

Enabling Grids for E-sciencE

AMGA Metadata Access on the GRID

Nuno Santos

NA4 Generic Applications Meeting January 10th, 2006

www.eu-egee.org

INFSO-RI-508833

- Background and Motivation for AMGA
- Interface, Architecture and Implementation
- Metadata Replication on AMGA
- Performance
- Deployment Examples

Metadata on the GRID

- Enabling Grids for E-sciencE
- Metadata is data about data
- On the Grid: information about files
 - Describe files
 - Locate files based on their contents
- But also simplified DB access on the Grid
 - Many Grid applications need structured data
 - Many applications require only simple schemas
 - Can be modelled as metadata
 - Main advantage: better integration with the Grid environment
 - Metadata Service is a Grid component
 - Grid security
 - Hide DB heterogeneity

- 2004 ARDA evaluated existing Metadata Services from HEP experiments
 - AMI (ATLAS), RefDB (CMS), Alien Metadata Catalogue (ALICE)
 - Similar goals, similar concepts
 - Each designed for a particular application domain
 - Reuse outside intended domain difficult
 - Several technical limitations: large answers, scalability, speed, lack of flexibility
- ARDA proposed an interface for Metadata access on the GRID
 - Based on requirements of LHC experiments
 - But generic not bound to a particular application domain
 - Designed jointly with the gLite/EGEE team
 - Incorporates feedback from GridPP
- Adopted as the official EGEE Metadata Interface
 - Endorsed by PTF (Project Technical Forum of EGEE)

egee

- ARDA developed an implementation of PTF interface
 - AMGA ARDA Metadata Grid Application

Began as prototype to evaluate the Metadata Interface

- Evaluated by community since the beginning:
 - LHCb and Ganga were early testers (more on this later)
- Matured quickly thanks to users feedback
- Now part of gLite middleware
 - Official Metadata Service for EGEE
 - First release with upcoming gLite 1.5
 - Also available as standalone component
- Expanding user community
 - HEP, Biomed, UNOSAT...
 - More on this later

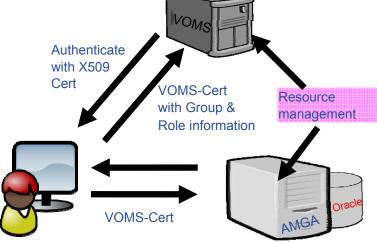
Metadata Concepts

- Some Concepts
 - Metadata List of attributes associated with entries
 - Attribute key/value pair with type information
 - Type The type (int, float, string,...)
 - Name/Key The name of the attribute
 - Value Value of an entry's attribute
 - Schema A set of attributes
 - Collection A set of entries associated with a schema
 - Think of schemas as tables, attributes as columns, entries as rows

AMGA Features

- Dynamic Schemas
 - Schemas can be modified at runtime by client
 - Create, delete schemas
 - Add, remove attributes

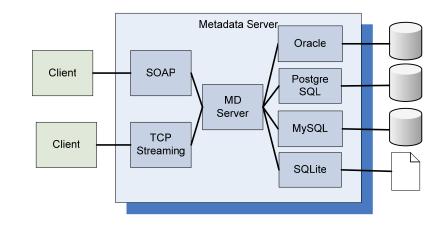
Metadata organised as an hierarchy


- Schemas can contain sub-schemas
- Analogy to file system:
 - Schema ⇔ Directory; Entry ⇔ File
- Flexible Queries
 - SQL-like query language
 - Joins between schemas
 - Example (adapted from Tony's presentation):

- Enabling Grids for E-sciencE
- Unix style permissions

eGee

- ACLs Per-collection or per-entry.
- Secure connections SSL
- Client Authentication based on
 - Username/password
 - General X509 certificates
 - Grid-proxy certificates
- Access control via a Virtual Organization Management System (VOMS):

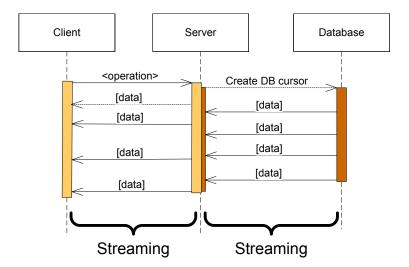




AMGA Implementation

Enabling Grids for E-sciencE

- C++ multiprocess server
 - Runs on any Linux flavour
- Backends
 - Oracle, MySQL, PostgreSQL, SQLite
- Two frontends
 - TCP Streaming
 - High performance
 - Client API for C++, Java, Python, Perl, Ruby
 - SOAP
 - Interoperability
- Also implemented as standalone Python library
 - Data stored on filesystem



Architecture TCP-Streaming frontend

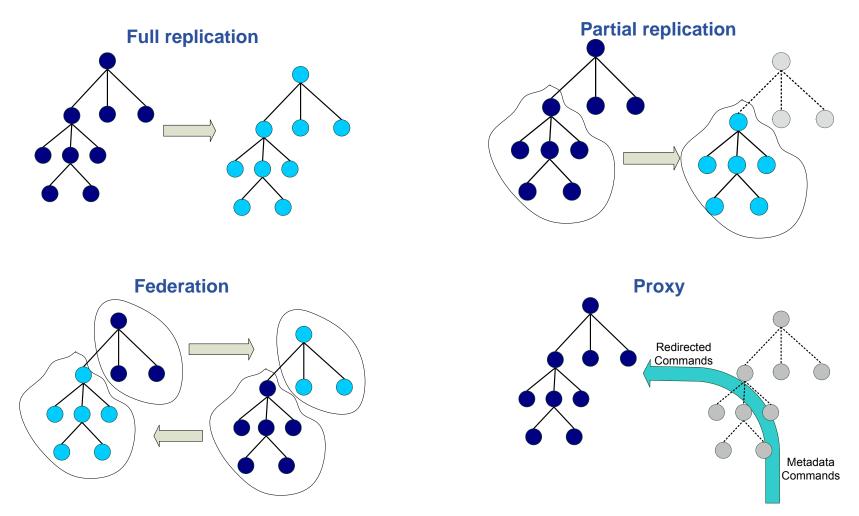
- Designed for scalability
 - Asynchronous operation
 - Reading from DB and sending data to client
 - Response sent to client in chunks
 - No limit on the maximum response size
- Example: TCP Streaming
 - Text based protocol (like SMTP, POP3,...)
 - Response streamed to client

Client:	listattr entry
Server:	0 entry value1 value2 <eot></eot>

INFSO-RI-508833

- Currently working on replication/federation mechanisms for AMGA
- Motivation
 - Scalability Support hundreds/thousands of concurrent users
 - Geographical distribution Hide network latency
 - Reliability No single point of failure
 - DB Independent replication Heterogeneous DB systems
 - Disconnected computing Off-line access (laptops)

Architecture


- Asynchronous replication
- Master-slave Writes only allowed on the master
- Replication at the application level
 - Replicate Metadata commands, not SQL \rightarrow DB independence
- Partial replication supports replication of only sub-trees of the metadata hierarchy

Metadata Replication

Enabling Grids for E-sciencE

Some use cases

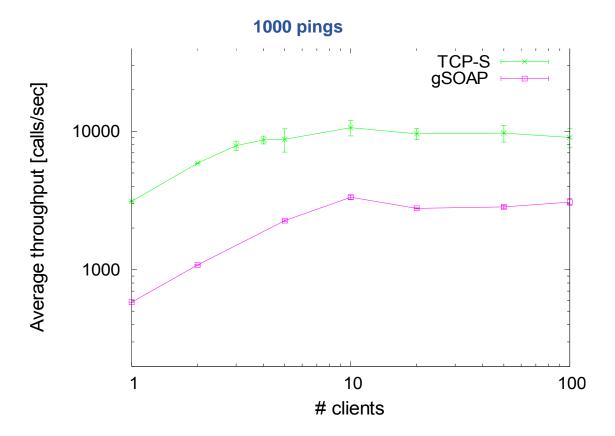
Metadata Replication

- Current Status
 - Implementation under way
 - Integrated on AMGA, no external software needed
 - Early prototype. Basic functionality working in a single slave configuration
 - Initial slave synchronization
 - Update propagation
- Future Plans
 - More development and testing needed
 - Working prototype expected during first quarter 2006.

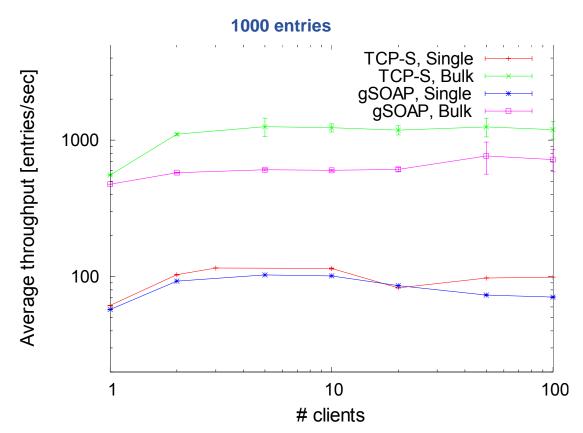
•

Benchmark Study

- **Objectives of Benchmark Study:**
 - Assess the scalability of AMGA
 - Compare the TCP-Streaming to the SOAP frontend
- Protocols
 - TCP-S TCP Streaming, C++ client.


Enabling Grids for E-sciencE

- SOAP gSoap client (C++)
- Operations
 - ping A null RPC
 - get Gets all attributes of an entry
 - get (bulk) Gets all attributes of several entries in a single operation
- Entries
 - 60 attributes (ints, floats and strings), 700 bytes on average
- Connections kept open between requests
 - HTTP Keepalive for the SOAP frontend (gSoap feature)
- Test Environment
 - LAN, 100 MBits switched Ethernet
 - Single client machine
 - Simulates up to 100 concurrent clients, bottleneck was always on server


Scalability – Pings

Enabling Grids for E-sciencE

- Around 10.000 pings/s with TCP-S
- AMGA scales nicely up to 100 concurrent clients
 - No throughput degradation

- Up to 1.000 entries/sec (with bulk operations)
- Once again, server throughput does not degrade up 100 clients


- LHCb-bookkeeping
 - Migrated bookkeeping metadata to ARDA prototype
 - 20M entries, 15 GB
 - Large amount of static metadata
 - Feedback valuable in improving interface and fixing bugs
 - AMGA showing good scalability
- Ganga
 - Job management system
 - Developed jointly by Atlas and LHCb
 - Uses AMGA for storing information about job status
 - Small amount of highly dynamic metadata

Medical Data Manager – MDM

eGee

- Store and access medical images and associated metadata on the Grid
- Built on top of gLite 1.5 data management system
- Demonstrated at last EGEE conference (October 05, Pisa)
- Strong security requirements
 - Patient data is sensitive
 - Data must be encrypted
 - Metadata access must be restricted to authorized users
- AMGA used as metadata server
 - Demonstrates authentication and encrypted access
 - Used as a simplified DB

- More details at
 - https://uimon.cern.ch/twiki/bin/view/EGEE/DMEncryptedStorage

Conclusion

- AMGA Metadata Service of gLite
 - Part of gLite 1.5
 - Useful for simplified DB access
 - Integrated on the Grid environment (Security)
- Replication/Federation under development
- Tests show good performance/scalability
- Already deployed by several Grid Applications
 - LHCb, ATLAS, Biomed, ...
 - DLibrary (next presentation)

AMGA Web Site

http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/