7021 - MSSM02
    *************

1. code I.D.  : original code SUSYGEN by S.Katsanevas
                e-mail: katsanevas@vxcern.cern.ch,
                http://lyohp5.in2p3.fr/delphi/katsan/susygen.html

                Interfaced by Y.Gao, P.Morawitz, M.Williams.
                contact people:Y.Gao, P.Morawitz and B. Bloch

2. write-up   : see ALEPH-97-045, MCARLO 97-002 for more details.
             http://alephwww.cern.chhttp://cern.ch/aleph/alpub/note/note97/44/mssm02.ps
 MSSM02 is an interfaced version of the SUSYGEN generator, a generator
 for SUSY pair production at LEP. MSSM02 uses the April 96 version of
 SUSYGEN (V1.5), which at that time did not contain any implementation of
 R-parity violating decay processes. Therefore MSSM02 uses its own
 implementation of the R-parity violating decays.

 MSSM02 differs from MSSM01 in the following respects:
 a) MSSM02 now includes the radiative gaugino decays:
                      gaugino -> gamma gaugino'
                      gaugino -> Higgs (CP even/odd plus charged) gaugino'
 b) A number of serious bug-fixes.
 c) All R-parity violating decays are implemented.
 d) QED Final State Radiation from hard leptons.
 e) Improved hadronisation interface.
  All sizeable SUSY production mechanisms are implemented - i.e. chargino, 
 neutralino, slepton and squark pair production. The generator works in either
 electroweak mode, in which the user supplies the gaugino parameters and all 
 scalar masses at the electroweak scale, or alternatively in GUT mode, in 
 which the user supplies four SUSY parameters and the scalar mass parameter at
 the GUT scale, and all other SUSY mass parameters are calculated by the
 generator (assuming Grand Unification). All R-parity conserving and violating
 decays are simulated at some level, although the user interface for the 
 Rp-violating decays is not very elegant.

 Limitations of the generator: Spin correlations are not implemented. The
 generator does not implement two-body gaugino decays. No Gauge mediated
 SUSY breaking scenarios (i.e. no gravitinos). The generator does not take
 into account effects of lifetime.

3. references :
 3.1 P.Morawitz, M.Williams, Aleph note ALEPH 97-045, MCARLO 97-002
     "MSSM Version 2.0, The SUSYGEN generator interfaced to KINGAL"
      http://alephwww.cern.chhttp://cern.ch/aleph/alpub/note/note97/44/mssm02.ps
     Y.Gao, P.Morawitz, Aleph note ALEPH 96-034, MCARLO 96-001
     "MSSM Version 1.0, The SUSYGEN generator interfaced to KINGAL"
 3.2 S.Katsanevas et. al. in The SUSYGEN manual.
     http://lyohp5.in2p3.fr/delphi/katsan/susygen.html
 3.3 A.Bartl, H.Fraas, W.Majerotto, Z.Phys.C30(1986)411;
     Z.Phys.C34(1987)411; Z.Phys.C41(1988)475; Nucl.Phys.B278(1986)1.

4. data cards :
  No generator data cards are mandatory, but the cards below show the
  data cards known by the generator :
*
* ECMS   Center of mass energy in Gev
* IPRINT debug info? 0=no, the higher the number the more debug info you get
*       ECMS  IPRINT WantHistos?
GENE    160.0    1        1

*****************************************************************
*      EW parameters to be used in the generator (not JETSET)
*****************************************************************
SW2   0.231243 ! * sin2(theta_w)
ALPH 0.0078125 ! couplings: alpha_em: is not necessarily same as in LUND

*****************************************************************
*                      SUSY parameters
*****************************************************************
MODE 1
* MODE: 1=GUT mode (all masses and mixing angles are calculated from GUT
*                   relations from the parameters M2,mu,m0,tanb,A,M(Higgs m_a))
*                   PS: Note: if you want sfermion mixing you must switch on
*                             MIX 1
*                       Note: In this mode the cards
*                       (MLSQ,MRSQ,MLSL,MRSL,PMIX,GMAS,GMA2) are not used by the
*                             generator
*
*       2=MSSM      Only M2,mu,tanb,M(Higgs m_a) are used to calculate the
*                   gaugino (+Higgs) masses. Sfermion masses and mixing angles
*                   are provided by the user by the cards
*                   (MLSQ,MRSQ,MLSL,MRSL,PMIX,GMAS,GMA2)
*

* SUPA: basic supersymmetry parameters
*      M     mu      m0   tanBeta A    Rscale   M(Higgs m_a)
SUPA 90.0    90.0   90.0   4.0    0.0   1.0     300.0

* LEPI ! use LEPI limit (if LEPI card is given)? (see susygen manual)

*****************************************************************
*                     Sfermion masses
*****************************************************************
*
* masses of squarks (MLSQ= left-handed squarks, MRSQ=right-handed squarks)
*        d       u       s       c       b       t
MLSQ  1000.0  1000.0  1000.0  1000.0  1000.0  50.0
MRSQ  1000.0  1000.0  1000.0  1000.0  1000.0  50.0
* masses of sleptons. The masses for right-handed sneutrinos set here
* have no effect (there are no right-handed sneutrinos).
*        e      nu_e     mu    nu_mu   tau     nu_tau
MLSL  1000.0  1000.0  1000.0  1000.0  1000.0  1000.0
MRSL  1000.0  10000.  1000.0  10000.  1000.0  10000.
MGLU 1000. ! mass of gluino
*      new data cards - overwrite the higgs calcultation:
*      mh    mH    mH+    cos(alpha) sin(alpha)
* MHIG 1000. 1000.  1000.     1.         0.

*****************************************************************
*                     Sfermion Mixing
*****************************************************************
MIX 0 ! * alow mixing of sfermions: 0=no,1=yes
* specially option for the 3rd family, one can provide Stop,sbottom,stau masses
* and mixing angles as calculated from the GUT RGEs (MODE=1).
* for GMAS(I=1..3)=0.0 the option is inactive (for Stop,sbottom,stau
* respectively), i.e. no overwrite!
* mixing angles   stop sbottom stau  (in degree)
PMIX                0.   0.     0.
* mass of        stop_1 sbottom_1 stau_1
GMAS                0.   0.        0.
* mass of        stop_2 sbottom_2 stau_2
GMA2                0.   0.        0.

*****************************************************************
*                     Production processes
*****************************************************************
* Production process, the following production channels are availabe
* in MSSM02, they are all open by default.
*          process no.    e+e- --->   sparticle1  +  sparticle 2
*          ----------- neutralino production --------------------
*              1                        Z1SS            Z1SS
*              2                        Z2SS            Z1SS
*              3                        Z2SS            Z2SS
*              4                        Z3SS            Z1SS
*              5                        Z3SS            Z2SS
*              6                        Z3SS            Z3SS
*              7                        Z4SS            Z1SS
*              8                        Z4SS            Z2SS
*              9                        Z4SS            Z3SS
*             10                        Z4SS            Z4SS
*          ----------- chargino production   --------------------
*             11                        W1SS+           W1SS-
*             12                        W2SS+           W1SS-
*             13                        W2SS+           W2SS-
*          ----------- sneutrino production  --------------------
*             14                        NUEL            NUEL~
*             15                        NUML            NUML~
*             16                        NUTL            NUTL~
*          ----------- slepton production    --------------------
*             17                        EL-             EL+
*             18                        EL-             ER+
*             19                        ER-             ER+
*             20                        ML-             ML+
*             21                        MR-             MR+
*             22                        TL-             TL+
*             23                        TR-             TR+
*          ----------- squark  production    --------------------
*             24                        UL              UL~
*             25                        UR              UR~
*             26                        DL              DL~
*             27                        DR              DR~
*             28                        CL              CL~
*             29                        CR              CR~
*             30                        SL              SL~
*             31                        SR              SR~
*             32                        BL              BL~
*             33                        BR              BR~
*             34                        TopL            TopL~
*             35                        TopR            TopR~
*          -------------------------------------------------------
* You can switch on  a process as
* PROC  i / 1    ! switch on   process i
* PROC  i / 0    ! switch off  process i
*

*****************************************************************
*                     Topology / Decay mode switches
*****************************************************************
* The following switches allow the user to select only certain
* topos/decay modes. Note that the x-section quoted is the
* sigma_total, i.e. topology switch not considered in calc.
*
* switch 1=on/0=off virtual Z and W decay modes (see susygen manual)
DESC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
*  topology switch for chi+1 chi-1 : Only allow the following decay modes:
*        TOC1 =    1=2l, 2=ljj, 3=4j 4=all, 5=only chi2 cascades
TOC1 4
*  topology switch for chi01 chi02 : Only allow the following decay modes:
*        TON1 =     1=l lbar, 2=j jbar, 3=nu nubar
TON1 4
*     switch on/off (1/0) the HIGGS decay channels (see susygen manual)
HDES 1 1 1 1 1 ! switch on/off (1/0) the HIGGS decay channels (see manual)

*****************************************************************
*                   ISR/FSR/Hadronisation switches
*****************************************************************
*
IRAD 1 ! switch initial state radiation 1=on/0=off
FRAD 1 ! switch final state radiation 1=on/0=off
SHAD 0 ! hadronise your stops/sbottoms before decay? (=>SHAD 1)

*****************************************************************
*                  Rparity violation control cards
*****************************************************************
*        a b c d e
RPAR     0 2 3 1 1
* switches for RPAR:
*         a=0,1   Rparity violation OFF/ON (0/1)
*         b=1,2,3 Non-zero Rpv-Operator (1=LLE,2=LQD,3=UDD)
*         c,d,e=1..3 generation indices i,j,k of the non-zero
*                 Yukawa coupling lambda_ijk
*
RLAM 0.3 ! RLAM reads the value of the Yukawa coupling lambda_ijk
* Parameters for the direct two-body sfermion decays
*   RPW1,RPD1{i,j} (and RPW2,RPD2 for sfermion_R) specify
*   the width and the decay products for the decays
*   sfermion_L -> fermion_i fermion_j .
*   Setting RPW1 to a large value is equivalent to giving the sfermion
*   a 100% BR for the decay sfermion -> fermion_i fermion_j .
*
* widths of the Rpv-decays for particles in GeV (brspa_rpv)
*
*      Ul~ Dl~ nue~ el~ Cl~ Sl~ numu~ mul~ Tl~ Bl~ nutau~ TAUl~
* RPW1 0.  0.  0.   0.  0.   0.  0.    0.   0.  0. 0.    0.
*      Ur~ Dr~ 0    er~ Cr~ Sr~ 0     mur~ Tr~ Br~ 0      Taur~
* RPW2 0.  0.  0.   0.  0.   0.  0.    0.   0.  0. 0.    0.
* decay products (in LUND codes, i.e. 1=d, 2=u 11=e 12=nu etc.)
* of the above sparticles {rparsleptondecaymatrix(24,1..2)}
*
*      Ul~ Dl~ nue~ el~ Cl~ Sl~ numu~ mul~ Tl~ Bl~   nutau~ TAUl~
* RPD1 0 0 0 0 0 0  0 0 0 0 0 0 0 0   0 0  0 0 0 0   0 0    0 0
*      Ur~ Dr~ 0    er~ Cr~ Sr~ 0     mur~ Tr~ Br~ 0      Taur~
* RPD1 0 0 0 0 0 0  0 0 0 0 0 0 0 0   0 0  0 0 0 0   0 0    0 0

*****************************************************************
*              Rparity violation topology switches
*****************************************************************
* RBOD card: Overwrites the Rpv calculation of the neutralino decays
*            There are 4 final states for LLE and LQD, two for UDD.
*            RBOD reads in the width for the final states in GeV.
* RBOD 1000. 1000. 1000. 1000.
*
* RBOD card: Overwrites the Rpv calculation of the direct chargino decays
*            There are 2 final states for LLE, 4 for LQD, 3 for UDD.
*            RBO2 reads in the width for the final states in GeV.
* RBO2 1000. 1000. 1000. 1000.
*
* RBO3 card : Bodge for LLE - for LLE "mixed" acoplanar lepton topologies
*             can arise. This is not in the calculation tho'. Adding the
*             RBO3 card will produce decays of charginos to emu,etau,mutau only.
*             It will also produce emu,etau,mutau final states (only) for the
*             sleptons.
* RBO3
*
* RBO4 card : Overwrite the mass of chi1 and chi+
*      mchi1 mchi1+
* RBO4 30.   80.

5. header informations :
 5.1 run header
   The Parameter bank 'KPAR' contains  68 real*4 values corresponding to :
      1-35: Cross-sections for processes 1-35
      36-40: tanBeta,M,mu,m0,A
      41-56: The Neutralino diagonalisation matrix N_ij
      57-60: The Chargino diagonalisation matrix U_ij
      61-64: The Chargino diagonalisation matrix V_ij
      65-67: smearing of the vertex position (in cm)
         68: center of mass energy
 5.2 event header
   Process identifier IDPR = process selected fot the event with
      convention as defined in the PROC cards

   Weight = 1.(meaningless)

   Center of mass energy ECMS = CMSENE (as given in the GENE card).

6. comments   :
   The fragmentation info is kept in KZFR/FZFR bank
------------------------------------------------------------------------