
c02 – Zeros of Polynomials c02agc

nag zeros real poly (c02agc)

1. Purpose

nag zeros real poly (c02agc) finds all the roots of a real polynomial equation, using a variant of
Laguerre’s Method.

2. Specification

#include <nag.h>
#include <nagc02.h>

void nag_zeros_real_poly(Integer n, double a[], Boolean scale, Complex z[],
NagError *fail)

3. Description

The function attempts to find all the roots of the nth degree real polynomial equation

P (z) = a0z
n + a1z

n−1 + a2z
n−2 + . . . + an−1z + an = 0.

The roots are located using a form modified of Laguerre’s Method, originally proposed by Smith
(1967).

The method of Laguerre (see Wilkinson (1965)) can be described by the iterative scheme

L(zk) = zk+1 − zk =
−nP (zk)

P ′(zk)±
√

H(zk)
,

where H(zk) = (n − 1)[(n − 1)(P ′(zk))
2 − nP (zk)P

′′(zk)], and z0 is specified.

The sign in the denominator is chosen so that the modulus of the Laguerre step at zk, viz. |L(zk)|,
is as small as possible. The method can be shown to be cubically convergent for isolated roots (real
or complex) and linearly convergent for multiple roots.

The function generates a sequence of iterates z1, z2, z3, . . . , such that |P (zk+1)| < |P (zk)| and
ensures that zk+1 + L(zk+1) ‘roughly’ lies inside a circular region of radius |F | about zk known
to contain a zero of P (z); that is, |L(zk+1)| ≤ |F |, where F denotes the Féjer bound (see Marden
(1966)) at the point zk. Following Smith (1967), F is taken to be min(B, 1.445nR), where B is an
upper bound for the magnitude of the smallest zero given by

B = 1.0001×min(
√

nL(zk), |r1|, |an/a0|
1/n),

r1 is the zero X of smaller magnitude of the quadratic equation

(P ′′(zk)/(2n(n − 1)))X2 + (P ′(zk)/n)X +
1
2
P (zk) = 0

and the Cauchy lower bound R for the smallest zero is computed (using Newton’s Method) as the
positive root of the polynomial equation

|a0|zn + |a1|zn−1 + |a2|zn−2 + . . . + |an−1|z − |an| = 0.

Starting from the origin, successive iterates are generated according to the rule zk+1 = zk+L(zk) for
k = 1, 2, 3, . . . and L(zk) is ‘adjusted’ so that |P (zk+1)| < |P (zk)| and |L(zk+1)| ≤ |F |. The iterative
procedure terminates if P (zk+1) is smaller in absolute value than the bound on the rounding error
in P (zk+1) and the current iterate zp = zk+1 is taken to be a zero of P (z) (as is its conjugate
z̄p if zp is complex). The deflated polynomial P̃ (z) = P (z)/(z − zp) of degree n − 1 if zp is real
(P̃ (z) = P (z)/((z − zp)(z − z̄p)) of degree n − 2 if zp is complex) is then formed, and the above
procedure is repeated on the deflated polynomial until n < 3, whereupon the remaining roots are
obtained via the ‘standard’ closed formulae for a linear (n = 1) or quadratic (n = 2) equation.

[NP3275/5/pdf] 3.c02agc.1

nag zeros real poly NAG C Library Manual

4. Parameters

n
Input: the degree of the polynomial, n.
Constraint: n ≥ 1.

a[n+1]
Input: a[i] must contain ai (i.e. the coefficient of zn−i), for i = 0, 1, . . . , n.
Constraint: a[0] �= 0.0.

scale
Input: indicates whether or not the polynomial is to be scaled. The recommended value is
TRUE. See Section 6 for advice on when it may be preferable to set scale = FALSE and for
a description of the scaling strategy.

z[n]
Output: the real and imaginary parts of the roots are stored in z[i].re and z[i].im respectively,
for i = 0, 1, . . . , n − 1. Complex conjugate pairs of roots are stored in consecutive pairs of z;
that is, z[i + 1].re = z[i].re and z[i + 1].im = −z[i].im

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE REAL ARG EQ
On entry, a[0] must not be equal to 0.0: a[0] = 〈value〉.

NE POLY NOT CONV
The iterative procedure has failed to converge. This error is very unlikely to occur. If it
does, please contact NAG immediately, as some basic assumption for the arithmetic has been
violated.

NE POLY UNFLOW
The function cannot evaluate P (z) near some of its zeros without underflow. Please contact
NAG immediately.

NE POLY OVFLOW
The function cannot evaluate P (z) near some of its zeros without overflow. Please contact
NAG immediately.

NE ALLOC FAIL
Memory allocation failed.

6. Further Comments

If scale = TRUE, then a scaling factor for the coefficients is chosen as a power of the base b of the
machine so that the largest coefficient in magnitude approaches thresh = bemax−p. Users should
note that no scaling is performed if the largest coefficient in magnitude exceeds thresh, even if
scale = TRUE. (For definition of b, emax and p see Chapter Introduction x02.)

However, with scale = TRUE, overflow may be encountered when the input coefficients
a0,a1,a2,. . .,an vary widely in magnitude, particularly on those machines for which b4p overflows.
In such cases, scale should be set to FALSE and the coefficients scaled so that the largest coefficient
in magnitude does not exceed bemax−2p.

Even so, the scaling strategy used in nag zeros real poly is sometimes insufficient to avoid overflow
and/or underflow conditions. In such cases, the user is recommended to scale the independent
variable (z) so that the disparity between the largest and smallest coefficient in magnitude is
reduced. That is, use the function to locate the zeros of the polynomial d×P (cz) for some suitable
values of c and d. For example, if the original polynomial was P (z) = 2−100+2100z20, then choosing

3.c02agc.2 [NP3275/5/pdf]

c02 – Zeros of Polynomials c02agc

c = 2−10 and d = 2100, for instance, would yield the scaled polynomial 1+z20, which is well-behaved
relative to overflow and underflow and has zeros which are 210 times those of P (z).

If the function fails with NE POLY NOT CONV, NE POLY UNFLOW or NE POLY OVFLOW,
then the real and imaginary parts of any roots obtained before the failure occurred are stored in
z in the reverse order in which they were found. More precisely, z[n−1].re and z[n−1].im contain
the real and imaginary parts of the 1st root found, z[n−2].re and z[n−2].im contain the real and
imaginary parts of the 2nd root found, and so on. The real and imaginary parts of any roots not
found will be set to a large negative number, specifically −1.0/(

√
2.0∗X02AMC).

6.1. Accuracy

All roots are evaluated as accurately as possible, but because of the inherent nature of the problem
complete accuracy cannot be guaranteed.

6.2. References

Marden M (1966) Geometry of Polynomials. Mathematical Surveys Am. Math. Soc., Providence,
Rhode Island, USA.

Smith B T (1967) ZERPOL: A Zero Finding Algorithm for Polynomials Using Laguerre’s Method
Technical Report, Department of Computer Science, University of Toronto, Canada.

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Clarendon Press, Oxford.

7. See Also

nag zeros complex poly (c02afc)

8. Example

To find the roots of the 5th degree polynomial z5 + 2z4 + 3z3 + 4z2 + 5z + 6 = 0.

8.1. Program Text

/* nag_zeros_real_poly(c02agc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <math.h>
#include <nag_stdlib.h>
#include <nagc02.h>

#define MAXDEG 100

main()
{

Complex z[MAXDEG];
double a[MAXDEG+1];
Integer i, n, nroot;
Boolean scale;

Vprintf("c02agc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
Vscanf("%ld", &n);
scale = TRUE;
if (n>0 && n<=MAXDEG)

{
for (i=0; i<=n; i++)
Vscanf("%lf", &a[i]);

Vprintf("\nDegree of polynomial = %4ld\n\n", n);

c02agc(n, a, scale, z, NAGERR_DEFAULT);

[NP3275/5/pdf] 3.c02agc.3

nag zeros real poly NAG C Library Manual

Vprintf("Roots of polynomial\n\n");
nroot = 1;
while(nroot<=n)
{
if (z[nroot-1].im==0.0)
{
Vprintf("z = %12.4e\n", z[nroot-1].re);
nroot += 1;

}
else
{
Vprintf("z = %12.4e +/- %14.4e\n", z[nroot-1].re,

FABS(z[nroot-1].im));
nroot += 2;

}
}

}
else

{
Vfprintf(stderr, "Error: n is out of range: n = %3ld\n", n);
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

8.2. Program Data

c02agc Example Program Data
5

1.0 2.0 3.0 4.0 5.0 6.0

8.3. Program Results

c02agc Example Program Results

Degree of polynomial = 5

Roots of polynomial

z = -1.4918e+00
z = 5.5169e-01 +/- 1.2533e+00
z = -8.0579e-01 +/- 1.2229e+00

3.c02agc.4 [NP3275/5/pdf]

