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Abstract

We describe a possible layout and parameters of a po-
larized positron source for CLIC, where the positrons are
produced from polarized gamma rays created by Compton
scattering of a 1.3-GeV electron beam off a YAG laser.
This scheme is very energy effective using high finesse
laser cavities in conjunction with an electron storage ring.
We point out the differences with respect to a similar sys-
tem proposed for the ILC.

INTRODUCTION
At Snowmass 2005, a polarized-positron source based

on laser-Compton scattering was proposed for the ILC [1].
Polarized photons generated by laser-electron scattering
are here converted into polarized positrons via pair produc-
tion in a target. Two novel features distinguish the “new”
ILC Compton source from its single-pass predecessor de-
veloped for the JLC in the 1990’s [2], namely photon stack-
ing using high-finesse optical cavities in a Compton stor-
age ring and positron stacking in a damping ring, both of
which relax the laser requirements. The case of a Compton
source is bolstered by recent experimental results from the
KEK/ATF, where the production of ��� polarized positrons
per bunch with ��������	
	��������	�� polarization
has been demonstrated [3], as well as by an improved un-
derstanding of compact Compton storage rings [4, 5]. In
this paper we discuss how the ILC Compton scheme can
be adapted, and scaled down, to CLIC.

ILC COMPTON SCHEME
The ILC Compton source [1] comprises a Compton ring

with 30 optical cavities, which are either coupled in a daisy
chain or powered by separate lasers. Various types of lasers
can be used. In Ref. [1], YAG or CO� lasers were consid-
ered, which require a different beam energy of 1.3 GeV or
4.1 GeV, respectively, and a different ring circumference
of 277 m or 649 m. During 100 or 50 Compton-ring turns
������� “bunch-lets” of about ����� polarized positrons
are produced from polarized photons generated in 30 laser-
electron collisions. Next, a 100-Hz s.c. linac accelerates
these positrons to 5 GeV. On 10 successive damping-ring
turns, positron bunch-lets are injected 10 times into each

of 2800 ILC damping-ring rf buckets. Then the injected
positron emittance is damped by synchrotron radiation for
10 ms. The entire process is repeated 9 times, always leav-
ing a 10-ms damping time between sets of 10 consecutive
injections. After 90 ms the accumulation is completed. The
ILC damping ring now stores the full-intensity positron
bunches for 100 further ms before extraction to the main
linac. A major challenge in the ILC Compton-ring design
are the 30 laser-beam interaction points (IPs), which result
in a large energy spread, reducing the photon yield, and
which likely compromise the dynamic aperture. In case the
30 cavities are coupled, a novel multi-chamber feedback is
needed.

Table 1: CLIC and 3-km ILC damping ring parameters.

variable CLIC ILC
energy 2.424 GeV 5 GeV
circumference 360 m 3230 m
bunch population ����� ��� �� ����

# bunches per train 110 280
gap (missing bunches) � �� 80
# trains per pulse 2 10
bunch spacing 0.533 ns 2.8 ns
hor. normalized emittance 600 nm 5 �m
vert. normalized emittance 5–10 nm 20 nm
rf frequency 1.875 GHz 650 MHz
repetition rate 150 Hz 5 Hz

ILC-CLIC DIFFERENCES
The positron sources for ILC and CLIC must provide the

bunches required in the respective damping rings. From
Table 1, we infer the main differences between ILC and
CLIC: (1) The CLIC bunch charge is almost 10 times lower
and the number of bunches per pulse about 20 times smaller
than for the ILC. (2) The bunch spacing for CLIC is about
6 times shorter. (3) The CLIC repetition rate is higher by a
factor 30.

As a consequence of the first point, the number of laser
cavities in the CLIC Compton ring can be reduced, ideally
to a single one, a case which will soon be tested experimen-
tally in the ATF damping ring.



CLIC SCHEME
Figure 1 displays a schematic of the polarized positron

source proposed for CLIC. Its main components are a com-
pact Compton ring with a single optical cavity, a photon
target and positron collection system, a 2.4-GeV 150-Hz
n.c. linac, and the 2.424-GeV pre-damping ring used for
accumulation. Table 2 compares preliminary parameters of
the CLIC source with those of the ILC.

For simplicity, we here consider only the case of a YAG
laser. Due to its 10 times shorter wavelength ��, for the
YAG laser the injection linac is 3 times shorter and the
Compton-ring energy 3 times lower than for a CO� laser.

Table 2: YAG-laser Compton-source parameters.

parameter CLIC ILC
Compton ring energy 1.3 GeV 1.3 GeV
C.-ring circumference 42 m 277 m
rf frequency 1.875 GHz 650 MHz
bunch spacing 0.16 m 0.923 m
number of bunches 220 280
bunch population ���� ���� ���� ����

no. of optical cavities 1 30
total �’s/bunch/turn ���� ��� ���� ����

selected �’s/bunch/turn ���� ��� ����� ����

pol. e+/bunch/turn ���� ��� ���� ���

injections/bunch 300 100
total # injections ���� ��� ���� ���

# e+/pulse ���� ���� ���� ���	

# e+/second ���� ���	 ���� ����

# Compton-ring turns 300 100
Compton-pulse duration 42 �s 90 �s
pause between cycles 6.1 ms 9.9 ms

1.3 GeV linac, 150 Hz

Compton ring
1.3 GeV storage ring, 
C=42 m, 140 ns/turn
2x110 bunches
Nb=6.2x10 10

2.424 GeV Pre-Damping & 
Accumulator Ring:
300 turns of Compton ring makes
220 bunches with 3x10 9 e+/ bunch; 
then 6.1 ms for dampingafter stacking and damping, 

extract beam and inject into
damping ring, 220 bunches

2.4 GeV linac
150 Hz

1 YAG Laser Pulse 
Stacking Cavity, 590 mJ

g (23-29 MeV)
6.9x10 8

/turn/bunch

9.8x10 6 pol. e+
/turn/bunch

Figure 1: Schematic view of CLIC Compton source.

COMPTON RING
The Compton ring can be designed as a racetreack with

four straight sections [1, 4, 5]. Two of these accommo-
date wigglers, counteracting the effect of the Compton col-
lisions by enhanced longitudinal damping, one houses an
rf system which restores the energy lost in Compton col-
lisions and in the wigglers, and the last one contains the
Compton collision point with optical cavity.

Parameters for the Compton collision point are summa-
rized in Table 3. The maximum back-scattered photon en-
ergy is 29 MeV. Photons between 23.2 and 29 MeV are se-
lected for polarized positron generation. Laser pulse deple-
tion from Compton scattering is negligible compared with
losses on the optical mirrors. Also nonlinear Compton ef-
fects can be ignored. Transverse emittance growth due to
either the ponderomotive force or quantum diffusion in the
laser field is small too.

Table 3: Parameters of Compton collision.

parameter value
e- bunch length at Compton IP 5 mm
e- rms hor./vert. beam size 25, 5 �m
e- beam energy 1.3 GeV
e- bunch charge 10 nC
laser type YAG
laser photon energy 1.164 eV
rms laser radius 5 �m
laser pulse energy 592 mJ
# laser cavities 1
crossing angle � ��Æ

photons in cavity pulse ���� ����

polarized �’s/bunch/turn ���� ���

positron yield e+/� 0.014
effective e+ yield/� ���� ���	

A simulation of the turn-by-turn photon yield per elec-
tron which considered an optimized 1st order momentum
compaction ���� � � � ����, a zero second order ����,
and strong wiggler damping, predicts an average total pho-
ton yield per electron of about 0.0447, which is close to the
ideal value expected for a longitudinally point-like bunch
[5]. The yield stays almost constant as a function of time,
unlike for the ILC [1, 5]. The positron yield per collision
and per Compton-ring electron is estimated by multiplying
the simulated total photon yield with a factor 0.248 (about
25% of the photons are selected) [1] and with a factor 0.014
for the approximate positron yield per photon [1].

The electron-beam energy spread induced in a Compton
collision is [6] ��� �

�
������������, with �� the

photon energy, �� � ���	���
���
���������� the av-

erage energy loss, �� the laser pulse energy, 
� the clas-
sical electron radius, and �� the laser Rayleigh length.
The YAG laser requires a large momentum acceptance
of 7–8% in the Compton-ring, which may be difficult to
achieve. Possible remedies include decreasing the turn
number and increasing the number of electron bunches
(and ring circumference), introducing additional wigglers,
or using a CO� laser with higher ��. Many other improve-
ments considered for the more demanding ILC conditions,
such as rf phase manipulation, low & nonlinear momentum
compaction factor, pulsed momentum compaction lattice,
and strong rf focusing with minimum bunch length at the
Compton IPs [5, 7], could also be applied at CLIC.



LASER AND OPTICAL CAVITY
The laser system, sketched in Fig. 2, consists of three

stages. The mode-locked laser oscillator produces seed
pulses with about 170 nJ energy. The solid-state amplifier
provides a gain by about a factor 3500 via chirped pulse
amplification (CPA). For comparison, the existing ampli-
fier of the ATF rf-gun laser achieves a factor 10000. The
final enhancement by a factor 1000 to about 600 mJ pulse
energy is accomplished by stacking in a high-finesse op-
tical cavity. The optical cavities at the ATF have demon-
strated enhancement factors of 300 (pulsed laser wire) and
1000 (cw laser wire).

Several alternatives exist: (1) increasing the laser pulse
energy and decreasing the optical-cavity quality factor; 2)
replacing the YAG laser by a 0.21 mJ/pulse CO� laser; (3)
continuous mode operation (with fiber laser?) at 50 MHz
and 10 �J/pulse combined with a higher cw optical-cavity
quality factor of ��� � ��� [8]; (4) feedback on the laser
(LAL scheme) and/or on the optical cavity (KEK scheme).
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Figure 2: Schematic layout of laser system, including pulse
energy and gain factors [9].

At the intersection of optical cavity and beam pipe, the
latter features two elongated holes for the laser beam. The
minimum cavity length is estimated as � � ��� � ����m,
where  � �� mm is the size of the optical mirror, and
� � ��Æ the laser-beam collision angle. This implies that,
for CLIC, at least 3 or 4 pulses are stored in the same cavity.

Instead of using a mode-locked laser at the CLIC bunch
frequency, also a lower-frequency laser can be employed.
The latter could feed a larger optical cavity whose length
is tailored such that successively injected laser pulses are
properly interleaved and the laser frequency is multiplied,
as is illustrated in Fig. 3.

laser mode-lock period

1st laser bunch injected nth laser bunch injected

fraction of laser

mode-lock period

~0.533 ns

Figure 3: Schematic of laser frequency multiplication.

POSITRON STACKING
The accumulation ring used for positron stacking must

have a large longitudinal and transverse acceptance, as well
as provide fast damping. The only economical solution for
the ILC is to use one or several of the 3 or 6-km long
main damping rings for stacking, as the ILC accumula-
tor ring should have at least the same circumference as

the main damping ring. By constrast, at CLIC the pre-
damping ring can be used for accumulation. The minimum
required circumference for accommodating 220 positron
bunches is only 42 m. In addition, this ring can be opti-
mized for accumulation efficiency fully independently of
any damping-ring constraints. The former 2-GeV 200-m
NLC pre-damping ring optics [10] is a good candidate. It
features a 10-fold symmetric double-bend achromat struc-
ture, wiggler damping equal to twice the arc damping, 0.4-
m bunch spacing, 2-ms longitudinal damping time, 100–
150 Hz repetition rate, and a dynamic aperture of 0.2 m-rad
for ���� � �����.

OUTLOOK
The Compton ring design is challenging due to the high

current. Further optimization of ring circumference, bunch
spacing, and bunch charge will likely be required.

An ongoing R&D programme at the KEK/ATF ad-
dresses the design and fabrication of laser-pulse stack-
ing cavities with high enhancement factor and small spot
size, the design of an IP with minimum collision angle,
and the installation of laser-pulse stacking cavities in the
ATF damping ring, culminating in X-ray generation. A
parallel proposal to the European Union’s 7th framework
programme includes technological R&D on high-power
high-repetition rate lasers and optical cavities, a design
study of the Compton ring, collection system, and stack-
ing schemes, as well as experiments at ATF and DAFNE.

Over the last decade, the output power of cw double-clad
fiber lasers with diffraction limited beam quality has in-
creased by a factor 400 [7, 11]. The demonstrated value of
2 kW is close to the power needed for the CLIC source (if a
single laser is used). Extrapolating past evolution, an 8-kW
cw fiber laser should become available around 2008/2009.
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