
c05 – Roots of One or More Transcendental Equations c05sdc

nag zero cont func bd 1 (c05sdc)

1. Purpose

nag zero cont func bd 1 (c05sdc) locates a zero of a continuous function in a given interval by a
combination of the methods of linear interpolation, extrapolation and bisection.

2. Specification

#include <nag.h>
#include <nagc05.h>

void nag_zero_cont_func_bd_1(double a, double b, double *x,
double (*f)(double x, Nag_User *comm), double xtol,
double ftol, Nag_User *comm, NagError *fail)

3. Description

The routine attempts to obtain an approximation to a simple zero of the function f(x) given an
initial interval [a, b] such that f(a)×f(b) ≤ 0. The zero is found by a modified version of procedure
‘zeroin’ given by Bus and Dekker (1975). The approximation x to the zero α is determined so that
one or both of the following criteria are satisfied:

(i) |x − α| < xtol,
(ii) |f(x)| < ftol.

The routine combines the methods of bisection, linear interpolation and linear extrapolation (see
Dahlquist and Bjorck (1974)), to find a sequence of sub-intervals of the initial interval such that
the final interval [x, y] contains the zero and is small enough to satisfy the tolerance specified by
xtol. Note that, since the intervals [x, y] are determined only so that they contain a change of sign
of f , it is possible that the final interval may contain a discontinuity or a pole of f (violating the
requirement that f be continuous). If the sign change is likely to correspond to a pole of f then
the routine gives an error return.

4. Parameters

a
Input: the lower bound of the interval, a.

b
Input: the upper bound of the interval, b.
Constraint: b �= a.

x
Output: the approximation to the zero.

f
The function f, supplied by the user, must evaluate the function f whose zero is to be
determined.
The specification of f is:

double f(double x, Nag_User *comm)

x
Input: the point x at which the function must be evaluated.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: the pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

[NP3275/5/pdf] 3.c05sdc.1

nag zero cont func bd 1 NAG C Library Manual

xtol
Input: the absolute tolerance to which the zero is required (see Section 3).
Constraint: xtol > 0.0.

ftol
Input: a value such that if |f(x)| < ftol, x is accepted as the zero. ftol may be specified as
0.0 (see Section 6).

comm
Input/Output: pointer to a structure of type Nag User with the following member:

p - Pointer
Input/Output: the pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined function f(). An object of the required type
should be declared by the user, e.g. a structure, and its address assigned to the pointer
p by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer)&s.
The type pointer will be void * with a C compiler that defines void * and char *
otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE 2 REAL ARG EQ
On entry, a = 〈value〉 while b = 〈value〉. These parameters must satisfy a �= b.

NE REAL ARG LE
On entry, xtol must not be less than or equal to 0.0: xtol = 〈value〉.

NE FUNC END VAL
On entry, f(〈value〉) and f(〈value〉) have the same sign, with f(〈value〉) �= 0.0.

NE PROBABLE POLE
Indicates that the function values in the interval [a,b] might contain a pole rather than a zero.
Reducing xtol may help in distinguishing between a pole and a zero.

NE XTOL TOO SMALL
No further improvement in the solution is possible. xtol is too small: xtol = 〈value〉.

6. Further Comments

The time taken by the routine depends primarily on the time spent evaluating f (see Section 4).

6.1. Accuracy

This depends on the value of xtol and ftol. If full machine accuracy is required, they may be set
very small, resulting in an error exit with error exit of NE XTOL TOO SMALL, although this may
involve many more iterations than a lesser accuracy. The user is recommended to set ftol = 0.0
and to use xtol to control the accuracy, unless there is prior knowledge of the size of f(x) for values
of x near the zero.

6.2. References

Bus J C P and Dekker T J (1975) Two Efficient Algorithms with Guaranteed Convergence for
Finding a Zero of a Function ACM Trans. Math. Softw. 1 330–345.

Dahlquist G and Bjorck A (1974) Numerical Methods Prentice-Hall.

7. See Also

None.

8. Example

The example program below calculates the zero of e−x−x within the interval [0, 1] to approximately
5 decimal places.

3.c05sdc.2 [NP3275/5/pdf]

c05 – Roots of One or More Transcendental Equations c05sdc

8.1. Program Text

/* nag_zero_cont_func_bd_1(c05sdc) Example Program
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagc05.h>

#ifdef NAG_PROTO
static double f(double x, Nag_User *comm);
#else
static double f();
#endif

main()
{
double a, b;
double x, ftol, xtol;
static NagError fail;
Nag_User comm;

Vprintf("c05sdc Example Program Results\n");
a = 0.0;
b = 1.0;
xtol = 1e-05;
ftol = 0.0;
c05sdc(a, b, &x, f, xtol, ftol, &comm, &fail);
if (fail.code == NE_NOERROR)

{
Vprintf("Zero = %12.5f\n",x);
exit(EXIT_SUCCESS);

}
else

{
Vprintf("%s\n", fail.message);
if (fail.code == NE_XTOL_TOO_SMALL ||

fail.code == NE_PROBABLE_POLE)
Vprintf("Final point = %12.5f\n",x);

exit(EXIT_FAILURE);
}

}

#ifdef NAG_PROTO
static double f(double x, Nag_User *comm)
#else

static double f(x, comm)
double x;
Nag_User *comm;

#endif
{
return exp(-x)-x;

}

8.2. Program Data

None.

8.3. Program Results

c05sdc Example Program Results
Zero = 0.56714

[NP3275/5/pdf] 3.c05sdc.3

