
Requirements and Implementation Ideas of a Metadata
Catalogue

v2.0

The ARDA Project
25/10/04

Editor: B. Koblitz

Abstract: We present a design proposal for a generic metadata cata-
logue which has an interface inspired by the POSIX standard. Experi-
ence with a small prototype implementation has been performed to val-
idate this design. Streaming of results allows the server to operate with
a small memory footprint and eases problems with timeouts.

Definitions
In the following we will define metadata as attributes of a file and take the view point
is file-related metadata. For general metadata the reader should simply read collec-
tion for directory, and entry for file, since the semantics of general metadata are a
subset of the semantics of file-metadata which knows of hierarchies in addition:

Metadata is key-value pairs associated to a file where the key is a 0-terminated string
and the value can be any binary data of a given size. This corresponds to the POSIX
definition of file metadata, also termed extended file attributes, and allows to trans-
parently store files with attached metadata into metadata aware file systems which
are currently coming widely into use. We will use the words key and attributed inter-
changeably.

Metadata can be attached to directories, in this case files inherit the metadata as de-
faults. Here, directories are any collection of files defined in the file-catalogue. A dir-
ectory does not need to have the semantics of a directory in a UNIX file system.

Copying a file copies also the metadata associated to the file.

In the case of the Grid, metadata will be associated with an LFN.

Rationale for this Design:
Using the POSIX definition of metadata for grid-metadata allows to copy files and
their metadata to local file systems preserving the semantics of this metadata. Using
this design allows also to use the well though through POSIX interface to this
metadata.

Attaching metadata to the LFN distinguishes the metadata catalogue from the file
catalogue where metadata-like access controls for files are associated with GUIDs.
Associating the metadata with LFNs allows the user to make very flexible user of
metadata: Every user can have his own metadata associated with a file or have differ-
ent metadata associated with a file depending on the context (directory it is stored
in), e.g. one directory may contain MC-files with their creation date and software ver-
sions as metadata in the context of the MC production system while a physicist ana-
lysing MC-files may have only parameters of the employed generators as metadata.

Attaching metadata to the LFN allows to group metadata by directory and thus
provides a hierarchical structure allowing to distribute metadata over sites. Using

1

directories to group files with similar metadata also allows to efficiently search files
matching certain criteria in individual directories.

However, if a file catalogue is chosen without providing a directory structure (or in
the case of files without LFN where the GUID can be used as index), it would still
need to provide the functionality to group files in order to allow efficient searching.

A Possible Implementation:
Every directory containing files with metadata is represented by an SQL table with
all keys as columns and all files in the directory as rows with the respective values.
This allows fast searches for files in a directory. It also allows users to have different
metadata schemas. Adding or removing metadata from a file may alter the columns of
the table. Setting metadata for a directory changes the defaults for the column values
of the table (a variant may be a row with defaults for the directory).

Experience with existing metadata prototype implementations [AMI, REFDB] sug-
gests to keep the protocol overhead due to a server in front of the database backed
as small as possible by offering a minimum functionality and not encapsulating the
responses of the database directly (e.g. by SOAP). To keep the memory footprint of
the server small even for very large responses, it is necessary to stream the response
to the client. This is a key feature which most of the systems analysed by ARDA miss
so far.

A possible implementation could be to use clients which send text commands to talk
to a multi-threaded server in front of a database which would stream back the re-
sponse. On top of this very simple interface which allows very quick implementation
of clients in different programming languages, authentication, authorization and en-
cryption could be added by wrapping the connection with SSL (such a solution has
been developed by ARDA for the encapsulation of gLite commands). The server
should be implemented as a back end talking to the RDBMS and a front end receiving
the commands and dispatching the responses. A web-services interface is currently
designed together with the gLite development team. It is using iterators for handling
large amounts of data. Also SOAP implementations for streaming back data are cur-
rently evolving and could be used in a later version of the web-services interface.

Proposal for a command interface:
The design of the command interface of the server is inspired by the POSIX API. On
the other hand it needs to take care of performance issues related to the fact that all
commands need to be sent over a TCP connection by the client. Therefore the inter-
face allows for bulk transfer of data to reduce the number of remote calls.

The following interface is designed in such a way as that it is complementary to the
interface of a file-catalogue. This means that the management of entries (files) and
collections (directories) is handled by the file-catalogue interface. A stand-alone
metadata server, which is not integrated into the file catalogue, would need to imple-
ment some parts of the file catalogue interface, too. The full interface design of a
stand-alone metadata server can be found at [PROTOCOL].

The following commands can be sent as text to the database front end. The response
will be a line with a number as OK/Error code and then a list of strings, each string
on a single line, this list of strings is terminated by the EOT character:

addattr directory key [type]

Adds a new key to the list of keys of a directory. Type is the name of an SQL datatype
which will be translated if necessary into a data type understood by the back end.

2

The type is only used as a hint for the back end to store the data efficiently and allow
efficient queries. The type may be ignored by the implementation (e.g. if the back end
is a filesystem). If type is omitted a default type is used. In a filesystem the types and
defined keys could be stored as attributes of directories. The list of types supported
by the metadata server needs to be defined.

removeattr dir key: Removes an attribute corresponding to key.

setattr file [key value]...

Sets a list of keys to given values for a file. The keys must exist.

getattr path key1 key2 ...

Returns for all files matching the path first the file name is returned then the values
of the requested keys as a text string. All strings are returned on a single line.

listattr file: Returns all keys of a file as text-strings and their type.

clearattr path key: Unsets an attribute corresponding to key for all files matching
path.

find pattern query: Returns a list of file names matching pattern and fulfilling the
SQL query on their attributes. The list is terminated by an empty string. The SQL
query needs to be parsed by the implementation to prevent exploits and to translate
the query to the query language of the back end.

The commands can contain quoted strings e.g. the SQL query could be 'tracks > 10'.
The responses must be plain ASCII. In any case the end of line and EOT characters
need to be escaped. If it is necessary to store binary data, this can be done by storing
UU-Encoded strings but handling this is the task of the client application.

To handle collections (directories) and entries(files) at least calls to list files, delete
them, move them, copy them and do the same with directories need to be provided
but may be implemented by the file-catalogue part of the service.

The key feature of this protocol is the possibility to stream it, allowing for a small
memory footprint on the server. It can be in addition easily authenticated/encrypted
using GSI.

Proposal for a C++ API:
In the following a C++ client-side interface is described as an example of a program-
ming API. Not all calls are documented, instead only some calls are described to illus-
trate how the data stream can be handled by the user's application through iterators.
A C++ example of the API was chosen because C++ allows easy handling of bulk
data operations with its container classes. The API should look similar in other pro-
gramming languages. The interface is strongly influenced by the POSIX API for
metadata which is implemented in C. More information on this API can be found in
the man-pages located at http://acl.bestbits.at/man/man.shtml.

A good example of a bulk transfer handled using iterators on the client side is

int getAttr(const string &pattern, const list<string > &keys,

 AttributeList &attributes)

which returns the values of all keys for all files matching pattern, via the Attrib-
uteList class which allows iterative access via

int AttributeList::getRow(string &file, vector <string > &attributes)

bool AttributeList::lastRow()

3

to the data which is streamed back by the server after the execution of the getattr
command. The getRow() call returns the name of the current file and its attribtutes
via the function's arguments. With lastRow() it is possible to check whether there are
still unread entries. Note that AttributeList actually keeps a buffer of the data
already streamed to the client who's content is made available entry by entry through
the getRow() call. This interface is able to retain the speed of a streamed connection
as well as keeping the memory usage on the server as well as the client side small.
The full documentation of the interface is located at [ARDAMD].

Note that the design of this interface is similar to the design of the ODBC or JDBC in-
terfaces to access databases and its performance is thus well-proven.

A Prototype Implementation
In order to study the usability of the interface design and the APIs, as well as the
their performance impact, a prototype implementation was developed. It is written in
C++ and acts as a multi-threaded server in front of a PostgresSQL database back e
using the ODBC abstraction layer. A C++ client library talks to the Server using the
described text protocol via a TCP/IP connection. In addition, a Perl API was created
as well as a Python API. As expected for such a simple text-protocol, writing the cli-
ent APIs in the different programming languages turned out to be very simple.

Using different clients, we were able explore and test the following issues:

– Usability of the API: The API seems to be minimal, rather complete (if many up-
dates are expected a bulk-update command could be added) and performant.

– The memory footprint is small (and independent of the query-size!): 128KB per
connection for the server thread plus a database instance per connection (ODBC
allows connection pooling which would make it possible to serve all server threads
with only one database instance).

– The test implementation is stable and scales well (60 concurrent connections were
reached transferring a total of 1.2GB of data without a noticeable performance
penalty on a desktop computer).

– Having metadata- and file-catalogues implemented in one database allows an ef-
fective system for access control based on ACLs for metadata without noticeable
performance loss.

Closing remarks
At this point we are confident that the proposed interface is a reasonable starting
point for a File-Metadata Catalogue which can be used as a foundation to implement
the file-metadata or other metadata catalogues for the HEP experiments.

ether there is a size limit on the metadata, the size of this may be an implementation
detail like in file systems, database systems typically have size limitations for their
data types. Implementation of the DB schema itself is also an implementation detail.
It would be possible to have schema evolution or support for fast addition or removal
of columns.

Links:
[AMI] http://lcg.web.cern.ch/LCG/peb/arda/public_docs/CaseStudies/ami_new.pdf
[REFDB]
http://lcg.web.cern.ch/LCG/peb/arda/public_docs/CaseStudies/refdb_draft_v0.2.pdf

[ARDAMD] http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/

4

[PROTOCOL] http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/pro-
tocol.html

5

