evaluated when needed, i.e. when used by a SET statement in that turn. The functions may thus
be evaluated multiple times in one turn (if used by multiple SET statements which are active in that
turn, or referenced by multiple other FUN statements which are themselves used more than once in

CHAPTER 3. INPUT STRUCTURE 19

that turn), or it may not be evaluated at all. The functions are always evaluated as a function of the
current turn number t, which may be shifted by a turn-shift specified in a SET statement. Function
names have a maximum length of 20 characters.

CHAPTER 3. INPUT STRUCTURE 20

Table 3.4: Available function types in DYNK.

Type name Arguments Description

“System”
functions
GET element-name[string]

attribute-name[string]
Extracts the original value of a setting, i.e. as specified in
the SINGLE ELEMENT section (Sec. 3.2.1). Attributes
as used for SET, see Table 3.5.

FILE filename[string] Loads the settings from file; the file is expected to be an
ascii file with two columns where the first column is the
turn number (should start at 1 and include all turns up
to as long as is wanted), and the second column is the
value for that turn number.

FILELIN filename[string] Similar to FILE, but any double can be used as the
turn number as long as they are monotonically rising.
When evaluated, the function interpolates from the line-
segments specified in the file.

PIPE inPipeName[string]
outPipeName[string]
ID[string] fileUnit[int]

Uses a pair of UNIX FIFOs, through which it can com-
municate with an external program. When evaluated, it
sends a message through the outpipe, and then waits for
a message on the inpipe which should contain the value
the FUN should returned. The ID is used in case several
DYNK PIPE FUNs are using the same outPipe and in-
Pipe, so that the controlling external program can choose
what to calculate. Note that it will use both fileUnit

and fileUnit+1, and if several PIPE FUNs are using
the same file, they must also use the same fileUnit.
For more details, see the example below. Also note that
PIPE is not available in the checkpoint/restart version of
SixTrack.

RANDG seed1[int] seed2[int]
mu[real] sigma[real]
mcut[int]

Returns a pseudorandom number generated from a Gaus-
sian distribution. The mean value and width is controlled
by mu and sigma, while mcut is the maximum number
of sigmas to generate numbers up to; set to 0 to disable
this cut. The integers seed1 and seed2 are the seed used
to initialize the RANECU generator. Note that every
RANDG function defined in DYNK uses its own sepa-
rate random number stream.

RANDU seed1[int] seed2[int] Returns a pseudorandom number generated from a uni-
form distribution. The integers seed1 and seed2 are the
seed used to initialize the RANECU generator. Note that
every RANDU function defined in DYNK uses its own
separate random number stream.

RANDON seed1[int] seed2[int]
P[float]

Returns the value of 1.0 or 0.0 resulting of the weighting
with the probability P of a pseudorandom number gen-
erated from a uniform distribution . The integers seed1
and seed2 are the seed used to initialize the RANECU
generator. Note that every RANDON function defined
in DYNK uses its own separate random number stream.

(The table continues on the next page)

CHAPTER 3. INPUT STRUCTURE 21

Type name Arguments Description
Filters
FIR N[int] filename[string]

baseFun[string]
Applies a Finite Impulse Response (FIR) filter of order
N to the function baseFun. The output is given as y[t] =∑N

i=0 bi ∗ x[t− i], where t is the current turn and x[t− 0]
is the result of the most recent call to baseFun. The
coefficients b0 . . . bN and initial values of x[t−0] . . . x[t−N]
are loaded from the given file filename, which is a space-
separated ascii file with three columns. These columns
are (1) row index [int], (2) coefficients bi [float] and (3)
initial values of the x[] array [float]. The row indices are
expected to go from 0 to at least N in steps of 1. Note
that the filter is stepped once per call, i.e. the array x[] is
shifted once every time the FUN is called. Also note that
when called, the filter is first stepped, then the new value
is filled into the first position in x[], and finally the sum is
evaluated. This means that the last value in the x[] array
is never used, while the first value (x[t−0]) is immediately
pushed into x[t− 1] before the first evaluation.

IIR N[int] filename[string]
baseFun[string]

Applies an Infinite Impulse Response (IIR) filter of order
N to the function baseFun. This is very similar to FIR,
except that it also uses its own previous outputs. The
sum is thus written as y[t] =

∑N
i=0 bi ∗x[t− i] +

∑N
i=1 ai ∗

y[t − i]. The file filename is identical to that which is
used for FIR, except for adding two more columns. These
columns are (4) a0 . . . aN [float] and (5) initial values for
the y[] array [float]. Note that a0 is never used, and the
value of y[t− 0] is pushed back to y[t− 1] before the first
evaluation of the sum, such that y[t−N] is never used.

2-operand
operators
ADD function-name-1[string]

function-name-2[string]
Evaluate the functions referenced by function-name-1
and function-name-2, and return the sum of the results.

SUB function-name-1[string]
function-name-2[string]

Similar to ADD, but return the result of function1 minus
function2.

MUL function-name-1[string]
function-name-2[string]

Similar to ADD, but return the product of the results.

DIV function-name-1[string]
function-name-2[string]

Similar to ADD, but return the result of function1 di-
vided by function2

POW function-name-1[string]
function-name-2[string]

Similar to ADD, but return the result of function1 raised
to the power of function2.

(The table continues on the next page)

CHAPTER 3. INPUT STRUCTURE 22

Type name Arguments Description
1-operand
operators
MINUS function-name Returns the value of the named function, with the oposite

sign.
SQRT function-name Returns the square root of the value generated by the

named function.
SIN function-name Returns the sine of the value generated by the named

function.
COS function-name Returns the cosine of the value generated by the named

function.
LOG function-name Returns the natural logarithm of the value generated by

the named function.
LOG10 function-name Returns the common logarithm of the value generated by

the named function.
EXP function-name Returns the natural exponential function ex, where x is

the value generated by the named function.

Polynomial
and elliptical
functions
CONST value[real] Always returns the value specified.
TURN (none) Return the turn number, i.e. y(t) = t.
LIN a[real] b[real] Computed value from the linear function y(t) = a · t+ b.
LINSEG x1[real] x2[real] y1[real]

y2[real]
The function is defined by a line segment between the
points (x1, y1) and (x2, y2), and undefined for x < x1 and
x > x2. It is required that x1 < x2.

QUAD a[real] b[real] c[real] Computed value from the quadratic function y(t) = a ·
t2 + b · t+ c.

QUADSEG x1[real] x2[real] y1[real]
y2[real] deriv1[real]

The quadratic function is defined by overlapping the
quadratic curve segment which passes through the points
(x1, y1) and (x2, y2), and dy/dx at x1 is deriv1. The
quadratic coefficients a, b, c are calculated as a = deriv1

x1−x2
+

y2−y1

(x1−x2)2 , b = y2−y1

x2−x1
− (x1 + x2) · a and c = y1 +(

−x2
1 · a− x1 · b

)
.

Trancendental
functions
SINF A[real] omega[real]

phi[real]
Computes y(t) = A sin (ωt+ φ).

COSF A[real] omega[real]
phi[real]

Computes y(t) = A cos (ωt+ φ).

COSF RIPP A[real] period[real]
phi[real]

Computes y(t) = A cos
(

2π(t−1)
period + φ

)
. This specialized

cosine is provided for compatibility, to be used when re-
placing old RIPP blocks.

(The table continues on the next page)

CHAPTER 3. INPUT STRUCTURE 23

Type name Arguments Description
Specialized
functions
PELP tinj[real] Iinj[real]

Inom[real] A[real]
D[real] R[real] te[real]

This function describes a patched “Parabolic-
Exponential-Linear-Parabolic” function, as used for
ramping the LHC dipoles and described in [38, Ap-
pendix C] and [39]. The parameters are:
• The injection time tinj, which is the time (in turn

numbers) when the ramp starts.

• The injection value Iinj, which is the value when
t ≤ tinj
• The final value Inom, which is the value after the

end of the ramp.

• The acceleration parameter A, which describes how
fast the current is growing in the first (parabolic)
segment.

• The decelertation parameter D, which describes
how fast the current growths flattens out in the
forth (parabolic) segment.

• The ramp rate R, which describes the maximum
ramp rate, seen in the third (linear) segment.

• The start time of the ramp te, which describes at
what time it switches from the parabolic (first) to
the exponential (second) segment.

ONOFF p1[int] p2[int] This function is a periodic “pulse width modulation” with
period p2 and pulse length p1. It may be described
as y(t) = {1.0 if mod(t− 1, p2) < p1} ; {0.0 otherwise}.
The reason for using t − 1 is that the modulus is nat-
urally zero-based, while SixTrack counts turns starting
from 1. Note that it is expected that p1 >= 0, p2 > 1,
and p1 <= p2. Also note that for negative t, the function
will always return 1.0.

SET SET element-name attribute-name function-name first-turn last-turn turn-shift
This statement defines an element setpoint, which changes an element/attribute to the value computed
by the given function. The SET becomes active when the turn number reaches first-turn, and switches
off once last-turn has been passed. When switched off, the value applied in last-turn stays for the
rest of the simulation, or until overwritten by another SET. If last-turn equals -1, the SET is active
untill the end of the simulation. The element type and attribute combinations which can be used in
DYNK is shown in Table 3.5.

The argument turn-shift is an integer (positive, negative, or zero) number which is added to
the current turn number before computing the function. Thus, in order to (as an example) apply
an exponential decay from the value v0 starting in turn t0 using the function defined as f(t) =
V0 exp(−t/τ), a turn-shift −t0 should be applied.

In addition to changing single element attributes, it is also possible to use DYNK to change certain
global attributes such as the reference energy. This is done through the “element” GLOBAL VARS; for
example one may want to simulate an energy ramp following the function eramp throughout the
whole simulation. For this, one would use the SET command “SET GLOBAL-VARS E0 eramp 1 -1

0”. Because of this, SixTrack does not accept a real single element in fort.2 named GLOBAL-VARS if
DYNK is active.

CHAPTER 3. INPUT STRUCTURE 24

Table 3.5: Element types and attributes available in DYNK.

Element type (idx) Attribute Units Description

Standard thin elements
(±1 – ±10),
Section 3.2.1.2

average ms radians * m-n See Table 3.3

RF cavities (±12),
Section 3.2.1.4

voltage MV One-turn accelerating voltage
harmonic – Harmonic number of the cavity
lag angle degrees Lag angle of the cavity

RF multipoles
(±23, ±26 – ±28),
Section 3.2.1.10

voltage MV Kick voltage
frequency MHz Frequency
phase radians Offset between zero-crossing and

ideal bunch center

Electron lens
(29),
Section 3.3.8

thetamax mrad Maximum angular kick

Scattering
(40),
Section 3.3.9

scaling – Scaling of probability, see Sec-
tion 3.3.9, paragraph about ELEM
command.

GLOBAL-VARS

Not a real element,
changes global variable

E0 MeV Reference energy of synchronous
particle

NOFILE The presence of this statement in a DYNK block switches off the normal writing of the
output file “dynksets.dat” in every line, instead producing a file only containing the message “###
DYNK file output was disabled with flag NOFILE in fort.3 ###”. This can be useful to save disk
space in very long simulations.

DEBU This statement switches on extra “debugging” output from DYNK. This can be useful
if debugging the code or if debugging the input.

Output file dynksets.dat When a DYNK block is present in the input file, a file “dynksets.dat”
is created and in the current working directory. Unless a NOFILE statement is present, this file
contains first a header “# turn element attribute SETidx funname value”, followed by rows of data
in the format specified in the header. This data is written for all element/attribute combinations and
in all turns, wether a SET is active for this element/attribute in this turn or not. If no SET is active
when the line is written out, the SETidx is written as -1, and the funname is “N/A”. If a SET is active
when the line is written out, the SETidx is the index of the currently active SET statement, where
the first statement occuring in fort.3 has index 1 etc. Similarly, the funname is the name referencing
the currently active FUN statement.

Examples

Replacement of RIPP block One use of the DYNK block is to replace the functionality of
the RIPP block (Section 3.3.3). The FUN type COSF RIPP is provided for exactly this purpose, and
provides an exact replacement. As an example, the RIPP block in the SixTest test-case prob1 looks
like (slightly reduced in size):

RIPPLE OF POWER SUPPLIES--

dmqx1f50l5+2 3.2315D-10 224.9

dmqx2af50l5+2 -3.2315D-10 224.9

CHAPTER 3. INPUT STRUCTURE 25

dmqx1f10mel5+2 2.5246D-16 0.0011245

NEXT

This can be replaced by the following:

DYNK

NOFILE

FUN RIPP-dmqx1f50l5+2 COSF_RIPP 3.2315D-10 224.9 0.0

SET dmqx1f50l5+2 average_ms RIPP-dmqx1f50l5+2 1 -1 0

FUN RIPP-dmqx2af50l5+2 COSF_RIPP -3.2315D-10 224.9 0.0

SET dmqx2af50l5+2 average_ms RIPP-dmqx2af50l5+2 1 -1 0

FUN RIPP-dmqx1f20kl5+2 COSF_RIPP 2.5246D-12 0.56225 0.0

SET dmqx1f20kl5+2 average_ms RIPP-dmqx1f20kl5+2 1 -1 0

NEXT

Here, each RIPP data line is replaced with two lines, one FUN statement for generating the function,
and one SET statement for applying the value. Note that the SET statements have an end-time “-1”,
meaning it is used untill the end of the simulation. Also note the precense of the NOFILE flag, which
is used to not generate a potentially very large (for very long simulations) dynkfile.dat output file.

Starting tracking inside a bump This example was taken from the paper [37], and demon-
strates how a bump can be temporarilly disabled if the starting point of the tracking is inside of it. The
reason for doing this is removing the neccessity of generating a starting distribution with the bump
already applied. Here, the HL-LHC v1.1 lattice is used, with vertical crab cavities around the first
interaction point (IP1, ATLAS), which is also the point where the tracking is started. The crab cavi-
ties opening the bump are called CRAB IP1 L1· · · 4, while the closing cavities are CRAB IP1 R1· · · 4.
The DYNK block for this looks like:

DYNK

FUN zero CONST 0.0

FUN CV_1R1 Get CRAB_IP1_R1 voltage

FUN CV_1R2 GET CRAB_IP1_R2 voltage

FUN CV_1R3 GET CRAB_IP1_R3 voltage

FUN CV_1R4 GET CRAB_IP1_R4 voltage

SET CRAB_IP1_R1 voltage zero 1 1 0

SET CRAB_IP1_R2 voltage zero 1 1 0

SET CRAB_IP1_R3 voltage zero 1 1 0

SET CRAB_IP1_R4 voltage zero 1 1 0

SET CRAB_IP1_R1 voltage CV_1R1 2 2 0

SET CRAB_IP1_R2 voltage CV_1R2 2 2 0

SET CRAB_IP1_R3 voltage CV_1R3 2 2 0

SET CRAB_IP1_R4 voltage CV_1R4 2 2 0

NEXT

Here, the function “zero” is defined such that it always returns 0.0, and is used to switch off
the closing cavities in the first turn, i.e. when the beam exits the bump. Further, the functions
CV 1R1· · · 1R4 and CV 1L are used to store the original value of the voltages, without having to
explicitly enter them into the DYNK block.

The SET statements then first sets the voltage of all the cavities to zero in turn 1, and then in
turn 2 sets it to their respective “switched on” voltages. The SET statements end after turn 2, but
the last values are retained.

This means that when the simulation starts with the bunch in IP1, it exits the bump without
any kicks from the closing crab cavities. It then comes around (still in turn 1), and encountered the
switched-on opening cavities CRAB IP1 L1· · · 4, which crabs the beam. After passing through IP1,
the turn counter is increased from 1 to 2, triggering the SET statements to switch on the closing
cavities CRAB IP1 R1· · · 4 as well.

CHAPTER 3. INPUT STRUCTURE 26

0 20 40 60 80 100
Turn

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Vo

lta
ge

 [M
V]

0

π/2

π

3π/2

2π

5π/2

3π

Ph
as
e
[r
ad

ia
ns

]

Voltage
Phase

Figure 3.1: Singals generate by DYNK example for ramp + exponential decay of crab voltage, and
also linear drift of crab phase. Only the signals for CRAB IP1 L1 are shown. The plot is made from
the data in dynksets.dat.

Ramp and exponential decay of crab voltage, combined with a linear drift of crab
phase This slightly more complicated example builds on the example given above. It shows how to
change two parameters (voltage and phase) of several objects. It also demonstrates how functions can
be chained together, making more complicated functions. Some of the resulting functions are shown
in Figure 3.1, and the DYNK block here looks like:

DYNK

/DEBUG

FUN zero CONST 0.0

FUN CV_R1 GET CRAB_IP1_R1 voltage

FUN CV_R2 GET CRAB_IP1_R2 voltage

FUN CV_R3 GET CRAB_IP1_R3 voltage

FUN CV_R4 GET CRAB_IP1_R4 voltage

FUN CV_L GET CRAB_IP1_L1 voltage

FUN ramp LIN 0.02 0

FUN ramp_R1 MUL CV_R1 ramp

FUN ramp_R2 MUL CV_R2 ramp

FUN ramp_R3 MUL CV_R3 ramp

FUN ramp_R4 MUL CV_R4 ramp

FUN ramp_L MUL CV_L ramp

SET CRAB_IP1_R1 voltage zero 1 10 0

SET CRAB_IP1_R2 voltage zero 1 10 0

SET CRAB_IP1_R3 voltage zero 1 10 0

SET CRAB_IP1_R4 voltage zero 1 10 0

SET CRAB_IP1_L1 voltage zero 1 9 0

SET CRAB_IP1_L2 voltage zero 1 9 0

SET CRAB_IP1_L3 voltage zero 1 9 0

SET CRAB_IP1_L4 voltage zero 1 9 0

/

SET CRAB_IP1_R1 voltage ramp_R1 11 61 -11

SET CRAB_IP1_R2 voltage ramp_R2 11 61 -11

CHAPTER 3. INPUT STRUCTURE 27

SET CRAB_IP1_R3 voltage ramp_R3 11 61 -11

SET CRAB_IP1_R4 voltage ramp_R4 11 61 -11

SET CRAB_IP1_L1 voltage ramp_L 10 60 -10

SET CRAB_IP1_L2 voltage ramp_L 10 60 -10

SET CRAB_IP1_L3 voltage ramp_L 10 60 -10

SET CRAB_IP1_L4 voltage ramp_L 10 60 -10

/

/Voltage decay and detuning

FUN expCore LIN -0.05 0.0

FUN decay EXP expCore

FUN decayScaled MUL decay CV_L

SET CRAB_IP1_L1 voltage decayScaled 70 100 -70

SET CRAB_IP1_L2 voltage decayScaled 70 100 -70

SET CRAB_IP1_L3 voltage decayScaled 70 100 -70

SET CRAB_IP1_L4 voltage decayScaled 70 100 -70

FUN phasedrift LIN 0.3141592654 0.0

SET CRAB_IP1_L1 phase phasedrift 70 100 -70

SET CRAB_IP1_L2 phase phasedrift 70 100 -70

SET CRAB_IP1_L3 phase phasedrift 70 100 -70

SET CRAB_IP1_L4 phase phasedrift 70 100 -70

NEXT

The first functions defined here are the same as above, storing the default values (as defined in the
single element list) for the relevant elements and also zero. Then follows a normalized linear ramp
function “ramp”, with gradient 0.02 = 1/50. This is then used by the “specialized” ramp functions
“ramp R1· · ·R4”, which scales “ramp” so that the end point is the standard voltages for t ∈ 0 . . . 50.

These functions are used to first set the crabs to 0.0 for the first 9 revolutions, and in the 10th
revolution the ramp starts. As the “ramp” function is defined starting at turn 0, a shift -10 or -11 is
applied to the ramps. The ramp is switched off after turn 60/61, leaving the crabs to be operating at
the last SET value.

Further, we want to demonstrate a failure in the crab voltage. This is done using an exponential
decaying function V (t) = V0 exp (−0.05t), which is implemented as three chained functions:

expCore: f(t) = −0.05t+ 0.0

decay: g(t) = exp(f(t)) = exp(−0.05t+ 0.0)

decayScaled: h(t) = V0 · g(f(t)) = V0 · exp(f(t)) = exp(−0.05t+ 0.0)

For the SET, the time t is then shifted by -70 turns, so that the functions are evaluated starting at
t=0.

Detuning a cavity (accelerating or crab)

Write

Using the PIPE function

To use the PIPE functionality, add a FUN and SET to the DYNK block such as:

FUN pipe1 PIPE /tmp/pip1 /tmp/pip2 myID1 4242

SET ACFCA.AR1.B1 voltage pipe1 10 -1 -9

Then create the two pipes using the mkfifo UNIX command, e.g. mkfifo pip1 and mkfifo pip2

in the chosen directory. When starting SixTrack, it will first open the input pipe (while reading the
DYNK block), and wait for the external program to do the same. This can be simulated by running

CHAPTER 3. INPUT STRUCTURE 28

cat > pip1; it is also possible to open the input pipe before starting SixTrack. After opening the
input pipe, SixTrack will open the output pipe, again this can be simulated by running cat pip2, and
again this pipe may be opened before starting SixTrack. Note that when SixTrack ends, the output
pipe will be closed, so the recieving cat process is terminated.

After opening the output pipe, SixTrack writes the line DYNKPIPE !******************! to this
file. It then writes a line similar to INIT ID=myID1 for FUN=pipe1 for each FUN using this output
pipe.

During tracking, when one of the PIPE FUNs are called SixTrack writes a line similar to GET

ID=myID1 TURN= 1 to the output pipe. Note that the turn number is the one passed to the FUN from
SET, i.e. including any turn-shift. It then waits for a single floating point number to be written (in
ascii) to the input pipe, which is then read and returned from the FUN.

3.3.5 Beam–Beam Element

Description The beam–beam kick, including a separation of the beams, is treated à la Basetti
and Erskine [18] and implemented as in MAD [22]. However, a much faster but nevertheless precise
calculation using interpolation can be used [24]. For SixTrack version 3 the beam–beam is also available
in the 6D form à la Hirata [19]. Lastly, the linear coupling has been considered in 4 and 6 dimensional
phase space [20].

Keyword BEAM

Number of data lines variable but at least one

Format Two different input formats are available, “traditional” and “EXPERT”. If “EXPERT”
mode is wanted, this is triggered by adding the flag EXPERT on the first line of the block.

Traditional format

• first data line: partnum emitnx emitny sigz sige ibeco ibtyp lhc ibbc

• other data lines: name ibsix xang xplane xstr

partnum (float) Number of particles in bunch

emitnx,emitny (floats) Horizontal and vertical normalized emittance respectively [µm · rad]

sigz,sige (floats) R.m.s. bunch length [m] and r.m.s. energy spread

ibeco (integer) Switch (0 = off; 1 = on) to subtract the closed orbit introduced by the separation of
the beams. It is recommended to always subtract it as it is not yet calculated in a selfconsistent
manner. The ibeco switch also acts on the “wire” elements 3.3.6 in the same way as on the
beam-beam elements. It subtracts the closed orbit introduced by the wire if ibeco=1 and applies
it if ibeco=0.

ibtyp (integer) Switch (0 = off; 1 = on) to use the fast beam–beam algorithms developed in col-
laboration with G.A. Erskine and E. McIntosh. The linear optics are calculated with “exact”
beam–beam kicks.

lhc For the LHC with its anti–symmetric IR the separation of the beams in one plane can be calculated
by the β–function of the other plane. For flat beams (not anti-symmetric optics) the separation
can be loaded from the fort.2 file. (0 = off; 1 = anti-symmetric; 2 = load from file).

ibbc Linear coupling considered in 4D and 6D (0 = off; 1 = on).

name Name of 6D beam–beam element. Beam–beam elements that do not appear will be treated as
4D kicks.

CHAPTER 3. INPUT STRUCTURE 29

ibsix (integer) Number of slices of the 6D beam–beam element. If ibsix is set to 0 this element is
treated as a 4D element.

xang (float) Half crossing angle (angle the between the trajectories of the two beams) at this particular
element [rad].

xplane (float) Crossing plane angle [rad].

xstr (float) Angle of the position of the slices in the boosted frame [rad] (i.e. X = Z sin(xstr) cos(xplane),
Y = Z sin(xstr) cos(xplane)). In absence of crabbing user should make sure xstr=xang ; in case
the xstr flag is not set then xstr=xang is assumed and a warning is printed (since version 4.5.45).

EXPERT format

• first data line: EXPERT

• second data line: partnum emitnx emitny sigz sige ibeco ibtyp lhc ibbc

• other data lines – 4D BB lens (1 line per element):
name ibsix Σx,x Σy,y h-sep v-sep strength-ratio

• other data lines – 6D BB lens (3 lines per element):
name ibsix xang xplane h-sep v-sep
Σx,x Σx,xp Σxp,xp Σy,y Σy,yp

Σyp,yp Σx,y Σx,py Σxp,y Σxp,yp strength-ratio

Some parameters are new or defined in a different way:

lhc This parameter is kept for now only for RHIC studies when equal to 9.

name Name of the beam–beam element.

ibsix (integer) Number of slices of the 6D beam–beam element.
If ibsix is set to 0 this element is treated as a 4D element.
If ibsix is larger or equal 1 this element is treated as a 6D element.

Σxx Horizontal σ for the strong beam [mm2].

Σyy Vorizontal σ for the strong beam [mm2].

h-sep Horizontal beam–beam separation [mm]

v-sep Vertical beam–beam separation [mm]

strength-ratio Strength ratio with respect to the nominal beam–beam kick strength. This is useful
to allow for splitting one beam–beam kick into several (longitudinally close by) kicks.

Σi,j Second order momenta matrix for the strong beam, in units of mm and mrad. For example Σxxp

in [mm mrad]

Conversion from traditional to EXPERT format An automatic converter from the “tra-
ditional” input block to the new “expert” format is built into SixTrack; every time a non-EXPERT
input block is encountered, a conversion is printed to the standard output. Therefore, all the user
needs to do is to run SixTrack (number of turns does not matter) on an input file that should be
converted, and follow the instructions which are printed at the beginning of the program output.

Remark These beam–beam elements have to appear in the single element list (3.2.1.2) (type 20). If
the “traditional” option is used in the BEAM block, the listing in the single element list must contain
their horizontal and vertical beam–beam separations (see 3.2.1.5).

CHAPTER 3. INPUT STRUCTURE 30

Sign Convention Some clarifications regarding the sign convention used for the separation and
crossing angle variables.

• Separations:

1. The separation is added to the transverse coordinates of each particles just before the
beam-beam subroutines (see Fig. 3.2).

x̃i = xi + sepx − COx
ỹi = yi + sepy − COy

2. Lorentz boost applied to the updated coordinates.

3. The separation used for the actual beam-beam kick (sepx,y,kick) is the difference between
the centroid of the strong slice (X†,Y†) and the each particle (xi,yi).

4. Antiboost to return to accelerator frame.

5. The separation is removed and the closed orbit is added back. Tracking continues.

x̃i = xi − sepx + COx

ỹi = yi − sepy + COy

Figure 3.2: Coordinate manipulation taking into consideration the beam-beam lens separation as
stated in point 1 of the separation sign convention.

• Crossing angles:

1. The closed orbit is removed just before the beam-beam subroutines.

x̃′i = x′i − COx′
ỹ′i = y′i − COy′

2. Lorentz boost applied to the updated coordinates.

3. Apply Synchro-Betatron Mapping.

4. Antiboost to return to accelerator frame.

5. The closed orbit is added back. Tracking continues.

x̃′i = x′i + COx′

ỹ′i = y′i + COy′

3.3.6 Wire

Description The wire block serves for reading in the input parameters for the wire. Each wire also
needs to be added as single element in the list of single elements.

CHAPTER 3. INPUT STRUCTURE 31

Figure 3.3: Coordinate manipulation to move from the accelerator frame to a head-on collision frame
(Figures left and center). A positve crossing angle is considered as shown in the left figure. Then
Lorentz boost and Synchro-Betatron Mapping are applied (right).

Keyword WIRE

Number of data lines variable

Format name flag co current int length phys length disp x disp y tilt x tilt y A description of the
input parameters for the wire is given in Table 3.6.

Table 3.6: Input parameters for WIRE block.

Arguments unit Description

name - Name of wire. Must be the same as in list of single
elements.

flag co - flag to define the displacement of the wire in respect to
the closed orbit or x=y=0. For flag co=+1 disp * is the
distance between x=y=0 and the wire. For flag co=-1
disp * is the distance between the closed orbit and the
wire.

current A wire current
int length m integrated length of the wire
phys length m physical length of the wire
disp x mm hor. displacement of the wire
disp y mm vert. displacement of the wire
tilt x degrees hor. tilt of the wire −90 < tilt x < 90 (uses same

defintion as DISP block)
tilt y degrees vert. tilt of the wire −90 < tilt y < 90 (uses same

defintion as DISP block)

Remark The user has to check that the wires defined in the WIRE block are also defined in the
list of single elements and vice versa. All parameters except for the type (type 15) are ignored in the
single element definition and the execution is aborted if the parameters are non-zero. In addition to
the parameters defined in the WIRE block, the ibeco parameter in the BEAM block (see Sec. 3.3.5)
imposes the same behavior on the wire as for beam-beam. Explicitly, the closed orbit introduced by
the wire is subtracted if ibeco=1 and not subtracted if ibeco=0.

Example In the following we give some examples for wire definitions. This example defines two
wires wire 1 and wire 2.

The input block in fort.3 is given by:

WIRE

wire_1 -1 +98.9 2.0 1.0 10.0 10.0 1.1 1.1

wire_2 -1 +98.9 2.0 1.0 10.0 10.0 0.0 0.0

NEXT

The single and structure element definition in fort.2 is given by:

SINGLE ELEMENTS---

...

wire_1 15 0.000000000e+00 0.000000000e+00

0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00

wire_2 15 0.000000000e+00 0.000000000e+00

0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00

...

STRUCTURE INPUT---

CHAPTER 3. INPUT STRUCTURE 32

...

BLOC56 wire_1 wire_2

...

Note that all parameters except for the type have to be set to 0 in the single element definition.

3.3.7 “Phase Trombone” Element

Description The linear “phase trombone” allows to introduce a change in the tranverse phases
without spoiling the linear optics of the rest of the machine, i.e. the Twiss parameters are the same
at entrance and exit of the element.

Keyword TROM

Number of data lines 1 line with name and then in blocks of 14 lines with 3 entries each

Format

• first data line: name

• second data line: cx, cx′, cy

• third data line: cy′, cz, cz′

• fourth till 15th M(6× 6) matrix

name May contain up to sixteen characters

cx, cx′, cy, cy′, cz, cz′ (floats) 6D closed orbit to be added to the coordinates.

M(6× 6) (floats) 6× 6 matrix elements

Remark The user has to make sure that the above stated conditions are fulfilled. When using
the mad 6t [15] converter from MAD8 to SixTrack this is guaranteed to be the case. Note also that
the crossterms between the transverse plains are not considered for the time being.

3.3.8 Electron lens

Description The electron lens module serves for reading in the input parameters for different types
of electron lenses. Each e-lens also needs to be added as single element in the list of single elements.
Currently only the ideal hollow electron lens is implemented.

Keyword ELEN

Number of data lines variable

Format name type thetamax r2 r2ovr1 offset x offset y flag entrance flag exit A description of the
input parameters for the different e-lens types is given in Table 3.7. Currently only the ideal hollow
electron lens is implemented in SixTrack (type ANNULAR).

Table 3.7: Input parameters for ELEN block.

Type name Arguments unit Description

(The table continues on the next page)

CHAPTER 3. INPUT STRUCTURE 33

Type name Arguments unit Description
valid for all types

name - Name of e-lens. Must be the same as in list of single
elements.

type - type of electron lens. Available types are ANNULAR.

type specific parameters
ANNULAR thetamax mrad Maximum kick. This equals the kick received at r = r2

where r2 is the outer radius of the electron lens.
r2 mm Outer radius of e-lens.
r2ovr1 - Outer radius/inner radius.
offset x mm horizontal offset of e-lens.
offset y mm vertical offset of e-lens.
flag entrance - enable bends at entrance of e-lens.
flag exit - enable bends at exit of e-lens (not yet implemented).

Remark The user has to check that the e-lens defined in the ELEN block is also defined in the list of
single elements and vice versa. All parameters except for the type (type 29) are ignored in the single
element definition. The implementation of the ANNULAR type (ideal hollow e-lens) has no explicit
energy-dependency, except for the user defined parameter thetamax (see [16]).

Example In the following we give some examples for e-lens definitions.

ANNULAR This example defines two electron lenses hel1 and hel2. The input block in fort.3

is then given by:

ELEN

hel1 ANNULAR 4.920e-03 6.928 1.5 0 0 0 0

hel2 ANNULAR 4.920e-03 6.928 1.5 1.1547 2.3093 0 0

NEXT

The single and structure element definition in fort.2 is given by:

SINGLE ELEMENTS---

...

hel1 29 0.000000000e+00 0.000000000e+00

0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00

hel2 29 0.000000000e+00 0.000000000e+00

0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00

...

STRUCTURE INPUT---

...

BLOC56 hel1 hel2

...

Note that all parameters except for the type are set to 0 in the single element definition.

3.3.9 Scattering

This module is experimental! Use at your own risk; both the input format and physics implemen-
tation may change.

Description The SCATTER module is a framework for scattering particles through Monte Carlo
processes at various points in the machine.

CHAPTER 3. INPUT STRUCTURE 34

Keyword SCAT(TER)

Number of data lines variable

Format There are several different main statement classes possible in a SCATTER block, listed
below. Furthermore, lines starting with “/” are treated as a comment and ignored

DEBUG DEBUG
This statement switches on extra “debugging” output from SCATTER. This can be useful if debugging
the code or if debugging the input.

ELEMent ELEM elemname profile scaling gen1 (gen2, (gen3))
This statements associates a PROfile and between one and 31 GENerators with a SINGLE ELEMENT
which must be of type 40, as described in Section 3.2.1.13. The scaling argument, which is a floating
point number, is used to scale the probability of an interaction. This can be controlled through
DYNK, for example in order to scale only at one specified turn. The PROfile, GENerator(s), and
single elements are referenced through their names, and for the GENerators and PROfile they must
be defined above the ELEMent in the SCATTER block.

PROfile PRO name type (arguments)
This statement defines a profile, that is a density profile and general properties of the targets which
with the tracked particles are colliding. Several different types are available:

PROfile type FLAT: PRO name FLAT density[targets/cm2] mass[MeV/c2] momentum[MeV/c]

PROfile type GAUSS1: PRO name GAUSS1 beamtot[particles] sigmaX[mm] sigmaY[mm] offsetX[mm]
offsetY[mm]

ρ(x, y) =
Ntot

2πσxσy
exp

(
−(x− µx)2

2σ2
x

)
exp

(
−(y − µy)2

2σ2
y

)
(3.5)

GENerator GEN name type (arguments)
The generator block takes a name and a generator type input, followed by the parameters for the
generator type.

GENerator type PPBEAMELASTIC: GEN name PPBEAMELASTIC a b1 b2 phi tmin (crossSection)
Takes five or six input arguments, and generates the probability distribution given by

g(t) =
1

a2
1

dσ

dt
= e−b1t + 2ae−(b1+b2)t/2 cosφ+ a2e−b2t, (3.6)

where the first expression is a soft scatter data fit, the third expression a hard scatter fit, and
the second expression is the interference. a = a2/a1 is the amplitudes of the expressions. These
are combined into the first four input arguments a, b1, b2, and φ, as well as tmin which provides
a cut-off limit.

The optional sixth argument defines a fixed cross section for the scattering probability.

Input example with values for a fit to 13 TeV LHC.

GEN sc_thin PPBEAMELASTIC 0.046 18.52 4.601 2.647 0.0 30e-27

SEED SEED seed1 seed2
This sets the seed of the internal RNG used by the SCATTER block . Two integer seeds are required, Cite

RANECU
Cite
RANECUfor this block. The SEED block is mandatory for the SCATTER block to work. Note that when running

several simulations, the seed settings must be varied between each run in order to get uncorrelated
results.

1Controlled by the parameter scatter maxGenELEM.

CHAPTER 3. INPUT STRUCTURE 35

3.4 Organising Tasks

In this section the input data blocks are described, which are used to organise the input structure.

3.4.1 Random Fluctuation Starting Number

Description If besides mean values for the multipole errors (Gaussian) random errors should be
considered this input data structure is used to set the start value for the random generator.

Keyword FLUC

Number of data lines 1

Format izu0 mmac mout mcut (integers)

izu0 Start value for the random number generator

mmac – Sorry: disabled for the time being, i.e. mmac is fixed to be 1 – (In the vectorised version

the number of different starting seeds can be varied. Each seed is calculated as k × izu0 where k runs

from 1 to mmac which can not exceed 5 to save storage space (see list of parameters in Appendix B.2).)

mout A binary switch for various purposes, so all options, as described below, can be combined.

• mout = 0 : multipole errors internally created

• mout = 1 : multipole errors read–in from external file

External multipole errors are read–in from file 16 into the array of random values. To
activate these values one has to set to a value of 1 the relevant r.m.s.–positions of the
corresponding multipole blocks (3.3.1). The systematic components are added as usual
and multipoles not found in the fort.16 are treated as for (mout = 0). An error is only
detected if there are too few sets of multipoles in fort.16.

• mout = 2: the geometry and strength file is written to file # 4 in the same format as the
input file # 2; the multipole coefficients are written to file # 9; name, misalignments and
tilt is written to file # 27 and finally name, random single multipole strength and both
random transverse misalignments are written to file # 31.

• mout = 4: Name, horizontal and vertical misalignment and also the element tilt are read–in
from file # 8.

• mout = 8: Name and 3 Random numbers for single kick strength and both random trans-
verse misalignments and also the value of the tilt are read–in from file # 30.

mcut The random distribution can be cut by mcut sigma of the distribution. No cuts are applied for
mcut = 0 .

Remarks

1. The RANECU random generator [25] is used as it produces machine independent sequences of
random numbers.

2. If the starting point has to be changed or another nonlinear element is to be inserted, this can be
done without changing the once chosen random distribution of errors by using the Organisation
of Random Numbers input block.

3. The description of an accelerator is fully contained in 4 files: fort.2 (geometry), fort.3 (tracking
parameters and definition of multipole blocks), fort.16 (multipole errors) and fort.30 (random
numbers of the single multipole kick, the horizontal and vertical misalignment and the value of
the tilt). This block allows to write out the files # 4, 9, 27, 31 which may serve as the input
files # 2, 16, 8 and 30 respectively. The file fort.30 superseeds fort.8 if both files are read in.

CHAPTER 3. INPUT STRUCTURE 36

3.4.2 Organisation of Random Numbers

Description Working on a lattice for an accelerator often requires to introduce new nonlinear
elements. In those cases simply introducing this new element means that the previously chosen random
distribution of the errors will be changed and with it often the linear parameters. This input data
block is mainly used to avoid this problem by reserving extra random numbers for the new elements.
It also allows to change the observation point without affecting the machine. The random values of
different nonlinear elements including blocks of multipoles can be set to be equal to allow to vary the
number of nonlinear kicks in one magnet which clearly should have the same random distribution for
each multipolar kick. Finally multipole sets with different name can be made equal with this input
data block.

Keyword ORGA

Number of data lines variable

Format ele1 ele2 ele3 The data lines can be set in three different ways:

1. Ele1 = “name” where name 6= MULT
Ele2 = ignored
Ele3 = ignored
The nonlinear element or multipole set will have its own set of random numbers.

2. Ele1 = “name1” where name1 6= MULT
Ele2 = “name2”
Ele3 = ignored
The nonlinear element or multipole block Ele1 has the same random number set as those of
Ele2, if it follows Ele2 as the first nonlinear element in the structure list (3.2.3).

3. Ele1 = “MULT”
Ele2 = “name2”
Ele3 = “name3”
The multipole set “name3” is set to the values of the set “name2”. random errors are not
influenced in this case.

Remarks

1. A simple change of the starting point, by placing a “GO” somewhere in structure, used to
change the machine optics as the random numbers were shifted, too. Simply calling this block
even without a data line, will always fix the sequence of random numbers to start at the first
multipole in the structure.

2. This input data block must follow the definition of the multipole block, otherwise multipoles
cannot be set equal (option 3).

3. Do not use the keyword “MULT” in the single element list (3.2.1).

3.4.3 Combination of Elements

Description It is often necessary to use several families of magnetic elements with a certain ratio
R of magnetic strength to perform corrections like tune adjustment (3.5.2), chromaticity correction
(3.5.3) or resonance compensation (3.5.8). The Combination of Elements input block allows such a
combination of elements. The maximum number of elements is defined by the parameter NCOM (see
Appendix B.2).

Keyword COMB

CHAPTER 3. INPUT STRUCTURE 37

Number of data lines variable

Format e0 R1 e1 . . . Rn en

e0 Reference element which appears in the input of the processing procedure

e1, . . . , en Elements to be combined with e0

Rj Ratio of the magnetic strength of element ej to that of element e0

3.5 Processing

This section comprises all the input blocks that do some kind of pre– or post–processing.

3.5.1 Linear Optics Calculation

Description The linear optics calculation input block is used to make a printout of all linear
parameters (magnet lengths, β and α functions, tunes, dispersion and closed orbit) in the horizontal
and vertical planes at the end of each element or linear block. The number of elements or blocks can
be chosen.

Keyword LINE

Number of data lines variable but at least 1

Format

• first data line: mode number–of–blocks ilin ntco E I E II

• other data lines: name(1), . . . , name(nlin)

mode “ELEMENT” for a printout after each single element (3.2.1); “BLOCK” for a printout after
each structure block (3.2.2)

number–of–blocks (integer) The number of the blocks in the structure to which the linear parameter
will be printed. If this number is set to zero or is larger than the number of blocks, the complete
structure will be calculated.

ilin (integer) Logical switch to calculate the traditional linear optics calculation in 4D (1 = ilin) and
with the DA approach 6D (2 = ilin).

ntco (integer) A switch to write out linear coupling parameters.

• ntco = 0 : no write–out

• ntco 6= 0 : write–out of all linear coupled (4D) parameters including the coupling angle.
These parameters (name, longitudinal position, the phase advances at that location, 4 β–,
α– and γ–functions, 4 angles for coordinates and momenta respectively, plus the coupling
angle [rad]) are written in ascii format on file # 11. This write-out happens every ntco
turns.

E I, E II (floats) The two eigen–emittances to be chosen to determine the coupling angle. They are
typically set to be equal.

names (char) For nlin (≤ nele) element– and block names the linear parameters are printed whenever
they appear in the accelerator structure.

CHAPTER 3. INPUT STRUCTURE 38

Remarks

1. To make this block work the Tracking Parameter block (3.6.1) has to used as well.

2. When the “ELEMENT 0” option is used a file unit # 34 is written with the longitudinal position,
name, element type, multipole strength, β functions and phase advances in the horizontal and
vertical phase space respectively. This file is used as input for the “SODD” program [21] to
calculate detuning and distortion terms in first and second order. A full program suite can be
found at: /afs/cern.ch/group/si/slap/share/sodd

3. If the “BLOCK” option has been used, the tunes may be wrong by a multiple of 1/2. This
option is not active in the DA part (2 = ilin), which also ignores the (NTCO) option.

3.5.2 Tune Variation

Description This input block initializes a tune adjustment with zero length quadrupoles. This
is normally done with two families of focusing and defocusing quadrupoles. It may be necessary,
however, to have a fixed phase advance between certain positions in the machine. This can be done
with this block by splitting the corresponding family into two sub–families which then are adjusted to
give the desired phase advance.

Keyword TUNE

Number of data lines 2 or 4

Format

• data lines 1: name1 Qx iqmod6

• data lines 2: name2 Qy

• data lines 3 and 4, optional: name3 ∆Q and name4 name5 respectively

name1, name2 Names of focusing and defocusing quadrupole families respectively (in the single
element list (3.2.1.1)

Qx, Qy (floats) Horizontal and vertical tune including the integer part

iqmod6 (integer) Logical switch to calculate the tunes in the traditional manner (1 = iqmod6) and
with the DA approach including the beam-beam kick (2 = iqmod6).

name3 Name of the second sub–family, where the first sub–family is one of the above (name1 or
name2) This second sub–family replaces the elements of the first sub–family between the posi-
tions marked by name4 and name5 .

∆Q Extra phase advance including the integer part (horizontal or vertical depending on the first
sub–family) between the positions in the machine marked by name4 and name5

name4, name5 Two markers in the machine for the phase advance ∆Q with the elements of the
second sub–family between them

Remark The integer has to be included as the full phase advance around the machine is calcu-
lated by the program.

3.5.3 Chromaticity Correction

Description The chromaticity can be adjusted to desired values with two sextupole family using
this input block.

CHAPTER 3. INPUT STRUCTURE 39

Keyword CHRO

Number of data lines 2

Format data lines 1: name1 Q′x ichrom

Format data lines 2: name2 Q′y

name1/2 Names (in the single element list (3.2.1.2) of the two sextupole families

Q′ Desired values of the chromaticity: Q′ = δQ

δ(∆p
po

)
.

ichrom (integer) Logical switch to calculate the traditional chromaticity calculation (1 = ichrom)
and with the DA approach including the beam-beam kick (2 = ichrom).

Remark To make the chromaticity correction work well a small momentum spread is required
(DE0 in table (3.1)). It sometimes is required to optimize this spread.

3.5.4 Orbit Correction

Description Due to dipole errors in a real accelerator a closed orbit different from the beam axis
is unavoidable. Even after careful adjustment one always will be left over with some random deviation
of the closed orbit around the zero position. A closed orbit is introduced by nonzero strengths of b1
and a1 components of the multipole block (3.3.1), horizontal and vertical dipole kicks (3.2.1.2) or
displacements of nonlinear elements (3.2.4). This input data block allows the correction of a such
a random distributed closed orbit using he first two types in a “most effective corrector strategy”
[26]. For that purpose correctors have to be denoted by “HCOR= ” and “VCOR= ” and monitors by
“HMON= ” and “VMON= ” for the horizontal and vertical plane respectively. After correction the
orbit is scaled to the desired r.m.s. values unless they are zero.

On file unit 28 the horizontal orbit displacement, measured at the horizontal monitors, will be
written together with the monitor number, on file unit 29 the same is done for the vertical closed orbit
displacement.

Keyword ORBI

Number of data lines variable but at least 1

Format

• first data line: sigmax sigmay ncorru ncorrep

• other data lines: “HCOR= ” namec or “HMON= ” namem
or “VCOR= ” namec or “VMON= ” namem

sigmax, sigmay Desired r.m.s.–values of the randomly distributed closed orbit

ncorru Number of correctors to be used

ncorrep Number of corrections
If ncorrep=0 the correction is iterated until ITCO (see table 3.1) iterations or after the both
desired r.m.s.–values have been reached.

“HCOR= ” namec Horizontal correction element of name namec

“HMON= ” namem Horizontal monitor for the closed orbit of name namem

“VCOR= ” namec Vertical correction element of name namec

“VMON= ” namem Vertical monitor for the closed orbit of name namem

CHAPTER 3. INPUT STRUCTURE 40

Remarks

1. Elements can have only one extra functionality: either horizontal corrector, horizontal monitor,
vertical corrector or vertical monitor. If the number of monitors in a plane is smaller than the
number of correctors it is likely to encounter numerical problems.

2. The “HCOR= ”, “HMON= ”, “VCOR= ” and “VMON= ” must be separated from the following
name by at least one space.

3.5.5 Decoupling of Motion in the Transverse Planes

Description Skew–quadrupole components in the lattice create a linear coupling between the
transverse planes of motion. A decoupling can be achieved with this block using four independent
families of skew–quadrupoles, which cancel the off–diagonal parts of the transfer map. As these
skew–quadrupoles also influence the tunes an adjustment of the tunes is performed at the same time.

Keyword DECO

Number of data lines 3

Format

• first data line: name1,name2,name3,name4

• data lines 2 and 3: name5 Qx and name6 Qy respectively

name1,2,3,4 Names of the four skew–quadrupole families

name5, name6 Names of focusing and defocusing quadrupole families respectively (in the single
element list (3.2.1.1)

Qx, Qy (floats) Horizontal and vertical tune including the integer part

Remark A decoupling can also be achieved by compensating skew–resonances (3.5.8). The two
approaches, however, are not always equivalent. In the resonance approach the zeroth harmonic is
compensated, whilst a decoupling also takes into account the higher–order terms.

3.5.6 Sub–resonance Calculation

Description First order resonance widths of multipoles from second to ninth order are calculated
following the approach of Guignard [10]. This includes resonances, which are a multiple of two lower
than the order of the multipole. The first order detuning including feed–down from closed orbit is
calculated from all multipoles up to to tenth order.

Keyword SUBR

Number of data lines 1

Format n1 n2 Qx Qy Ax Ay Ip length

n1, n2 (integers) Lowest and highest order of the resonance

Qx, Qy Horizontal and vertical tune including the integer part

Ax, Ay Horizontal and vertical amplitudes in mm

CHAPTER 3. INPUT STRUCTURE 41

Ip (integer) Is a switch to change the nearest distance to the resonance e = nxQx+ nyQy. In cases
of structure resonances a change of p by one unit may be useful.

• ip = 0 : e is unchanged

• ip = 1 : (e± 1) = nxQx+ nyQy − (p± 1)

length Length of the accelerator in meters

3.5.7 Search for Optimum Places to Compensate Resonances

Description To be able to compensate a specific resonance one has to know how a correcting
multipole affects the cosine and sine like terms of the resonance width at a given position in the ring.
This input data block can be used to find best places for the compensation of up to three different
resonances, by calculating the contribution to the resonance width for a variable number of positions.
For each position the effect of a fixed and small change of magnetic strength on those resonance widths
is tested.

Keyword SEAR

Number of data lines variable but at least 2

Format

• data line 1: Qx Qy Ax Ay length

• data line 2: npos n ny1 ny2 ny3 ip1 ip2 ip3 (integers)

• data lines from 3 on: name1, . . . , namen

Qx, Qy Horizontal and vertical tune including the integer part

Ax, Ay Horizontal and vertical amplitudes in mm

length Length of the accelerator in m

npos Number of positions to be checked

n Order of the resonance

ny1, ny2, ny3 Define three resonances of order n via : nxQx+ nyQy = p with |nx|+ |ny| = n

ip1,ip2,ip3 The distance to a resonance is changed by an integer ip for each of the three resonances:
e = nxQx+ nyQy − (p+ ip).

namei i’th name of a multipole of order n , which has to appear in the single element list (3.2.1.2)

3.5.8 Resonance Compensation

Description The input block allows the compensation of up to three different resonances of order
n simultaneously the chromaticity and the tunes can be adjusted. For mostly academic interest there
is also the possibility to consider sub–resonances which come from multipoles which are a multiple
of 2 larger than the resonance order n. However, it must be stated that the sub–resonances depend
differently on the amplitude compared to resonances where the order of the resonances is the same as
that of the multipoles.

Keyword RESO

Number of data lines 6

CHAPTER 3. INPUT STRUCTURE 42

Format

• data line 1: nr n ny1 ny2 ny3 ip1 ip2 ip3 (integers)

• data line 2: nrs ns1 ns2 ns3 (integers)

• data line 3: length Qx Qy Ax Ay

• data line 4: name1, . . . , name6

• data line 5: nch name7 name8

• data line 6: nq name9 name10 Qx0 Qy0

nr Number of resonances (0 to 3)

n Order of the resonance, which is limited to nrco = 5 (see list of parameters in Appendix B.2).

normal: 3 ≤ n ≤ nrco; skew: 2 ≤ n ≤ nrco

ny1, ny2, ny3 Define three resonances of order n via : nxQx+ nyQy = p with |nx|+ |ny| = n

ip1, ip2, ip3 The distance to the resonance e can be changed by an integer value:
e = nxQx+ nyQy − (p+ ip).

nrs Number of sub–resonances (0 to 3)

ns1, ns2, ns3 Order of the multipole with ns ≤ 9 and (ns− n)/2 ∈ N

length Length of the machine in meters

Qx, Qy Horizontal and vertical tune including the integer part

Ax, Ay Horizontal and vertical amplitudes in mm

name1, . . . , name6 Names (3.2.1.2) of the correction multipoles for the first, second and third
resonance

nch (integer) Switch for the chromaticity correction (0 = off, 1 = on)

name7, name8 Names (3.2.1.2) of the families of sextupoles to correct the chromaticity

nq (integer) Switch for the tune adjustment (0 = off, 1 = on)

name9, name10 Names (3.2.1.1) of the families of quadrupoles to adjust the tune

Qx0, Qy0 Desired tune values including the integer part

3.5.9 Differential Algebra

Description This input block initiates the calculation of a one turn map using the LBL Differen-
tial Algebra package [1]. The use of this block inhibits post–processing. The same differential algebra
tools allow a subsequent normal form analysis (see [17]). A four–dimensional version integrated in
SixTrack is available as described in sections 3.5.10 and 3.5.11.

Keyword DIFF.

Number of data lines 1 or 2

CHAPTER 3. INPUT STRUCTURE 43

Format

• data line 1: nord nvar preda nsix ncor

• data line 2: name(1),. . . ,name(ncor)

nord (integer) Order of the map

nvar (integer) Number of the variables (2 to 6). nvar = 2,4,6 : two– and four–dimensional transverse
motion and full six–dimensional phase space respectively. nvar = 5 : four–dimensional transverse
motion plus the relative momentum deviation ∆p

po
as a parameter.

preda Precision needed by the DA package, usually set to preda = 1e-38

nsix (integer) switch to calculate a 5× 6 instead of a 6× 6 map. This saves computational time and
memory space, as the machine can be treated up to the cavity as five–dimensional (constant
momentum).

• nsix = 0 : 6x6 map

• nsix = 1 : 5x6 map
(nvar must be set to 6; 6D closed orbit must not be calculated, i.e. iclo6 = 0 (3.6.2) and
the map calculation is stopped once a cavity has been reached and being evaluated.)

ncor (integer) Number of zero–length elements to be additional parameters besides the transverse
and/or longitudinal coordinates (i.e. two–, four–, five– or six–dimensional phase space).

name(i) (char) Ncor names (3.2.1.2) of zero–length elements (e.g dipole kicks, quadrupole kicks,
sextupoles kicks etc.).

Remarks

• For nsix = 1 the map can only be calculated till a cavity is reached.

• If the 6D closed orbit is calculated, the 5x6 map can not be done, nsix is therefore forced to 0.

• If nvar is set to 5, the momentum dependence is determined without the need for including a
fake cavity. With other words: the linear blocks are automatically broken up into single linear
elements so that the momentum dependence can be calculated.

• If a DA map is needed at some longitudinal location one just has to introduce an element denoted
“DAMAP” at that place in the structure, “DAMAP” has also to appear as a marker (zero length,
element type = 0) in the single element list (3.2.1.2). This extra map is written to file # 17.

3.5.10 Normal Forms

Description All the parameters to compute the Normal Form of a truncated one–turn map are
given in the Normal Form input block. Details on these procedures including the next block 3.5.11
can be found in reference [27].

Keyword NORM

Number of data lines 1

Format

• first data line: nord nvar

nord (integer) Order of the Normal Form

nvar (integer) Number of variables

CHAPTER 3. INPUT STRUCTURE 44

Remarks

• The Normal Form input block has to be used in conjunction with the Differential Algebra input
block that computes the one–turn map of the accelerator.

• The value of the parameter nord should not exceed the order specified for the transfer map plus
one.

• The value of the parameter nvar should be equal to the number of coordinates used to compute
the map plus eventually the number of correctors specified in the Differential Algebra input
block.

• the value 1 for the off–momentum order is forbidden. This case corresponds to the linear chro-
maticity correction. It is in fact corrected by default when par1 = 1 or par2 = 2.

3.5.11 Corrections

Description All the parameters to optimise the tune–shift using a set of correctors are given in
the Correction input block. (For details see reference [27].)

Keyword CORR

Number of data lines 3

Format

• first data line: ctype ncor

• second data line: name(1),. . . ,name(ncor)

• third data line: par1,. . . ,par5

ctype (integer) Correction type :

• ctype = 0 order–by–order correction

• ctype = 1 global correction

ncor (integer) Number of zero–length elements to be used as correctors in the optimisation of the
tune–shift.

name(i) (char) Ncor names of zero–length elements (e.g sextupoles kicks, octupoles kicks etc.).

par1,. . . ,par5 Parameters for the correction. Their meaning depend on the value of ctype and is
explained in Table 3.8.

Remarks

• The names of the elements specified in the Correction input block should be grouped according
to the multipole type: first sextupoles, then octupoles . . . etc.

• In case of order–by–order corrections, at least one of the quantities par1, par2 has to be zero, i.e.
the correction of tune–shift terms depending on both amplitude and momentum is not allowed
(as stated in the previous section).

CHAPTER 3. INPUT STRUCTURE 45

Table 3.8: Tune-shift correction parameters

par1 par2 par3 par4 par5

variable type integer integer real real real

ctype = 0 tune–shift off–momentum 0.0 0.0 0.0
order ≤ 2 order ≤ 3

ctype = 1 Nmin ≥ 2 Nmax ≤ 3 αH αV δ0

3.5.12 Post–processing

Description It has been seen in the past that the tracking data hold a large amount of informa-
tion which should be extracted for a thorough understanding of the nonlinear motion. It is therefore
necessary to store the tracking data turn by turn and post–process it after the tracking has been
finished. The following quantities are calculated:

1. Lyapunov exponent analysis This allows to decide if the motion is of regular or chaotic
nature, and, in the later case, that the particle will ultimately be lost. This is done with the
following procedure:

(a) Start the analysis where the distance in phase space of the two particles reaches its mini-
mum.

(b) Study the increase in a double logarithmic scale so that the slope in a regular case is always
one, while a exponential increase stays exponential when we have chaos.

(c) Average the distance in phase space to reduce local fluctuations, as we are interested in a
long range effect.

(d) Make a weighted linear fit with an increasing number of averaged values of distance in
phase space, so that an exponential increase results in a slope that is larger than one and
is increasing. (The weighting stresses the importance of values at large turn numbers).

2. Analysis of the tunes This is done either by the averaged phase advance method leading to
very precise values of the horizontal and vertical tunes. A FFT analysis is also done. With
the second method one can evaluate the relative strength of resonances, rather than achieve a
precise tune measurement. In both cases the nearby resonances are determined.

3. Smear The smear of the horizontal and vertical emittances and the sum of the emittances are
calculated in case of linearly coupled and un–coupled motion.

4. Nonlinear Invariants A rough estimate of the nonlinear invariants are given.

5. Plotting The processed tracking data can be plotted in different ways:

(a) The distance of phase space as a function of amplitude

(b) Phase space plots

(c) Stroboscoped phase space

(d) FFT amplitudes

6. Summary The post–processing results for a complete tracking session with varying initial pa-
rameters are summarised in a table at the end of the run.

CHAPTER 3. INPUT STRUCTURE 46

Keyword POST

Number of data lines 4

Format

• data line 1: comment title

• data line 2: iav nstart nstop iwg dphix dphiy iskip iconv imad cma1 cma2 (general parameters)

• data line 3: Qx0 Qy0 ivox ivoy ires dres ifh dfft (parameters for the tune calculation)

• data line 4: kwtype itf icr idis icow istw iffw nprint ndafi (integer parameters for the plotting)

iav (integer) Averaging interval of the values of the distance in phase space. Typically a tenth of the
total turn number should be used as this interval.

nstart, nstop (integers) Start and stop turn number for the analysis of the post–processing (0 0 =
all data used).

iwg (integer) Switch for the weighting of the slope calculation of the distance in phase space (0 = off,
1 = on).

dphix, dphiy Horizontal and vertical angle interval in radians that is used to stroboscope phase
space. This stroboscoping of one of the two phase space projections is done by restricting the
angle in the other phase space respectively to lie inside ± dphix or ± dphiy.

iskip (integer) This parameter allows to reduce the number of data to be processed: only each iskip
sample of data will be used.

iconv (integer) If iconv is set to 1 the tracking data are not normalised linearly. Sometimes it is
necessary to compare normalised to unnormalised data as the later will be found in the real
machine.

imad (integer) This parameters is useful when MAD data shall be analysed (imad set to one).

cma1, cma2 (floats) To improve the Lyapunov analysis for MAD data and in the case that the
motion is 6D but the 6D closed orbit is not calculated the off–momentum and the path–length
difference (σ = s−vo× t) can be scaled with cma1 and cma2 respectively (see also 3.6.3). Please
set both to 1. when the 6D closed orbit is calculated.

Qx0, Qy0 (floats) Values of the horizontal and vertical tune respectively (integer part) to be added
to the averaged phase advance and to the Q values of the FFT analysis.

ivox, ivoy (integers) The tunes from the average phase advance are difficult to be calculated when
this phase advance is strongly changing from turn to turn and when the tune is close to 0.5, as
then the phase may become negative leading to a deviation of one unit. This problem can partly
be overcome by setting these switches in the following way:

• tune close to an integer: ivox, ivoy = 1

• tune close to half an integer: ivox, ivoy = 0

ires, dres (integer,float) For the calculated tune values from the average phase advance method and
the FFT–routine the closest resonances are searched up to ires’th order and inside a maximum
distance to the resonance dres, so that nxQx+ nyQy < dres and nx+ ny ≤ ires.

ifh, dfft (integer,float) For the FFT analysis the tune interval can be chosen with ifh. To find
resonances with the FFT spectrum, all peaks below a fraction dfft of the maximum peak are
accepted.

CHAPTER 3. INPUT STRUCTURE 47

• ifh = 0 : 0 ≤ Q ≤ 1

• ifh = 1 : 0 ≤ Q ≤ 0.5

• ifh = 2 : 0.5 ≤ Q ≤ 1

kwtype – Disabled, set to 0 – (Terminal type, e.g. 7878 for the Pericom graphic terminals. For details,

consult the HPLOT manual [8].)

itf Switch to get PS–file of plots

• itf = 0 : off

• itf = 1 : on

icr – Disabled, set to 0 – (Switch to stop after each plot (0 = no stop, 1 = stop after each plot).

idis, icow, istw, iffw Switches (0 = off) to select the different plots. If all values are set to zero, the
HBOOK/HPLOT routine will not be called.

• idis = 1 : plot of distance in phase space

• icow = 1 : a set of plots of projections of the six–dimensional phase space and the energy
E versus the turn number

• istw = 1 : plot of the stroboscoped phase space projection by restricting the phase in the
other phase space projection

• iffw = 1 : plots of the horizontal and vertical FFT spectrum with linear amplitude scale

• iffw = 2 : plots of the horizontal and vertical FFT spectrum with logarithmic amplitude
scale

nprint Switch to stop the printing of the post–processing output to unit 6 (0 = printing off, 1 =
printing on).

ndafi Number of data–files to be processed (units : from 90 to (90–ndafi+1)).

Remarks

1. The post–processing can be done in two ways :

(a) directly following a tracking run by adding this input block to the input blocks of the
tracking

(b) as a later run where the tracking parameter file (unit # 3) consists of only the Program
Version input block 3.1.1 (using the FREE option) and of this input block specifying the
post–processing parameters followed by ENDE as usual

2. The HBOOK/HPLOT routines are only used at the start of the main program for initialisation
and termination. The actual plots are done in the post–processing subroutine. The routines are
activated only if at least one of the plotting parameters (idis, icow, istw, iffw) is set to one.

3.6 Initial Conditions for Tracking

Description For the study of nonlinear system the choice of initial conditions is of crucial
importance. The input structure for the initial conditions was therefore organise in such a way as to
allow for maximum flexibility. SixTrack is optimised to reach the largest possible number of turns. In
order to derive the Lyapunov exponent and thereby to distinguish between regular and chaotic motion,
the particle has a close by companion particle. Moreover, experience has shown that varying only the
amplitude while keeping the phases constant is sufficient to understand the nonlinear dynamics, as
a subsequent detailed post–processing allows to find the dependence of the parameter of interest on
these phases.

CHAPTER 3. INPUT STRUCTURE 48

3.6.1 Tracking Parameters

Description All tracking parameters are defined with this input block, the initial coordinates
are generally set here, too. A fine tuning of the initial condition is done with Initial Coordinates block
(3.6.2) and the parameters for the synchrotron oscillation are given in block (3.6.3)

Keyword TRAC

Number of data lines 3

Format

• data line 1: numl numlr napx amp(1) amp0 ird imc niu(1) niu(2) numlcp numlmax

• data line 2: idy(1) idy(2) idfor irew iclo6 (integers)

• data line 3: nde(1) nde(2) nwr(1) nwr(2) nwr(3) nwr(4) ntwin ibidu iexact (integers)

numl (integer) Number of turns in the forward direction

numlr (integer) Number of turns in the backward direction

napx (integer) Number of amplitude variations (i.e. particle pairs)

amp(1), amp0 (floats) Start and end amplitude (any sign) in the horizontal phase space plane for the
amplitude variations. The vertical amplitude is calculated using the ratio between the horizontal
and vertical emittance set in the Initial Coordinates block (3.6.2), where the initial phase in
phase space are also set. Additional information can be found in the Remarks.

ird (integer) Ignored.

imc (integer) Number of variations of the relative momentum deviation ∆p
po

. The maximum value of

the relative momentum deviation ∆p
po

is taken from that of the first particle in the Initial Coor-

dinates block (3.6.2). The variation will be between ±∆p
po

(max) in steps of ∆p
po

(max) / (imc–1).

niu(1), niu(2) Unknown; default values are 0.

numlcp Checkpoint/restart version: How often to write checkpointing files.

numlmax Checkpoint/restart version: Maximum ammount of turns; default is 106.

idy(1), idy(2) A tracking where one of the transversal motion planes shall be ignored is only possible
when all coupling terms are switched off. The part of the coupling that is due to closed orbit
and other effects can be turned off with these switches.

• idy(1), idy(2) = 1 : coupling on

• idy(1), idy(2) = 0 : coupling to the horizontal and vertical motion plane respectively
switched off

idfor Usually the closed orbit is added to the initial coordinates. This can be turned off using idfor ,
for instance when a run is to be prolonged.

• idfor = 0 : closed orbit added.

• idfor = 1 : initial coordinates unchanged.

• idfor = 2 : prolongation of a run, taken the initial coordinates from unit # 13.

CHAPTER 3. INPUT STRUCTURE 49

irew To reduce the amount of tracking data after each amplitude and relative momentum deviation
iteration ∆p

po
the binary output units 90 and lower (see Appendix C) are rewound. This is always

done when the post–processing is activated (3.5.12). For certain applications it may be useful
to store all data. The switch irew allows for that.

• irew = 0 : unit 90 (and lower) rewound

• irew = 1 : all data on unit 90 (and lower)

iclo6 This switch allows to calculate the 6D closed orbit and optical functions at the starting point,
using the differential algebra package. It is active in all versions that link to the Differential
Algebra package. Note that iclo6 ¿ 0 is mandatory for 6D simulations, and that iclo6 == 0 is
mandatory for 4D simulations.

• iclo6 = 0 : switched off

• iclo6 = 1 : calculated

• iclo6 = 2 : calculated and added to the initial coordinates (3.6.2).

• iclo6 = 5 or = 6: like for 1 and 2 but in addition a guess closed orbit is read (in free
format) from fileunit # 33.

nde(1) Number of turns at flat bottom, useful for energy ramping.

nde(2) Number of turns for the energy ramping. numl–nde(2) gives the number of turns on the flat
top. For constant energy with nde(1) = nde(2) = 0 the particles are considered to be on the flat
top.

nwr(1) Every nwr(1)’th turn the coordinates will be written on unit 90 (and lower) in the flat bottom
part of the tracking.

nwr(2) Every nwr(2)’th turn the coordinates in the ramping region will be written on unit 90 (and
lower).

nwr(3) Every nwr(3)’th turn at the flat top a write out of the coordinates on unit 90 (and lower)
will occur. For constant energy this number controls the amount of data on unit 90 (and lower),
as the particles are considered on the flat top.

nwr(4) In cases of very long runs it is sometimes useful to save all coordinates for a prolongation of
a run after a possible crash of the computer. Every nwr(4)’th turn the coordinates are written
to unit 6.

ntwin For the analysis of the Lyapunov exponent it is usually sufficient to store the calculated distance
of phase space together with the coordinate of the first particle (ntwin set to one). You may
want to improve the 6D calculation of the distance in phase space with sigcor, dpscor (see 3.6.2)
when the 6D closed orbit is not calculated with iclo6 6= 2. If storage space is no problem, one can
store the coordinates of both particles (ntwin set to two). The distance in phase space is then
calculated in the post–processing procedure (see 3.5.12). This also allows a subsequent refined
Lyapunov analysis using differential–algebra and Lie–algebra techniques ([28]).

ibidu Switch to creat or read binary dump of the full accelerator decription on file # 32. The
parameters relevant to tracking, i.e. numl, amp0, amp(1), amp(2), damp, chi0, chid, rat, x1, x′1,
y1, y′1, σ1, ∆p

po1
, x2, x′2, y2, y′2, σ2, ∆p

po2
, time0, time1, are to be given via the tracking parameter

file # 3.

• ibidu = 1 : write dump

• ibidu = 2 : read dump

iexact Switch to enable exact solution of the equation of motion into tracking and 6D (no 4D) optics
calculations.

CHAPTER 3. INPUT STRUCTURE 50

• iexact = 0 : approximated equation (e.g. x′ ' Px
P0(1+δ) , y′ ' Py

P0(1+δ));

• iexact = 1 : exact equation (e.g x′ ' Px

P0

√
(1+δ)2−P 2

x−P 2
y

, y′ ' Py

P0

√
(1+δ)2−P 2

x−P 2
y

).

Remarks

1. This input data block is usually combined with the Initial Coordinates input block (3.6.2) to
allow a flexible choice of the initial coordinates for the tracking.

2. For a prolongation of a run the following parameters have to be set :

• in this input block : idfor = 1

• in the Initial coordinates input block :

(a) itra = 0

(b) take the end coordinates of the previous run as the initial coordinates (including all
digits) for the new run.

3. A feature is installed for a prolongation of a run by using idfor = 2 and reading the initial data
from unit # 13. The end coordinates are now written on unit # 12 after each run. Intermediate
coordinates are also written on unit # 12 in case the turn number nwr(4) is exceeded in the
run. The user takes responsibility to transfer the required data from unit # 12 to unit # 13 if
a prolongation is requested.

4. Some illogical combinations of parameters have been suppressed.

5. The initial coordinates are calculated using a proper linear 6D transformation: amp(1) is still
the maximum horizontal starting amplitude (excluding the dispersion contribution) from which
the emittance of mode 1 eI is derived, rat (see 3.6.2) is the ratio of eII/eI of the emittances of
the two modes. The momentum deviation ∆p

po1
is used to define a longitudinal amplitude. The 6

normalized coordinates read:

• horizontal:

√
eI = amp(1)

√
βxI+
√
|rat|×βxII

,

0.

• vertical:

sign(rat)×√eII , with eII = |rat| × eI ,

0.

• longitudinal:

0.,

∆p
po1
×
√
βsIII

and are then transformed with the 6D linear transformation into real space. Note that results
may differ from those of older versions.

6. The amplitude scan is performed from amp(1) to amp0 in steps of delta = (amp0−amp(1))/(napx−
1). For the intermediate amplitudes, delta is added up for each step, however the last amplitude
is guaranteed to be fixed to the given value. This enables “control calculations” by setting the
first amplitude of one simulation equal to the last amplitude of another simulation, and unless
there are calculation errors, they shall produce exactly the same results.

CHAPTER 3. INPUT STRUCTURE 51

7. Note that if iclo6 = 2 and idfor = 0 in the input file, then idfor is internally set to 1, as is seen
in some outputs. This does not mean that the closed orbit is not added; the setting of iclo6 =
2 simply takes precedence.

3.6.2 Initial Coordinates

Description The Initial Coordinates input block is meant to manipulate how the initial co-
ordinates are organise, which are generally set in the tracking parameter block (3.6.1). Number
of particles, initial phase, ratio of the horizontal and vertical emittances and increments of 2 × 6
coordinates of the two particles, the reference energy and the starting energy for the two particles.

Keyword INIT

Number of data lines 16

Format

• first data line: itra chi0 chid rat iver

• data lines 2 to 16: 15 initial coordinates as listed in Table 3.9

itra (integer) Number of particles

• itra = 0 : Amplitude values of tracking parameter block (3.6.1) are ignored and coordinates
of data line 2–16 are taken. itra is set internally to 2 for tracking with two particles. This
is necessary in case a run is to be prolonged.

• itra = 1 : Tracking of one particle, twin particle ignored

• itra = 2 : Tracking the two twin particles

chi0 Starting phase of the initial coordinate in the horizontal and vertical phase space projections

chid Phase difference between first and second particles

rat Denotes the emittance ratio (eII/eI) of horizontal and vertical motion. For further information
see the Remarks of the TRAC input block in Section 3.6.1.

iver In tracking with coupling it is sometimes desired to start with zero vertical amplitude which can
be painful if the emittance ratio rat is used to achieve it. For this purpose the switch iver has
been introduced:

• iver = 0 : Vertical coordinates unchanged

• iver = 1 : Vertical coordinates set to zero.

Remarks

1. These 15 coordinates are taken as the initial coordinates if itra is set to zero (see above). If itra
is 1 or 2 these coordinates are added to the initial coordinates generally defined in the tracking
parameter block (3.6.1). This procedure seems complicated but it allows freely to define the
initial difference between the two twin particles. It also allows in case a tracking run should be
prolonged to continue with precisely the same coordinates. This is important as small difference
may lead to largely different results.

2. The reference particle is the particle in the centre of the bucket which performs no synchrotron
oscillations.

3. The energy of the first and second particles is given explicitly, again to make possible a contin-
uation that leads precisely to the same results as if the run would not have been interrupted.

4. There is a refined way of prolonging a run, see the Tracking Parameters input block (3.6.1).

CHAPTER 3. INPUT STRUCTURE 52

Table 3.9: Initial Coordinates of the 2 Particles

data line contents

2 x1 [mm] coordinate of particle 1
3 x′1 [mrad] coordinate of particle 1
4 y1 [mm] coordinate of particle 1
5 y′1 [mrad] coordinate of particle 1
6 path length difference 1 (σ1 = s− vo × t) [mm] of particle 1

7 ∆p
po1

of particle 1

8 x2 [mm] coordinate of particle 2
9 x′2 [mrad] coordinate of particle 2
10 y2 [mm] coordinate of particle 2
11 y′2 [mrad] coordinate of particle 2
12 path length difference (σ2 = s− vo × t) [mm] of particle 2

13 ∆p
po2

of particle 2

14 energy [MeV] of the reference particle
15 energy [MeV] of particle 1
16 energy [MeV] of particle 2

3.6.3 Synchrotron Oscillation

Description The parameters needed for treating the synchrotron oscillation in a symplectic
manner are given in the Synchrotron Oscillation input block.

Keyword SYNC

Number of data lines 2

Format

• first data line: harm alc u0 phag tlen pma ition dppoff

• second data line: dpscor sigcor

harm Harmonic number

alc Momentum compaction factor, used here only to calculate the linear synchrotron tune QS .

u0 Circumference voltage in [MV]

phag Acceleration phase in degrees

tlen Length of the accelerator in meters

pma rest mass of the particle in MeV/c2

ition (integer) Transition energy switch

• ition = 0 for no synchrotron oscillation (energy ramping still possible)

• ition = 1 for above transition energy

• ition = –1 for below transition energy

dppoff Offset Relative Momentum Deviation ∆p
po

: a fixpoint with respect to synchrotron oscillations.
It becomes active when the 6D closed orbit is calculated (see item iclo6 in section 3.6.1).

CHAPTER 3. INPUT STRUCTURE 53

dpscor, sigcor Scaling factor for relative momentum deviation ∆p
po

and the path length difference
(σ = s − vo × t) respectively. They can be used to improve the calculation of the 6D distance
in phase space, but is only used when ntwin = 1 in the tracking parameter input block (3.6.1).
Please set to 1 when the 6D closed is calculated.

Note that the value of tlen is also calculated internally by SixTrack (in “dcum”), and a warning is
issued if the given value is different from the calculated value.

3.7 Extra output files

For some studies, extra output from the simulation is desired. How to do this is described below.

3.7.1 Dumping of beam population

Description The DUMP block allows the beam population (i.e. the position in phase-space for all
the particles) to be written to file. This can be done in any SINGLE ELEMENTS which are directly
mentioned in the STRUCTURE INPUT part of fort.2 (BLOCs cannot be used). The particles are
dumped just after the kick is applied, and how often to dump (every turn, every second turn, etc.) is
user-selectable. Please note that each single element can only be selected once; however it is possible
to overcome this limitation by placing multiple markers with different names in the same position in
the sequence (by editing fort.2).

Keyword DUMP

Number of data lines variable, one for each element for which dump is active

Format element name frequency unit format (filename) (first last)

or HIGH
or FRONT

element name one of the SINGLE ELEMENTS, or ALL to dump at the exit of all single
elements, or StartDUMP to dump at the injection point. Note that if ALL or StartDUMP is in use,
these cannot be used as SINGLE ELEMENT names.

frequency how often the beam population should be dumped in number of turns.

unit fortran unit number to use, should not be used in other parts of SixTrack. The unit number
and filename may be shared between different DUMP outputs, as long as they have the same format
and element name is not ALL.

format an integer specifying the output format. The following formats are accepted:

0 – General format:
No header
Lines: turn structure element idx single element idx single element name s x1[m] x1’[rad]

y1[m] y2’[rad] momentum[GeV/c] dE/E[GeV]

1 – Format for aperture check:
Header: # ID turn s[m] x[mm] xp[mrad] y[mm] yp[mrad] dE/E ktrack

Lines: particleID turn s[m] x[mm] xp[mrad] y[mm] yp[mrad] dE/E ktrack

CHAPTER 3. INPUT STRUCTURE 54

2 – Modified format for aperture check:
Header line 1 (single element): # DUMP format #2, bez=bez(i), number of particles=napx,

dump period=ndumpt(i), first turn=dumpfirst(i), last turn=dumplast(i), HIGH=T/F,

FRONT=T/F

Header line 1 (all elements): # DUMP format #2, ALL ELEMENTS, number of particles=napx,

dump period=ndumpt(i), first turn=dumpfirst(i), last turn=dumplast(i), HIGH=T/F,

FRONT=T/F

Here bez is the name of the SINGLE ELEMENT, and napx the number of particles being
tracked (per pack in case of collimation), ndumpt(i) the dump frequency as described above,
and dumpfirst(i) and dumplast(i) the first and last turn as descirbed below. HIGH and FRONT
is normally false, unless this (global) option is active, as described below.
Header line 2: # ID turn s[m] x[mm] xp[mrad] y[mm] yp[mrad] z[mm] dE/E ktrack

If there are multiple single elements attached to the file, the headers are repeated.
Data lines: as described in the header, one per particle and per turn.

3 – Modified format for aperture check (Binary):
No header
A number of Fortran records describing which elements are used and the current dump period
is added one per relevant line in DUMP block.
Records: particleID turn s[m] x[mm] xp[mrad] y[mm] yp[mrad] z[mm] dE/E ktrack

The Fortran code SixTest/readDump3/readDump3.f90 can be used to convert these files into
the format 2 (sans headers).

4 – Beam means:
Header line 1 is the same as for format 2.
Header line 2: # napx turn s[m] <x>[mm] <xp>[mrad] <y>[mm] <yp>[mrad] <z>[mm] <dE/E>[1]

If there are multiple single elements attached to the file, the headers are repeated.
Data lines: As described in the header; one per turn (and for collimation, one per pack of
particles).

5 – Beam mean and sigma:
Header line 1 is the same as for format 2.
Header: # napx turn s[m] <x>[mm] <xp>[mrad] <y>[mm] <yp>[mrad] <z>[mm] <dE/E>[1]

<x^2> <x*xp> <x*y> <x*yp> <x*z> <x*(dE/E)> <xp^2> <xp*y> <xp*yp> <xp*z> <xp*(dE/E)>

<y^2> <y*yp> <y*z> <y*(dE/E)> <yp^2> <yp*z> <yp*(dE/E)> <z^2> <z*(dE/E)> <(dE/E)^2>

If there are multiple single elements attached to the file, the headers are repeated.
A number of lines describing which elements are used and the current dump period is added one
per relevant line in DUMP block.
Data lines: As described in the header; one per turn (and for collimation, one per pack of par-
ticles). For the “product” quantities, the units are the product of the units of the “normal”
ones.

6 – Beam mean and sigma (canonical):
Header line 1 is the same as for format 2.
Header: # napx turn s[m] <x>[m] <px>[1] <y>[m] <py>[m] <sigma>[m] <psigma>[1] <x^2>

<x*px> <x*y> <x*py> <x*sigma> <x*psigma> <px^2> <px*y> <px*py> <px*sigma> <px*psigma>

<y^2> <y*py> <y*sigma> <y*psigma> <py^2> <py*sigma> <py*psigma> <sigma^2> <sigma*psigma>

<psigma^2>

If there are multiple single elements attached to the file, the headers are repeated.
A number of lines describing which elements are used and the current dump period is added one
per relevant line in DUMP block.
Data lines: As described in the header; one per turn (and for collimation, one per pack of parti-
cles). For the “product” quantities, the units are the product of the units of the “normal” ones.
Note that the σ = s − β0ct is the same as the z used in the formats above, except for the unit
of m instead of mm; and that pσ = ∆E/ (β0P0c). For more details, see the physics manual [16].

CHAPTER 3. INPUT STRUCTURE 55

7 – Modified format for aperture check (normalized coordinates):
Dumps the particle trajectories in normalized coordinates. If the coordinates are dumped at the
start of the sequence (StartDUMP), the normalization matrix as used for the initialization of the
particle amplitudes is used. This means, that if 4D optics are chosen, the 4D matrix is used,
if 6D optics is chosen, the matrix obtained from the 6D optics calculation is chosen. For every
other element except StartDUMP, the 6D optics are used independent of the tracking method
chosen. In this case the 6D optics needs to be run and the following lines have to be inserted in
fort.3:

DUMP

element_name_1 1 unit_1 7 filename_1 first_turn_1 last_turn_1

...

NEXT

LINE

ELEMENT 0 2 1 emit_1 emit_2

NEXT

If there are multiple single elements attached to the file, the headers are repeated.
Data lines: as described in the header, one per particle and per turn.
Header line 1: The same as for format 2.
Header line 2: closed orbit x,x′,y,y′,z,dp/p, units are [mm,mrad,mm,mrad, 1].
Header line 3: matrix of eigenvectors (tamatrix). Eigenvectors are normalized, rotated and
ordered as in the Ripken formalism and described in the SixTrack physics manual, Chapter
“Optics Calculation”. The matrix tamatrix is in canonical variables x,px,y,py,z,dp/p, units are
[mm,mrad,mm,mrad, 1].
Header line 4: inverse of ta-matrix inv(tamatrix) used for normalization where

znorm = inv(tamatrix) · z (3.7)

Matrix inv(tamatrix) and z is given in canonical variables x,px,y,py,z,dp/p, units are
[mm,mrad,mm,mrad, 1].
Header line 5: header with units of normalized particle coordinates:
ID turn s[m] nx[1.e-3 sqrt(m)] npx[1.e-3 sqrt(m)] ny[1.e-3 sqrt(m)] npy[1.e-3 sqrt(m)]

nz[1.e-3 sqrt(m)] ndp/p[1.e-3 sqrt(m)] ktrack

8 – Modified format for aperture check (normalized coordinates, binary):
No header
A number of Fortran records describing which elements are used and the current dump period is
added one per relevant line in DUMP block. Format 8 is format 7 without header and in binary
format.
Records: # ID turn s[m] nx[1.e-3 sqrt(m)] npx[1.e-3 sqrt(m)] ny[1.e-3 sqrt(m)] npy[1.e-3

sqrt(m)] nz[1.e-3 sqrt(m)] ndp/p[1.e-3 sqrt(m)] ktrack

The Fortran code SixTest/readDump3/readDump3.f90 can be used to convert these files into
the format 2 (sans headers).

9 – Beam mean and sigma (normalized coordinates):
Header line 1 is the same as for format 2.
Header: # napx turn s[m] <nx>[1.e-3 sqrt(m)] <npx>[1.e-3 sqrt(m)] <ny>[1.e-3 sqrt(m)]

<npy>[1.e-3 sqrt(m)] <nsigma>[1.e-3 sqrt(m)] <npsigma>[1.e-3 sqrt(m)] <nx^2> <nx*npx>

<nx*ny> <nx*npy> <nx*nsigma> <nx*npsigma> <npx^2> <npx*ny> <npx*npy> <npx*nsigma>

<npx*npsigma> <ny^2> <ny*npy> <ny*nsigma> <ny*npsigma> <npy^2> <npy*nsigma> <npy*npsigma>

<nsigma^2> <nsigma*npsigma> <npsigma^2>

If there are multiple single elements attached to the file, the headers are repeated.

CHAPTER 3. INPUT STRUCTURE 56

A number of lines describing which elements are used and the current dump period is added one
per relevant line in DUMP block.
Data lines: As described in the header; one per turn (and for collimation, one per pack of par-
ticles). For the “product” quantities, the units are the product of the units of the “normal”
ones.

filename is the name of the file to write to. This argument may be omitted (unless first

and last are present, if so then filename must also be present), and if so the output file is named
fort.unit.

first is the first turn where this dump should be active. This argument may be omitted if last
is also omitted, and if so it defaults to turn 1.

last is the last turn where this dump should be active, -1 meaning “untill the end of the simula-
tion”. This argument may be omitted if first is also omitted, and if so it defaults to -1.

HIGH If present anywhere in the DUMP block this triggers high-precission output, meaning
more digits in the output files.

FRONT If present anywhere in the DUMP block, this keyword triggers the DUMPed particles
to be dumped in front of the element, i.e. before the kick. This works for all elements, including
BLOCs, when combined with the ALL “element name”. Note that FRONT is not yet supported for
thick tracking, and trying to use this combination will produce a run-time error.

Example

DUMP

/ALL 1 663 2

/CRAB5 1 659 0

ip1 1 660 2 IP1_DUMP.dat

ip5 1 662 2

mqml.10l4.b1..1 1 661 2 MQ_DUMP.dat

NEXT

3.7.2 FMA analysis

Description The FMA block generates the basic files needed for frequency map analysis (FMA).
Explicitly, it returns one output file with calculated tunes and amplitudes for the files specified in
the DUMP block, see Sec. 3.7.1. For the calculation of the tunes (Q1, Q2 and Q3) in normalized
phase space, the normalization matrix is extracted from the LINE block (linear optics calculation in
6D, 3.5.1). In case the particles are dumped at the beginning of the sequence (StartDUMP), the
closed orbit and normalization matrix used also for the initialization of the particles is used. In this
case, the LINE block is not needed. The tunes Q1, Q2 and Q3 are then calculated with the routine
specified in the FMA block either in physical coordinates (x,x′,y,y′,z,dE/E) or normalized phase space
coordinates and dumped to the file fma_sixtrack together with the minimum, maximum and average
normalized particle amplitudes and phases.

To use normalized coordinates for th FMA analysis is always possible in case of 6D tracking
(remember to put the LINE block for other elements than the start of the sequence). In case of 4D
tracking, the following limitations apply:

• the FMA analysis is only implemented for the start of the sequence (StartDUMP). For other
elements the normalization matrix would need to be obtained from the LINE block, which has
not been checked in case of 4D optics.

CHAPTER 3. INPUT STRUCTURE 57

• 4D tracking with scan in energy is disabled as in this case the normalization matrix would need
to be saved for each element and particle, which requires a huge amount of memory breaking
other parts of the code.

In general it is also recommended to already normalize the coordinates in DUMP as this is faster than
in FMA.

Keyword FMA

Number of data lines variable, one for each file with particle amplitudes and tune calculation
method, and one for each flag given.

Format of input block filename 1 method 1 (fma flag norm 1 (fma first turn fma last turn))

or NoNormDUMP

The FMA block has to be proceeded by the LINE block (calculation of the normalization matrix)
and the DUMP block (dump particle coordinates).

DUMP

element_name_1 1 unit_1 2 filename_1 first_turn_1 last_turn_1

element_name_2 1 unit_2 2 filename_2 first_turn_2 last_turn_2

NEXT

LINE

ELEMENT 0 2 1 emit_1 emit_2

NEXT

FMA

filename_1 method_1 fma_flag_norm_1 fma_first_turn_1 fma_last_turn_1

filename_2 method_2 fma_flag_norm_2 fma_first_turn_2 fma_last_turn_2

NEXT

For the DUMP block (Sec. 3.7.1) the frequency has to be 1 (dump every turn) and the file format
has to be 2 or 3. For the linear optics calculation 3.5.1, the optics needs to be calculated at each
element (mode ELEMENT), the number-of-blocks is then 0 and 6D linear optics calculation is required
(ilin = 2) in order to decouple the 6D motion.

filename one of the output files specified in the FMA block preceding DUMP block.

method method used to calculate the tune. Available methods are: TUNELASK, TUNEFIT, TUNENEWT1,
TUNEABT, TUNEABT2, TUNEFFT, TUNEFFTI, TUNENEWT, TUNEAPA, NAFF. A short description of the different
methods is given in Table 3.10.

CHAPTER 3. INPUT STRUCTURE 58

Table 3.10: Available tune calculation methods in SixTrack.

Library method Description

PLATO [29, 30] TUNELASK Compute the tune of a 2d map by means of laskar method. A
first indication of the position of the tune is obtained by means
of a FFT. Refinement is obtained through a newton procedure.

TUNEFIT Computes the tune using a modified apa algorithm. The first
step consists of taking the average of the tune computed with
the APA method, then a best fit is performed.

TUNENEWT1 Computes the tune using a discrete version of laskar method.
It includes a newton method for the search of the frequency.

TUNENEWT Computes the tune using a discrete version of laskar method.
It includes a newton method for the search of the frequency.

TUNEABT Computes the tune using FFT interpolated method.
TUNEABT2 Computes the tune using the interpolated FFT method with

hanning filter.
TUNEFFT Computes the tune as the FFT on a two dimensional plane,

given n iterates of a map. The FFT is performed over the
maximum mft which satifies 2mft <= n, where the maximum
number of iterates is fixed in the parameter n.

TUNEFFTI Computes the tune as the FFT on a two dimensional plane,
given n iterates of a map. The FFT is performed over the
maximum mft which satifies 2mft <= n. Then, the FFT is
interpolated fitting the three points around the maximum using
a Gaussian. The tune is computed as the maximum of the
Gaussian.

TUNEAPA Computes the tune as the average phase advance on a two
dimensional plane, given n iterates of a map.

NAFF [31, 32] NAFF Computes the tune using the laskar method. The first estima-
tion of the tune is obtained with an FFT and the precise value
is determined by maximizing the Fourier integral. A Hann
window of first and second order for the transverse and longi-
tudinal motion are used respectively. The NAFF flag must be
enabled at build time [33].

fma flag norm optional flag for calculating the tunes with physical (x,x′,y,y′,s,dp/p) or nor-
malized coordinates in case physical coordinates are used in DUMP. The default is using normalized
coordinates (fma_flag_norm=1). For using physical coordinates explicitly set (fma_flag_norm=0).
See Description for the conditions under which normalization is available.

fma first turn, fma last turn Turns used for FMA analysis. As the DUMP files are used
as input for the FMA analysis fma first turn must be larger first turn in the DUMP block and
fma last turn must be smaller than last turn in the DUMP block. If fma last turn = -1 the last
turn number in the dump file is taken as the last turn number, including the last turn tracked if the
last setting of the dump equals -1. By default, FMA will use the same turns as for the DUMP.

NoNormDUMP is a flag for disabling the NORM filename* output files. This saves disk space
and speeds up the calculation of the FMA. If used, the flag should be alone on a one line of the FMA
input block in fort.3. Note that the capitalization must be correct for the flag to be recognized.

Output file format The FMA block returns the output files NORM_filename* containing the nor-
malized phase space coordinates, where filename are the filenames specified in the dump block, and
the file fma_sixtrack containing the initial, average, minimum and maximum amplitudes and the

CHAPTER 3. INPUT STRUCTURE 59

calculated tunes for each specified filename and method. The structure of the NORM_filename* is
described in Table 3.11 and of the fma_sixtrack in Table 3.12.

Table 3.11: Format of the NORM files

Line Number Type Description

1 header closed orbit x,x′,y,y′,z,dE/E, units are [mm,mrad,mm,mrad, 1].

2-38 header matrix of eigenvectors (tamatrix). Eigenvectors are normalized, rotated
and ordered as in the Ripken formalism. The matrix tamatrix is in
canonical variables x,px,y,py,z,dp/p, units are [mm,mrad,mm,mrad, 1].

39-75 header inverse of ta-matrix inv(tamatrix) used for normalization where
znorm = ta · z. Matrix inv(tamatrix) is given in canonical variables
x,px,y,py,z,dp/p, units are [mm,mrad,mm,mrad, 1].

76 header header with units:
id turn pos[m] nx[1.e-3 sqrt(m)] npx[1.e-3 sqrt(m)]

ny[1.e-3 sqrt(m)] npy[1.e-3 sqrt(m)] nsig[1.e-3 sqrt(m)]

ndp/p[1.e-3 sqrt(m)] kt

77 - eof Lines see header in line 76: particle id, turn number position s[m], normalized
coordinates [10−3√m], ktrack (type of element)

Table 3.12: Format of the fma sixtrack file

Line Number Type Description

1-2 header header with units and description:
eps0*,eps2*,eps3* all in 1.e-6*m, phi* [rad]

inputfile method id q1 q2 q3 eps1_min eps2_min eps3_min

eps1_max eps2_max eps3_max eps1_avg eps2_avg eps3_avg

eps1_0 eps2_0 eps3_0 phi1_0 phi2_0 phi3_0

norm_flag first_turn last_turn

3 - eof Lines see header in line 1-2: The lines are ordered as particles 1-npart for (in-
putfile1,method1), then particles 1-npart for (inputfile2,method2), etc..
The minimum (min), maximum (max) and average (avg) are taken over
the number of turns in the inputfile (fiel specified in the FMA and DUMP
block). Units are µm for eps* and rad for phi*, where phi* is the angle
in the normalized phase space coordinates.

Example An input block to compare the tunes at element IP3 calculated over the interval [1, 4096]
and [5905, 10000], and using the method TUNELASK would look like:

DUMP

IP3 1 1030 2 IP3_DUMP_1 1 4096

IP3..1 1 1031 2 IP3_DUMP_2 5905 10000

IP3..2 1 1032 2 IP3_DUMP_3 1 4096

IP3..3 1 1033 2 IP3_DUMP_4 5905 10000

NEXT

LINE

ELEMENT 0 2 1 3.75 3.75

NEXT

FMA

IP3_DUMP_1 TUNELASK

IP3_DUMP_2 TUNELASK 1 512 1024

IP3_DUMP_3 TUNELASK 0

IP3_DUMP_4 TUNELASK 0 512 1024

CHAPTER 3. INPUT STRUCTURE 60

NEXT

where for IP3_DUMP_1 and IP3_DUMP_2 the tunes are calculated using normalized coordinates (default)
and for IP3_DUMP_3 and IP3_DUMP_4 the physical coordinates are used (fma_norm_flag equal 0). For
IP3_DUMP_2 and IP3_DUMP_4 the turns from 512 to 1024 are used for the FMA analysis. This is
particularly useful for detecting the maximum diffusion in tunes by taking the maximum over difference
over several moving windows.

Note that all element names have to be different due to a limitation in DUMP module. This
means practically, that one needs to insert additional markers (here IP3..1 etc.) in the SixDesk
[34, 35] mask file prior to the SixTrack run. It is important to install the additional markers after
cycling the machine if the machine is cycled at the location of the additional (e.g. IP3), as they are
installed in front of the element given in the from statement in the cycle command.

3.7.3 ZIPFile combined and compressed output

Description In order to retrieve extra simulation output such as DUMP or FMA from BOINC,
it is neccessary to pack the output files into a single file with a special name that will be retrieved.
This can be achieved with the ZIPF block, which packs the listed files into the compressed archive
Sixout.zip at the end of the simulation.

Note that if one of the files do not exist at the end of the simulation, it will be silently skipped
and not included in the archive.

Keyword ZIPF

Number of data lines variable, one for each file that is to be packed.

Example

ZIPF

fma_sixtrack

IP3_DUMP_1

fort.90

NEXT

Conclusions

Programs with large input structures like SixTrack tend to be far from perfect, even though a cum-
bersome chase for program bugs and a lot of polishing on the input structure has been performed.
Plenty of comments and suggestions are therefore needed to further improve the program.

61

Chapter 4

Acknowledgement

I would like to thank my colleagues at DESY and CERN to help to find nasty bugs and for a thor-
ough check of the program. I would like to thank Mikko Vaenttinen who helped to vectorise the
program. He also did most of the typing of the manuscript. Moreover, I want to express my grati-
tude to F. Zimmermann who helped to finish the differential–algebra part in endless night sessions.
Additions concerning Normal Forms have been contributed by M. Giovannozzi. J. Miles helped with
the calculation of the 6D Courant–Snyder matrix and its use to transform the tracking data in the
post–processing. W. Herr is thanked for providing a software package used for the orbit correction.
L.H.A. Leunissen extracted and adapted the 6D beam–beam code of Hirata [19].

62

Appendix A

List of Keywords

Table A.1: List of Keywords

Keyword Input–data–block Short Description § Page

Title # of Data–lines

1 BEAM BEAM–BEAM Element variable 4-6D including Beam Separation 3.3.5 28

& Linear Coupling

2 BLOC Block–definition variable + 1 Blocks of Linear Elements 3.2.2 14

3 BLOCK Linear Parameters for each Structure 3.5.1 37

Element

4 CAV Cavity in the Structure Input Block 3.2.3 15

5 CHRO Chromaticity 2 Correcting Chromaticity with 3.5.3 38

Correction Sextupoles

6 CORR Tune–shift Corrections 3 Correction of Nonlinear Tune–Shift 3.5.11 44

7 COMB Combination of variable Combining Different Elements 3.4.3 36

Elements for a Correction

8 COMM Comment Line 1 Additional Comments 3.1.3 7

9 DAMAP Location for a Printout of a DA map 3.5.9 42

10 DECO Decoupling 3 Compensation of Linear Coupling 3.5.5 40

11 DIFF Differential 1 Calculating a One–turn Map with 3.5.9 42

Algebra Differential Algebra

12 DISP Displacement of variable Displacing Nonlinear Elements 3.2.4 16

Elements

13 DUMP variable Writing the beam population to file 3.7.1 53

14 DYNK variable Dynamic kicks 3.3.4 18

15 EL Elliptical Aperture Limitation 3.3.2 17

16 ELEMENT Linear Parameters after each Single 3.5.1 37

Element

17 ELEN variable Electron lens 3.3.8 32

18 ENDE End of SixTrack Input Structure

19 FLUC Random Fluctuation 1 Seed for the Random Generator 3.4.1 35

Starting Number

20 FMA variable Frequency Map Analysis 3.7.2 56

21 FREE 1st Program Version 0 Free Format Input from one File 3.1.1 6

63

APPENDIX A. LIST OF KEYWORDS 64

Keyword Input–data–block Short Description § Page

Title # of Data–lines

22 GEOM 2nd Program Version 0 Input of Machine Geometry in 3.1.1 6

extra File

23 GO Start of Tracking in the Structure Input 3.2.3 15

24 “HCOR= ” Specifies an Horizontal Orbit Corrector 3.5.4 39

Element (Dipole or Multipole)

25 “HMON= ” Specifies an Horizontal Orbit Monitor 3.5.4 39

26 INIT Initial Coordinates 16 Setting up of the Initial Coordinates 3.6.2 51

27 ITER Iteration Errors 4 # of Iterations and Precision 3.1.4 7

for Correction Routines

28 LIMI Aperture Limitation variable Collimators that stop the Program 3.3.2 17

when being hit

29 MULT Multipole max. 11 Multipole Coefficients normal and 3.3.1 16

skew Coefficients up to 10th order

Combination of Different Multi– 3.4.2 36

poles in the ORGA Input Block

30 NEXT Last Line of each Input Data Block 3.5.4 39

31 NORM Normal Form 1 Normal Form Operations on Maps 3.5.10 43

32 ORBI Orbit Adjustment variable Adjusting Orbit to desired 3.5.4 39

Sigma Values

33 ORGA Organisation of variable + 1 Arranging Random Errors and 3.4.2 36

Random Numbers Multipole sets

34 POST Post–processing 3 Post–processing of the Tracking Data 3.5.12 45

35 PRIN Printout Selection 0 Initiates the Printing of 3.1.2 6

the Input Data

36 RE Rectangular Aperture Limitation 3.3.2 17

37 RESO Resonance 6 Compensation of up to 3 3.5.8 41

Compensation Different Resonances

38 RIPP Power Supply Ripple variable Invokes a Sinusoidal Tune 3.3.3 18

(obsolete – use DYNK) Variation (obsolete – use DYNK)

39 SEAR Search for Resonance variable Evaluating Longitudinal Positions 3.5.7 41

Compensation Positions for a Resonance Compensation

40 SING Single Elements variable Magnet Parameters of 3.2.1 8

Single Elements

41 STRU Structure Input variable Structure of Linear Blocks and 3.2.3 15

Nonlinear Elements

42 SUBR Sub–resonance 1 Calculation of 1th Order Reso– 3.5.6 40

Calculation nances up to 9th Multipole Order

43 SYNC Synchrotron 2 Parameters concerning Synchrotrons 3.6.3 52

Oscillations Oscillation

44 TRAC Tracking 3 All major Tracking Parameters for 3.6.1 48

Parameters the transversal Motion Plane

45 TUNE Tune Variation 2 or 4 Adjusting the Horizontal and 3.5.2 38

Vertical Tunes

46 TROM “Phase Trombone” element mult. of 14 Phase Shift Transparent 3.3.7 32

for Linear Optics

APPENDIX A. LIST OF KEYWORDS 65

Keyword Input–data–block Short Description § Page

Title # of Data–lines

47 “VCOR= ” Specifies an Vertical Orbit Corrector 3.5.4 39

Element (Dipole or Multipole)

48 “VMON= ” Specifies an Vertical Orbit Monitor 3.5.4 39

49 WIRE WIRE element variable Wire element 3.3.6 30

Appendix B

List of Default Values

B.1 Default Tracking Parameters

Some of the parameters for tracking are set to non–zero values. This is done for instance to avoid
as much as possible program errors such as division by zero due to an erroneous input. The default
values for the Iteration Errors (3.1.4) see table 3.1.

Table B.1: Default Tracking Parameters

Description Value § Page

1 General Aperture Limitations (horizontal and vertical) 1000 mm 3.3.2 17

2 Starting in the Accelerator Structure at Element Number 1 3.2.3 15

3 Number of Turns in the forward Direction 1 3.6.1 48

4 Initial horizontal Amplitude 0.001 mm

5 Horizontal and vertical Phase Space Coupling Switches on 1

6 Flat Bottom, Ramping and Flat Top Printout after Turn Number 1

7 Printout of Coordinates (file 6) after Turn Number 10000

8 Kinetic Energy [MeV] of the Reference Particle 10−6 3.6.2 51

9 Harmonic Number 1 3.6.3 52

10 Momentum Compaction Factor 0.001

11 Length of the Machine 1 km

12 Mass of the Particle (Proton) 938.2723128 MeV/c2

13 Momentum Correction Factor for Distance in Phase Space 1

14 Path–length Correction Factor for Distance in Phase Space 1

15 Averaging Turn Interval for Post–processing 1 3.5.12 45

66

APPENDIX B. LIST OF DEFAULT VALUES 67

B.2 Default Size Parameters

For large machines the arrays holding the machine parameters might have to be increased. The size
of each of the dimensions of the arrays is therefore defined as a parameter. This can be done by
compiling with the BIGNPART, HUGENPART, BIGNBLZ, and/or HUGENBLZ flags. The default
values are adjusted to allow the treatment of a full LHC lattice: the tracking version uses 50 Mb and
the DA version 400 Mb.

Table B.2: Default Size Parameters

Description Value Name § Page

1 Maximum Number of Coordinates used in the Correction Routines 6 MPA

2 Number of Single Elements 750 NELE 3.2.1 8

3 Number of Blocks of Linear Elements 160 NBLO 3.2.2 14

4 Number of Linear Elements per Block 100 NELB

5 Total Number of Elements in the Structure 15000 NBLZ 3.2.3 15

6 Number of Accelerator Super–periods 16 NPER

7 Total Number of Random Values 300000 NZFZ 3.4.1 35

8 Number of Random Values for the basic Set of Nonlinear Elements 280000 NRAN

9 Number of Random Values for inserted Nonlinear Elements 20000 3.4.2 36

10 Number of Random Values for each Inserted Nonlinear Element 500 MRAN

Number of Nonlinear Elements that can be inserted 20

11 Limit Number of Particles for Vectorisation 64 NPART

12 Maximum Number of Elements for Combined Tasks 100 NCOM 3.4.3 36

13 Maximum Resonance Compensation Order 5 NRCO 3.4.3 36

14 Total Number of Data for Processing 20000 NPOS 3.5.12 45

15 Number of Intervals for Calculation of Lyapunov–Exponents 10000 NLYA

16 Number of Intervals for Calculation of Invariants 1000 NINV

17 Number of Data for Plotting 20000 NPLO

18 Maximum Pole Order of Multipole Block 11 MMUL 3.3.1 16

19 Maximum Number of extra Parameters of the DA Map 10 MCOR 3.5.9 42

20 Maximum Order of DA Calculation 15 NEMA 3.5.9 42

21 Maximum Number of Monitors for Micado Closed Orbit Correction 600 NMON1 3.5.4 39

22 Maximum Number of Correctors for Micado Closed Orbit Correction 600 NCOR1 3.5.4 39

23 Maximum Number of Beam–Beam Elements 350 NBB 3.3.5 28

24 Maximum Number of Slices for 6D Beam–Beam Kick 99 MBEA 3.3.5 28

25 Maximum Number of “Phase Trombone” Elements 20 NTR 3.2.1.7 11

Appendix C

Input and Output Files

The program uses a couple of files for its input and output procedures.

Table C.1: List of Input and Output Files.

File Unit Input Output File Type Contents

2 X Ascii Geometry and Strength Parameters

3 X Ascii Tracking Parameters

4 X Ascii Geometry and strength Parameters (format as file # 2)

6 X Ascii Input Parameters and Analysis of Data

8 X Ascii Name, hor., ver. Misalignment and Tilt

9 X Ascii Internally used multipoles

Format: a16, 2× {6× (1p, 3d23.15), (1p, 2d23.15)}

10 X X Ascii Summary of Post–processing (auxiliary)

11 X Ascii This file is used to dump linear

coupling parameters at locations of choice

12 X Ascii End Coordinates of both Particles

Format: (15× F10.6)

13 X Ascii Start Coordinates for a Prolongation

14 X Ascii Horizontal FFT Spectrum for detailed

Analysis; Format: (2× F10.6)

15 X Ascii Vertical FFT Spectrum for detailed

Analysis; Format: (2× F10.6)

16 X Ascii External multipole errors

Format: a16, 2× {6× (1p, 3d23.15), (1p, 2d23.15)}

68

APPENDIX C. INPUT AND OUTPUT FILES 69

File Unit Input Output File Type Contents

17 X Ascii Additional Map at

location of interest

18 X Ascii One–Turn Map with Differential

Algebra

19 X X Ascii Internal use for Differential Algebra

20 X Meta–file PS–file of selected Plots

21 X Ascii Factorisation of the one–turn

map

22 X Ascii Transformation in the

Normal Form coordinates

23 X Ascii Hamiltonian in

action variables

24 X Ascii Tune–shift in action

coordinates

25 X Ascii Tune–shift in Cartesian

coordinates

26 X Ascii NAGLIB log–file

27 X Ascii Name, hor., ver. Misalignment and Tilt

28 X Ascii Horizontal closed orbit displacement,

measured at monitors

29 X Ascii Vertical closed orbit displacement,

measured at monitors

30 X Ascii Name, Random strength, misalignments and tilt

31 X Ascii Name, Random strength, misalignments and tilt

32 X X Binary Binary dump of full accelerator description

33 X Ascii Guess values for 6D closed orbit search

34 X Ascii Multipole strength and linear lattice parameters [21]

APPENDIX C. INPUT AND OUTPUT FILES 70

File Unit Input Output File Type Contents

90 – k X Binary Tracking Data (not singletrackfile)

0 <= k <= 31

90 X Binary Tracking Data (singletrackfile)

singletrackfile.dat

92 X Ascii Checkpoint/Restart only:

Program “standard output” (lout)

93 X Ascii Checkpoint/Restart only: Log file

94 X Ascii Checkpoint/Restart only: Temp file for

resetting binary tracking data file(s)

95 X X Ascii Checkpoint/Restart only: Data file 1

96 X X Ascii Checkpoint/Restart only: Data file 2

98 X Ascii 6D coordinates at Cavity (1p,6(2x,e25.18))

664 X Ascii DYNK reading FUN FILE(LIN)

(only during initialization)

665 X Ascii DYNK output file dynksets.dat

2001001 X Ascii FMA output file fma sixtrack

200101+i*10 X Ascii FMA output file NORM *,

where i = 1, . . . ,number of FMAs

In addition to those files listed in the table, DUMP uses arbitary file unit numbers as determined
by the input file. The collimation module also uses many input/output files at various units, which
are not listed here.

Appendix D

Data Structure of the Data–Files

A common data structure for the programs MAD and SixTrack is agreed on. Besides some minor
differences this allows a straightforward post–processing of data from either program. Each binary
data–file has a header which holds a description of the run with comments, tracking parameters and
50 additional parameters for future purposes, six of which are already specified in SixTrack.

Table D.1: Header of the Binary Data–Files

Data Type Bytes Description

Character 80 General title of the run

Character 80 Additional title

Character 8 Date

Character 8 Time

Character 8 Program name

Integer 4 First particle in the file

Integer 4 Last particle in the file

Integer 4 Total number of particles

Integer 4 Code for dimensionality of phase space
1,2,4 are hor., vert. and longitudinal respectively

Integer 4 Projected number of turns

Float 8 Horizontal Tune

Float 8 Vertical Tune

Float 8 Longitudinal Tune

Float 6 * 8 Closed Orbit vector

Float 6 * 8 Dispersion vector

Float 36 * 8 Six–dimensional transfer map

—– 50 additional parameters —–

Float 8 Maximum number of different seeds

Float 8 Actual seed number

Float 8 Starting value of the seed

Float 8 Number of turns in the reverse direction
(IBM only)

Float 8 Correction–factor for the Lyapunov
(σ = s− vo × t)

Float 8 Correction–factor for the Lyapunov

(∆p
po

)

Float 8 Start turn number for ripple prolongation

Float 43 * 8 Dummies

71

APPENDIX D. DATA STRUCTURE OF THE DATA–FILES 72

Following this header the tracking data are written in n samples of nine numbers preceded by the
turn number. In the MAD format the number of samples n is not restricted, whilst SixTrack writes
only up to two samples for the two particles for the Lyapunov–exponent method. Up to 64 particles
(two per file) can be treated in the vectorised version of SixTrack.

Table D.2: Format of the Binary Data

Data Type Bytes Description

Integer 4 Turn number

—– One or two samples of 9 values are following —–

Integer 4 Particle number

Float 8 Angular distance in phase space (<= 1)

Float 8 x (mm)

Float 8 x′ (mrad)

Float 8 y (mm)

Float 8 y′ (mrad)

Float 8 Path–length (σ = s− vo × t) (mm)

Float 8 Relative momentum deviation ∆p
po

Float 8 Energy (MeV)

Note that in case the “Single Track File” option is enabled at compile time, multiple of these files
(normally one per particle pair) are interleaved in a single file. This is done by writing first all headers
in order (i.e. first the header for initial particle/final particle 1/2, then 3/4, 5/6 etc.) and then the
same for the tracking data. The “total number of particles” field can always be read from the first
header record, which gives the number of header records present in the file. The two file formats are
equivalent, i.e. they contain exactly the same data, and it is thus possible to convert losslessly between
them.

Some of the post–processing data are written in Ascii–format on file # 10. This can be used for
instance for plotting purposes. Each time the post–processing routine is called 60 double precision
numbers (some of them still dummy) are added to the file.

The file with the errors (in: fort.16, out: fort.9) has the following format: first line – name of
element; line 2–7 – normal multipoles order 1–18; line 8 – normal multipoles of order 19 and 20;
line 9–14 – skew multipoles order 1–18; line 15 – skew multipoles of order 19 and 20. The strength
definition is according to block 3.3.1 and to be effective in fort.3 the random values of the corresponding
multipole block have to be set to 1.0. A word of caution: when writing on file fort.9 the total multipole
strength is used, i.e. systematic and random part combined. File fort.16 and fort.9 might therefore be
different. When using fort.9 as input (fort.16) the systematic part in fort.3 has to be set to 0.0.

Misalignment and tilt are in file # 8 and # 27 as input and output respectively. The format is
(a16,2x,1p,2d14.6,d17.9), i.e. name, horizontal misalignment, vertical misalignment and tilt. The mis-
alignment is in units of [mm] the tilt in units of [mrad]. The files # 30 (in) and # 31 (out) have the ran-
dom single nonlinear element kick, misalignments and tilt in the format: (a8,1p,d19.11,2d14.6,d17.9).
Misalignment and tilt in file fort.8 or fort.30 is automatically activated while the random strength
(strength definition same as in block 3.2.1) needs an entry in the fourth column in the geometry file
fort.2. File # 28 and # 29 hold integer counter and closed orbit displacement at a horizontal or
vertical monitor respectively.

APPENDIX D. DATA STRUCTURE OF THE DATA–FILES 73

Table D.3: Post–processing Data

of Column Description
1 Maximum turn number
2 Stability Flag (0=stable, 1=lost)
3 Horizontal Tune
4 Vertical Tune
5 Horizontal β–function
6 Vertical β–function
7 Horizontal amplitude 1st particle
8 Vertical amplitude 1st particle

9 Relative momentum deviation ∆p
po

10 Final distance in phase space
11 Maximum slope of distance in phase space
12 Horizontal detuning
13 Spread of horizontal detuning
14 Vertical detuning
15 Spread of vertical detuning
16 Horizontal factor to nearest resonance
17 Vertical factor to nearest resonance
18 Order of nearest resonance
19 Horizontal smear
20 Vertical smear
21 Transverse smear
22 Survived turns 1st particle
23 Survived turns 2nd particle
24 Starting seed for random generator
25 Synchrotron tune
26 Horizontal amplitude 2nd particle
27 Vertical amplitude 2nd particle
28 Minimum horizontal amplitude
29 Mean horizontal amplitude
30 Maximum horizontal amplitude
31 Minimum vertical amplitude
32 Mean vertical amplitude
33 Maximum vertical amplitude
34 Minimum horizontal amplitude (linear decoupled)
35 Mean horizontal amplitude (linear decoupled)
36 Maximum horizontal amplitude (linear decoupled)
37 Minimum vertical amplitude (linear decoupled)
38 Mean vertical amplitude (linear decoupled)
39 Maximum vertical amplitude (linear decoupled)
40 Minimum horizontal amplitude (nonlinear decoupled)
41 Mean horizontal amplitude (nonlinear decoupled)
42 Maximum horizontal amplitude (nonlinear decoupled)
43 Minimum vertical amplitude (nonlinear decoupled)
44 Mean vertical amplitude (nonlinear decoupled)
45 Maximum vertical amplitude (nonlinear decoupled)
46 Emittance Mode I
47 Emittance Mode II
48 Secondary horizontal β–function
49 Secondary vertical β–function
50 Q′

x

51 Q′
y

52 – 58 Dummy
59 – 60 Internal use

APPENDIX D. DATA STRUCTURE OF THE DATA–FILES 74

As an option the 4D linear parameters can be dumped to file # 11 when the linear optics block 3.5.1
is activated. This can be used for instance for a post–processing of linear coupling. 25 values are
written in a binary format.

Table D.4: 4D Linear Parameters

of Column Description

1 Name of the element

2 Longitudinal Position [m]

3 Horizontal phase advance

4 Vertical phase advance

5 Primary horizontal β–function [m]

6 Secondary horizontal β–function [m]

7 Secondary vertical β–function [m]

8 Primary vertical β–function [m]

9 Primary horizontal α–function [rad]

10 Secondary horizontal α–function [rad]

11 Secondary vertical α–function [rad]

12 Primary vertical α–function [rad]

13 Primary horizontal γ–function [m]

14 Secondary horizontal γ–function [m]

15 Secondary vertical γ–function [m]

16 Primary vertical γ–function [m]

17 Primary horizontal phase of x–coordinate [pi]

18 Secondary horizontal phase of x–coordinate [pi]

19 Secondary vertical phase of y–coordinate [pi]

20 Primary vertical phase of y–coordinate [pi]

21 Primary horizontal phase of x′–coordinate [pi]

22 Secondary horizontal phase of x′–coordinate [pi]

23 Secondary vertical phase of y′–coordinate [pi]

24 Primary vertical phase of y′–coordinate [pi]

25 Coupling angle [pi]

26 Dx [mm]

27 D′x [mrad]

28 Dy [mm]

29 D′y [mrad]

APPENDIX D. DATA STRUCTURE OF THE DATA–FILES 75

When external multipole errors are read–in (see section 3.4.1) the program expects a complete list
of magnet errors on file # 16. The format of each set of multipole errors is given in table D.5. The
definition of the multipole coefficients should be as described in section 3.3.1.

Table D.5: Format of file with external errors # 16 and internal errors written to # 9

of Row Description

1 Name of multipole set

2 B1 B2 B3

3 B4 B5 B6

4 B7 B8 B9

5 B10 B11 B12

6 B13 B14 B15

7 B16 B17 B18

8 B19 B20

9 A1 A2 A3

10 A4 A5 A6

11 A7 A8 A9

12 A10 A11 A12

13 A13 A14 A15

14 A16 A17 A18

15 A19 A20

With the parameter “mout” set to 2 or 3 in the “Random Fluctuation” block (3.4.1) the internally
used multipoles are written to file # 9 in the same format as above. This file can therefore be used as
an input fort.16 file for a subsequent run.

The file # 34 is written when the “Linear Optic Block” (see section 3.5.1) is invoked with the
“ELEMENT 0” option.

Table D.6: Format of file # 34 for detuning and distortion calculation with external program
“SODD” [21]

of Column Description

1 Longitudinal position [m]

2 Type “n” of Multipole (n > 0 => erect, n < 0 => skew)

3 Multipole strength [mrad ·mm(1−|n|)]

4 Horizontal β–function [m]

5 Vertical β–function [m]

6 Horizontal phase advance

7 Vertical phase advance

The last line serves as the end of the structure: Length of the accelerator, fake name “END”,
fake type “100”, β functions and phase advances at the end of the accelerator for the horizontal and
vertical plane respectively.

Appendix E

Tracking Examples

A simple tracking example is shown with its input file (E.1), its output file (E.2) and some corre-
sponding plots in (E.3).

E.1 Input Example

For the description of the different input blocks see chapter 3.

76

APPENDIX E. TRACKING EXAMPLES 77

FREE FORMAT TITLE: EXAMPLE

PRINTOUT OF INPUT PARAMETERS--

NEXT--

SINGLE ELEMENTS---

B 0 0.0000000 0.000000 50.0000

QD2 2 0.0000000 0.009536 0.77000

QF2 2 0.0000000 -0.009536 0.77000

MU 11 1.0000000 1.000000 0.00000

SEX 3 0.0500000 0.000000 0.00000

NEXT--

BLOCK DEFINITIONS---

 1 1

 B1 QD2 B QF2

 B2 QF2 B QD2

NEXT--

STRUCTURE INPUT---

 MU B1 SEX B2

NEXT--

MULTIPOLE COEFFICIENTS--

MU 10.0 3.5765

 0.0000 0.0000 0.0000 0.0000

 0.0000 0.0000 0.0000 0.0000

 0.405E-3 0.0000 0.0000 0.0000

 -.5E-5 0.0000 0.0000 0.0000

 -.56E-4 0.0000 0.0000 0.0000

 0.0000 0.0000 0.0000 0.0000

 0.3E-5 0.0000 0.0000 0.0000

 0.0000 0.0000 0.0000 0.0000

 -.1E-5 0.0000 0.0000 0.0000

NEXT--

TRACKING PARAMETERS---

 10000 0 2 11.0 11.5 0 1

 1 1 0 0

 0 0 1 1 1 50000 2

NEXT--

INITIAL COORDINATES---

 2 0. 0. 1.

 0.

 0.

 0.

 0.

 0.

 0.

 0.

 0.000001

 0.

 0.

 0.

 0.

 450000.

 450000.

 450000.

NEXT--

ITERATION-ACCURACY--

 50 1D-14 1D-15

 10 1D-10 1D-10

 10 1D-5 1D-6

 1D-8 1D-12 1D-10

NEXT--

POSTPROCESSING--

EXAMPLE

 1000 0 0 1 .08 .08 1

 0. 0. 1 1 20 .005 1 .10

 7878 1 0 1 1 1 1

NEXT

ENDE==

APPENDIX E. TRACKING EXAMPLES 78

E.2 Output Example

The preprocessing part is shown first.
--

 OOOOOOOOOOOOOOOOOOOOO

 OO OO

 OO PREPROCESSING OO

 OO OO

 OOOOOOOOOOOOOOOOOOOOO

--

 ---- ENTRY CLORB ----/DPP= 0.00000 /CLOX/ 0.00000 0.00000 /CLOZ/ 0.00000 0.00000 /ITERAT.= 2/ ACCURACY= 0.000000D+00

 ---- ENTRY CLORB ----/DPP= 0.00000 /CLOX/ 0.00000 0.00000 /CLOZ/ 0.00000 0.00000 /ITERAT.= 2/ ACCURACY= 0.000000D+00

 ---- ENTRY ORBIT ----/NO MONITORS SPECIFIED

 ---- ENTRY CLORB ----/DPP= 0.00000 /CLOX/ 0.00000 0.00000 /CLOZ/ 0.00000 0.00000 /ITERAT.= 2/ ACCURACY= 0.000000D+00

 ---- ENTRY CLORB ----/DPP= 0.00000 /CLOX/ 0.00000 0.00000 /CLOZ/ 0.00000 0.00000 /ITERAT.= 2/ ACCURACY= 0.000000D+00

--

 REL. MOMENTUM DEVIATION= 0.00000

 ==

 TRACKING FOR CONSTANT MOMENTUM DEVIATION

 ------ NO ACCELERATION ------

 TUNE CLO CLOP BET0 ALF0

 X 0.1222386779 0.00000000E+00 0.00000000E+00 92.957545511 0.0000000000

 Z 0.1222386779 0.00000000E+00 0.00000000E+00 203.581213058 0.0000000000

Followed by the initial coordinates and the final coordinates for a regular (right side) and chaotic
(left side) case.

 ---- INITIAL COORD. OF TWIN-TRAJECTORIES

 11.500000000000000000000000000000000 11.000000000000000000000000000000000

 -0.000000000000000004942488456867054 -0.000000000000000004727597654394574

 17.018620942597692600000000000000000 16.278680901615182100000000000000000

 0.000000000000000001669894918209964 0.000000000000000001597290791331270

 0.000000000000000000000000000000000 0.000000000000000000000000000000000

 0.000000000000000000000000000000000 0.000000000000000000000000000000000

 11.500000000000000000000000000000000 11.000000000000000000000000000000000

 0.000000999999999995057306000000000 0.000000999999999995272240000000000

 17.018620942597692600000000000000000 16.278680901615182100000000000000000

 0.000000000000000001669894918209964 0.000000000000000001597290791331270

 0.000000000000000000000000000000000 0.000000000000000000000000000000000

 0.000000000000000000000000000000000 0.000000000000000000000000000000000

 450000.000000000000000000000000000000000 450000.000000000000000000000000000000000

 449999.999999999971000000000000000000000 449999.999999999971000000000000000000000

 449999.999999999971000000000000000000000 449999.999999999971000000000000000000000

--

 OOOOOOOOOOOOOOOO

 OO OO

 OO TRACKING OO

 OO OO

 OOOOOOOOOOOOOOOO

--

 NUMBER OF REVOLUTION 10000

 -2.487686155718602960000000000000000 6.413505251156681690000000000000000

 0.075756093328203377700000000000000 -0.089292907637211219000000000000000

 -15.969507084566773900000000000000000 -6.601359419085703450000000000000000

 0.081264812099892794200000000000000 0.081356939244856263400000000000000

 0.000000000000000000000000000000000 0.000000000000000000000000000000000

 0.000000000000000000000000000000000 0.000000000000000000000000000000000

 10.716992116821544100000000000000000 6.407742545437783880000000000000000

 -0.079677572866025711500000000000000 -0.089306143607324223200000000000000

 5.973841771908771080000000000000000 -6.608681175154261120000000000000000

 -0.075407708725221220300000000000000 0.081353966395825996800000000000000

 0.000000000000000000000000000000000 0.000000000000000000000000000000000

 0.000000000000000000000000000000000 0.000000000000000000000000000000000

 450000.000000000000000000000000000000000 450000.000000000000000000000000000000000

 449999.999999999971000000000000000000000 449999.999999999971000000000000000000000

 449999.999999999971000000000000000000000 449999.999999999971000000000000000000000

 **** ALL PARTICLES STABLE ****

APPENDIX E. TRACKING EXAMPLES 79

Finally part of the post–processing for the two particles are shown (chaotic on the left and regular
on the right respectively) and a summary of the post–processing is given.

 OOOOOOOOOOOOOOOOOOOOOO

 OO OO

 OO POSTPROCESSING OO

 OO OO

 OOOOOOOOOOOOOOOOOOOOOO

 ANALYSING THE INCREASE OF THE DISTANCE IN PHASE-SPACE

 TURNS DISTANCE SLOPE RESIDUAL TURNS DISTANCE SLOPE RESIDUAL

 2000 0.2253779764D-03 0.4554898739 0.0000000000 2000 0.9092427661D-04 0.3871969581 0.0000000000

 3000 0.1081182799D-02 1.3754730225 0.3947801590 3000 0.2666317995D-03 0.9350422025 0.1414830685

 4000 0.6399160375D-02 3.0341444016 2.1449279785 4000 0.3394974411D-03 0.9019818306 0.0706214905

 5000 0.4981834333D-02 2.2218360901 2.3199357986 5000 0.5020486718D-03 1.0834455490 0.0927543640

 6000 0.8028940085D-01 4.1418428421 10.5150909424 6000 0.5503330639D-03 0.9862068892 0.0943765640

 7000 0.3407768847D+00 6.2231464386 25.0305175781 7000 0.7196859601D-03 1.0560836792 0.0917263031

 8000 0.4788764947D+00 6.7520313263 22.5305938721 8000 0.7402482154D-03 0.9828781486 0.1097971201

 9000 0.4507363285D+00 6.2743434906 21.2371520996 9000 0.9506629146D-03 1.0507984161 0.1310729980

 10000 0.6438836450D+00 5.8023786545 21.1673889160 10000 0.9737567472D-03 1.0118942261 0.1297397614

--

 AVERAGED PHASE-ADVANCE

 X-PHASE : 0.1175695955 +/_ 0.0003315228 X-PHASE : 0.1189145300 +/_ 0.0001260177

 Z-PHASE : 0.1196627812 +/_ 0.0001993022 Z-PHASE : 0.1211689637 +/_ 0.0001953892

 S-PHASE : 0.0000000000 +/_ 0.0000000000 S-PHASE : 0.0000000000 +/_ 0.0000000000

START-QX : 0.1222386779 CHANGE IN X : -.4669082376D-02 START-QX : 0.1222386779 CHANGE IN X : -.3324147915D-02

START-QZ : 0.1222386779 CHANGE IN Z : -.2575896685D-02 START-QZ : 0.1222386779 CHANGE IN Z : -.1069714140D-02

 THE AVERAGED PHASE-ADVANCES ARE CLOSER THEN 0.5000D-02 TO THE FOLLOWING RESONANCES UP TO 20 ORDER

 --

 NX * QX + NZ * QZ - P = DELTA NX * QX + NZ * QZ - P = DELTA

 -- --

 1 -1 0.0 -.2093D-02 1 -1 0.0 -.2254D-02

 2 -2 0.0 -.4186D-02 2 -2 0.0 -.4509D-02

 14 3 2.0 0.4963D-02

 15 2 2.0 0.2869D-02

 16 1 2.0 0.7763D-03

 17 0 2.0 -.1317D-02

 18 -1 2.0 -.3410D-02

 SUMMARY OF THE POSTPROCESSING

| | | | | |NORMALIZED| SLOPE | | | |

| TURN | LINEAR | BETA- | AMPLITUDES | MOMENTUM |PHASESPACE| OF THE | NONLINEAR | NEAREST | SMEAR OF |

| NUMBER | TUNES | FUNCTIONS | | DEVIATION| DISTANCE |DISTANCE| DETUNING | RESONANCE| THE EMITTANCES |

| | | [M] | [MM] | | | | | |ORD.| [%] | [%] |

| 10000|X 0.12224|X 92.9575|X 11.000000|0.0000D+00|0.9738D-03| 1.0119|X -.33241D-02|X 1| 2 |X 26.423|X+Z 5.664|

| |Z 0.12224|Z 203.5812|Z 16.278681| | | |+/- 0.126D-03|Z -1| |Z 34.450| |

| |QS 0.000000| | | | | |Z -.10697D-02| | | | |

| | | | | | | |+/- 0.195D-03| | | | |

| 10000|X 0.12224|X 92.9575|X 11.500000|0.0000D+00|0.6439D+00| 5.8024|X -.46691D-02|X 16| 17 |X 45.228|X+Z 6.683|

| |Z 0.12224|Z 203.5812|Z 17.018621| | | |+/- 0.332D-03|Z 1| |Z 33.745| |

| |QS 0.000000| | | | | |Z -.25759D-02| | | | |

| | | | | | | |+/- 0.199D-03| | | | |

APPENDIX E. TRACKING EXAMPLES 80

E.3 Plot Example

In figure E.1 a typical example of the evolution of the distance in phase space is shown of a regular and chaotic

particle. Figure E.2 and figure E.3 show the corresponding horizontal phase space and the physical phase space

projections respectively. An example of the stroboscoped phase space is shown in figure E.4, where the motion

in the chaotic case is beyond a “separatrix” in the four–dimensional phase space. Even in the FFT (figure E.5)

one can see the effect of chaotic behaviour: it leads to a widening of the lines of the spectrum.

Figure E.1: Evolution of the Distance of Phase Space for Regular (upper part) and Chaotic (lower part)
Motion.

APPENDIX E. TRACKING EXAMPLES 81

Figure E.2: Horizontal Phase Space Projections for the Regular (upper part) and the Chaotic
(lower part) Cases.

APPENDIX E. TRACKING EXAMPLES 82

Figure E.3: Physical Phase Space Projections for the Regular (upper part) and the Chaotic
(lower part) Cases.

APPENDIX E. TRACKING EXAMPLES 83

Figure E.4: Stroboscoped Vertical Phase Space Projections for the Regular (upper part) and the Chaotic
(lower part) Cases respectively. The regular motion stays inside a “separatrix” with two unstable fix–points
visible, while the chaotic motion is clearly outside this “separatrix”.

APPENDIX E. TRACKING EXAMPLES 84

Figure E.5: Horizontal FFT–Analysis for the Regular (upper part) and the Chaotic (lower part) Cases.

Bibliography

[1] LBL diffential algebra package and LieLib routines courtesy of É. Forest.

[2] G. Ripken and F. Schmidt, “A symplectic six–dimensional thin–lens formalism for tracking”,
CERN SL 95–12 (AP)(1995), DESY 95–063 (1995). G. Ripken and F. Schmidt, “Construc-
tion of Nonlinear Symplectic Six–Dimensional Thin–Lens Maps by Exponentiation”, DESY
95–189 (1995), http://cern.ch/Frank.Schmidt/report/ripken2.pdf; D.P. Barber, K. Heinemann,
G. Ripken and F. Schmidt, “Symplectic Thin - Lens Transfer Maps for SixTrack: Treat-
ment of Bending Magnets in Terms of the Exact Hamiltonian”, DESY 96–156 (1995),
http://cern.ch/Frank.Schmidt/report/ripken3.pdf.

[3] A. Wrulich, “RACETRACK, A computer code for the simulation of nonlinear motion in acceler-
ators”, DESY 84–026 (1984).

[4] B. Leemann and É. Forest, “Brief description of the tracking codes FASTRAC and THINTRAC”,
SSC Note SSC–133.

[5] G. Ripken, “Nonlinear canonical equations of coupled synchro–betatron motion and their solution
within the framework of a nonlinear 6–dimensional (symplectic) tracking program for ultra–
relativistic protons”, DESY 85–084 (1985).

[6] D.P. Barber, G. Ripken and F. Schmidt, “A nonlinear canonical formalism for the coupled
synchro–betatron motion of protons with arbitrary energy”, DESY 87–036 (1987); G. Ripken and
F. Schmidt, “A symplectic six–dimensional thin–lens formalism for tracking”, CERN/SL/95–12
(AP), DESY 95–063 (1995), http://cern.ch/Frank.Schmidt/report/ripken.pdf; K. Heinemann,

[7] R. Brun and D. Lienart, “HBOOK User Guide”, CERN Program Library Y250 (1987).

[8] R. Brun and N.C. Somon, “HPLOT User Guide”, CERN Program Library Y251 (1988).

[9] R. Bock, R. Brun, O. Couet, N.C. Somon, C.E. Vandoni and P. Zanarini, “HIGZ User Guide”,
CERN Program Library Q120.

[10] G. Guignard, “A general treatment of resonances in accelerators”, CERN 78–11 (1978).

[11] M. Berz, “Differential algebra description of beam dynamics to very high orders”, Particle Accel-
erators, 1989, Vol. 24, pp. 109–124.

[12] M. Berz, “DAFOR – Differential Algebra Precompiler Version 3, Reference Manual”, MSUCL–755
(1991).

[13] F. Schmidt and M. Vaenttinen, “Vectorisation of the single particle tracking program SixTrack”,
CERN SL Note 90–20 (1990) (AP).

[14] F. Schmidt, “Untersuchungen zur dynamischen Akzeptanz von Protonenbeschleunigern und ihre
Begrenzung durch chaotische Bewegung”, DESY HERA 88–02, (1988).

[15] H. Grote, “A MAD–SixTrack interface”, SL Note 97–02 (AP).

[16] SixTrack Physics Manual, http://sixtrack.web.cern.ch/SixTrack/

85

http://cern.ch/Frank.Schmidt/report/ripken2.pdf
http://cern.ch/Frank.Schmidt/report/ripken3.pdf
http://cern.ch/Frank.Schmidt/report/ripken.pdf
http://sixtrack.web.cern.ch/SixTrack/

BIBLIOGRAPHY 86

[17] M. Berz, É. Forest and J. Irwin, “Normal form methods for complicated periodic systems: a
complete solution using differential algebra and lie operators”, Particle Accelerators, 1989, Vol.
24, pp. 91–107.

[18] M. Bassetti and G.A. Erskine, “Closed expression for the electrical field of a two–dimensional
Gaussian charge”, CERN–ISR–TH/80–06.

[19] K. Hirata, H. Moshammer, F. Ruggiero and M. Bassetti, “Synchro-Beam interaction”, CERN SL-
AP/90-02 (1990) and Proc. Workshop on Beam Dynamics Issues of High-Luminosity Asymmetric
Collider Rings, Berkeley, 1990, ed. A.M. Sessler (AIP Conf. Proc. 214, New York, 1990), pp. 389-
404;
K. Hirata, H. Moshammer and F. Ruggiero, “A symplectic beam-beam interaction with energy
change”, KEK preprint 92-117 A (1992) and Part. Accel. 40, 205-228 (1993);
K. Hirata, “BBC User’s Guide; A Computer Code for Beam-Beam Interaction with a Crossing
Angle, version 3.4”, SL-Note 97-57 AP.

[20] L.H.A. Leunissen, F. Schmidt and G. Ripken, “6D Beam–Beam Kick including Coupled Motion”,
LHC Project Report 369, http://cern.ch/Frank.Schmidt/report/ripken new.pdf.

[21] F. Schmidt, “SODD:
A Computer Code to calculate Detuning and Distortion Function Terms in First and Second
Order”, CERN SL/Note 99–009 (AP), http://cern.ch/Frank.Schmidt/report/sodd manual.pdf.

[22] H. Grote and F.C. Iselin, “The MAD program (Methodical Accelerator Design), Version 8.10,
User’s Reference Manual”, CERN SL 90–13 (AP) (Rev. 4)
http://cern.ch/Hans.Grote/mad/mad8/doc/mad8 user.ps.gz.

[23] R. Molloy and S. Blitz, “Fringe Field Effects on Bending Magnets, Derived for, TRANS-
PORT/TURTLE”, FERMILAB-TM-2564-AD-APC-PPD http://lss.fnal.gov/archive/

test-tm/2000/fermilab-tm-2564-ad-apc-ppd.pdf

[24] private communication.

[25] F. James, “A review of pseudo–random number generators”, to be published in Computer Physics
Communication.

[26] B. Autin and Y. Marti, “Closed Orbit Correction of A.G. Machines Using a Small Number of
Magnets”, CERN–ISR–MA/73–17.

[27] M. Giovannozzi, “Description of software tools to perform tune–shift correction using normal
forms”, CERN SL Note 93–111 (AP).

[28] F. Schmidt, F. Willeke and F. Zimmermann, “Comparison of methods to determine long–term
stability in proton storage rings”, 1991, Particle Accelerators, Vol. 35, pp. 249–256.

[29] R. Bartolini, A. Bazzani, M. Giovannozzi, W. Scandale, E. Todesco,“Tune evaluation in simula-
tions and experiments”,Part. Accel. 52 147

[30] M. Giovannozzi, E. Todesco, A. Bazzani and R. Bartolini (1997). “PLATO: a program library for
the analysis of nonlinear betatronic motion”, Nucl. Instrum. and Methods A 388 1

[31] J. Laskar, C. Froeschle and C. Celletti, “The measure of chaos by the numerical analysis of the
fundamental frequencies. Application to the standard mapping”, Physica D, vol. 56, pp 253-269,
1992.

[32] S. Kostoglou, N. Karastathis, Y. Papaphilippou, D. Pellegrini and P. Zisopoulos, “Development
of computational tools for noise studies in the LHC”, 2017, Proceedings of IPAC’17, Copenhagen,
Denmark, 2017.

http://cern.ch/Frank.Schmidt/report/ripken_new.pdf
http://cern.ch/Frank.Schmidt/report/sodd_manual.pdf
http://cern.ch/Hans.Grote/mad/mad8/doc/mad8_user.ps.gz
http://lss.fnal.gov/archive/test-tm/2000/fermilab-tm-2564-ad-apc-ppd.pdf
http://lss.fnal.gov/archive/test-tm/2000/fermilab-tm-2564-ad-apc-ppd.pdf

BIBLIOGRAPHY 87

[33] SixTrack build manual, see SixTrack website, http://sixtrack.web.cern.ch/SixTrack/

[34] SixDesk manual, see SixTrack website, http://sixtrack.web.cern.ch/SixTrack/

[35] SixDesk manual, https://www.overleaf.com/1345694dwypbp#/3325092/

[36] J. B. Garcia et al., “Long term dynamics of the high luminosity Large Hadron Collider with crab
cavities”, 2016, PHYSICAL REVIEW ACCELERATORS AND BEAMS 19, 101003 (2016).

[37] K. Sjobak, H. Burkhardt, R.D. Maria, A. Mereghetti and A. Santamaria, “General functionality
for turn-dependent element properties in SixTrack” 2015, Procedings of IPAC’13, Richmond, VA,
USA, May 2015.

[38] S. Russenschuck, “Field computation for Accelerator Magnets”, Wiley-VCH, 2010

[39] P. Burla, Q. King and J.G. Pett, “Optimisation of the current ramp for the LHC”, Proceedings
of the 1999 Particle Accelerator Conference, New York, 1999.

http://sixtrack.web.cern.ch/SixTrack/
http://sixtrack.web.cern.ch/SixTrack/
https://www.overleaf.com/1345694dwypbp#/3325092/

	Introduction
	Versions and Service
	Evolution of SixTrack

	Input Structure
	General Input
	Program Version
	Print Selection
	Comment Line
	Iteration Errors
	MAD – SixTrack Conversion

	Machine Geometry
	Single Elements
	Linear Elements
	Nonlinear Elements
	Multipole Blocks
	Cavities
	Beam–Beam Lens
	Wire
	``Phase–trombone'' or matrix element
	AC dipole
	Dipole edge
	Crab Cavity
	RF multipole
	Electron Lens
	Scattering point
	Beam Position Monitor
	Other element types

	Block Definitions
	Structure Input
	Displacement of Elements

	Special Elements
	Multipole Coefficients
	Aperture Limitations
	Power Supply Ripple
	Dynamic Kicks
	Beam–Beam Element
	Wire
	``Phase Trombone'' Element
	Electron lens
	Scattering

	Organising Tasks
	Random Fluctuation Starting Number
	Organisation of Random Numbers
	Combination of Elements

	Processing
	Linear Optics Calculation
	Tune Variation
	Chromaticity Correction
	Orbit Correction
	Decoupling of Motion in the Transverse Planes
	Sub–resonance Calculation
	Search for Optimum Places to Compensate Resonances
	Resonance Compensation
	Differential Algebra
	Normal Forms
	Corrections
	Post–processing

	Initial Conditions for Tracking
	Tracking Parameters
	Initial Coordinates
	Synchrotron Oscillation

	Extra output files
	Dumping of beam population
	FMA analysis
	ZIPFile combined and compressed output

	Acknowledgement
	List of Keywords
	List of Default Values
	Default Tracking Parameters
	Default Size Parameters

	Input and Output Files
	Data Structure of the Data–Files
	Tracking Examples
	Input Example
	Output Example
	Plot Example

	Bibliography

