nag_ffthermitian (c06ebc)

1. Purpose

nag_fft_hermitian (c06ebc) calculates the discrete Fourier transform of a Hermitian sequence of n complex data values.
2. Specification
\#include <nag.h>
\#include <nagc06.h>
void nag_fft_hermitian(Integer n, double x[], NagError *fail)

3. Description

Given a Hermitian sequence of n complex data values z_{j} (i.e., a sequence such that z_{0} is real and z_{n-j} is the complex conjugate of z_{j}, for $j=1,2, \ldots, n-1$) this function calculates their discrete Fourier transform defined by

$$
\hat{x}_{k}=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_{j} \exp \left(-i \frac{2 \pi j k}{n}\right), \quad \text { for } k=0,1, \ldots, n-1
$$

(Note the scale factor of $1 / \sqrt{n}$ in this definition.) The transformed values \hat{x}_{k} are purely real.
To compute the inverse discrete Fourier transform defined by

$$
\hat{y}_{k}=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_{j} \exp \left(+i \frac{2 \pi j k}{n}\right), \quad \text { for } k=0,1, \ldots, n-1
$$

this function should be preceded by a call of nag_conjugate_hermitian (c06gbc) to form the complex conjugates of the z_{j}.

The function uses the Fast Fourier Transform algorithm (Brigham 1974). There are some restrictions on the value of n (see Section 4).

4. Parameters

n
Input: the number of data values, n.
Constraint: $\mathbf{n}>1$. The largest prime factor of \mathbf{n} must not exceed 19, and the total number of prime factors of \mathbf{n}, counting repetitions, must not exceed 20 .
$\mathrm{x}[\mathrm{n}]$
Input: the sequence to be transformed stored in Hermitian form. If the data values z_{j} are written as $x_{j}+i y_{j}$, then for $0 \leq j \leq n / 2, x_{j}$ is contained in $\mathbf{x}[j]$, and for $1 \leq j \leq(n-1) / 2, y_{j}$ is contained in $\mathbf{x}[n-j]$. It is not necessary for other elements of the sequence to be explicitly stored. (See also the Example Program.)
Output: the components of the discrete Fourier transform $\hat{x}_{k} . \hat{x}_{k}$ is stored in $\mathbf{x}[k]$, for $k=0,1, \ldots, n-1$.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_C06_FACTOR_GT

At least one of the prime factors of \mathbf{n} is greater than 19 .

NE_C06_TOO_MANY_FACTORS

n has more than 20 prime factors.

NE_INT_ARG_LE

On entry, \mathbf{n} must not be less than or equal to $1: \mathbf{n}=\langle$ value \rangle.

6. Further Comments

The time taken by the function is approximately proportional to $n \log n$, but also depends on the factorization of n. The function is somewhat faster than average if the only prime factors of n are 2,3 or 5 ; and fastest of all if n is a power of 2 .

On the other hand, the function is particularly slow if n has several unpaired prime factors, i.e., if the 'square-free' part of n has several factors.

6.1. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

6.2. References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall.
7. See Also
nag_fft_complex (c06ecc)
nag_conjugate_hermitian (c06gbc)

8. Example

This program reads in a sequence of real data values which is assumed to be a Hermitian sequence of complex data values stored in Hermitian form. The input sequence is expanded into a full complex sequence and printed alongside the original sequence. The discrete Fourier transform (as computed by nag_fft_hermitian) is printed out.

The program then performs an inverse transform using nag_fft_real (c06eac) and nag_conjugate_hermitian (c06gbc), and prints the sequence so obtained alongside the original data values.

8.1. Program Text

*
* Mark 1, 1990.
*/

```
#include <nag.h>
```

\#include <stdio.h>
\#include <nag_stdlib.h>
\#include <nagc06.h>
\#define NMAX 20
main()
\{
Integer $j, \mathrm{n}, \mathrm{n} 2, \mathrm{nj}$;
double u[NMAX], v[NMAX], $x[N M A X], x x[N M A X] ;$
Vprintf("c06ebc Example Program Results\n");
/* Skip heading in data file */
Vscanf("\%* [^\n]");
while (scanf("\%ld", \&n)!=EOF)
if ($n>1 \& \& n<=$ NMAX)
\{
for ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}+\mathrm{+}$)
Vscanf("\%lf", \&x[j]);
$\mathrm{xx}[\mathrm{j}]=\mathrm{x}[\mathrm{j}]$;
\}
/* Calculate full complex form of Hermitian sequence */
$\mathrm{u}[0]=\mathrm{x}[0]$;

```
                v[0] = 0.0;
                n2 = (n-1)/2;
                for (j = 1; j<=n2; j++)
                    {
                        nj = n - j; 
                        u[nj] = x[j];
                        v[j] = x[nj];
                        v[nj] = -x[nj];
                        }
                if (n % 2==0)
                    {
                                u[n2+1] = x[n2+1];
                v[n2+1] = 0.0;
                    }
                Vprintf("\nOriginal and corresponding complex sequence\n");
                Vprintf("\n Data Real Imag \n\n");
                for (j = 0; j<n; j++)
                        Vprintf("%3ld %10.5f %10.5f %10.5f\n", j, x[j], u[j], v[j]);
                /* Calculate transform */
                c06ebc(n, x, NAGERR_DEFAULT);
                Vprintf("\nComponents of discrete Fourier transform\n\n");
                for (j = 0; j<n; j++)
                    Vprintf("%3ld %10.5f\n", j, x[j]);
                /* Calculate inverse transform */
                c06eac(n, x, NAGERR_DEFAULT);
                c06gbc(n, x, NAGERR_DEFAULT);
                Vprintf("\nOriginal sequence as restored by inverse transform\n");
                Vprintf("\n Original Restored\n\n");
                    for (j = 0; j<n; j++)
                        Vprintf("%3ld %10.5f %10.5f\n", j, xx[j], x[j]);
            }
        else
            Vfprintf(stderr,"Invalid value of n\n");
            exit(EXIT_FAILURE);
        }
    exit(EXIT_SUCCESS);
}
```

8.2. Program Data
c06ebc Example Program Data
7
0.34907
0.54890
0.74776
0.94459
1.13850
1.32850
1.51370
8.3. Program Results
c06ebc Example Program Results
Original and corresponding complex sequence

	Data	Real	Imag
0	0.34907	0.34907	0.00000
1	0.54890	0.54890	1.51370
2	0.74776	0.74776	1.32850
3	0.94459	0.94459	1.13850
4	1.13850	0.94459	-1.13850
5	1.32850	0.74776	-1.32850
6	1.51370	0.54890	-1.51370

Components of discrete Fourier transform

0	1.82616
1	1.86862
2	-0.01750
3	0.50200
4	-0.59873
5	-0.03144
6	-2.62557

Original sequence as restored by inverse transform
Original Restored
$\begin{array}{lll}0 & 0.34907 & 0.34907\end{array}$
$10.54890 \quad 0.54890$
$20.74776 \quad 0.74776$
$\begin{array}{lll}3 & 0.94459 & 0.94459 \\ 4 & 1.13850 & 1.13850\end{array}$

4	1.13850	1.13850
5	1.32850	1.32850

$6 \quad 1.51370 \quad 1.51370$

