
d01 – Quadrature d01wcc

nag multid quad adapt 1 (d01wcc)

1. Purpose

nag multid quad adapt 1 (d01wcc) attempts to evaluate a multi-dimensional integral (up to 15
dimensions), with constant and finite limits,

∫ b1

a1

∫ b2

a2

. . .

∫ bn

an

f(x1, x2, . . . , xn)dxn . . . dx2dx1

to a specified relative accuracy, using an adaptive subdivision strategy.

2. Specification

#include <nag.h>
#include <nagd01.h>

void nag_multid_quad_adapt_1(Integer ndim, double (*f)(Integer ndim, double x[]),
double a[], double b[], Integer *minpts, Integer maxpts,
double eps, double *finval, double *acc, Nag_User *comm,
NagError *fail)

3. Description

The routine evaluates an estimate of a multi-dimensional integral over a hyper-rectangle (i.e., with
constant limits), and also an estimate of the relative error. The user sets the relative accuracy
required, supplies the integrand as a function f, and also sets the minimum and maximum acceptable
number of calls to f (in minpts and maxpts).

The routine operates by repeated subdivision of the hyper-rectangular region into smaller hyper-
rectangles. In each subregion, the integral is estimated using a seventh-degree rule, and an error
estimate is obtained by comparison with a fifth-degree rule which uses a subset of the same points.
The fourth differences of the integrand along each co-ordinate axis are evaluated, and the subregion
is marked for possible future subdivision in half along that co-ordinate axis which has the largest
absolute fourth difference.

If the estimated errors, totalled over the subregions, exceed the requested relative error (or if fewer
than minpts calls to f have been made), further subdivision is necessary, and is performed on
the subregion with the largest estimated error, that subregion being halved along the appropriate
co-ordinate axis.

The routine will fail if the requested relative error level has not been attained by the time maxpts
calls to f have been made.

This function is based on the HALF subroutine developed by Van Dooren and De Ridder (1976).
It uses a different basic rule, described by Genz and Malik (1980).

4. Parameters

ndim
Input: the number of dimensions of the integral, n.
Constraint: 2 ≤ ndim ≤ 15.

f
The function f, supplied by the user, must return the value of the integrand f at a given
point.

[NP3275/5/pdf] 3.d01wcc.1

nag multid quad adapt 1 NAG C Library Manual

The specification of f is:

double f(Integer ndim, double x[], Nag_User *comm)

ndim
Input: the number of dimensions of the integral.

x[ndim]
Input: the co-ordinates of the point at which the integrand must be evaluated.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: the pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

a[ndim]
Input: the lower limits of integration, ai, for i = 1, 2, . . . , n.

b[ndim]
Input: the upper limits of integration, bi, for i = 1, 2, . . . , n.

minpts
Input: minpts must be set to the minimum number of integrand evaluations to be allowed.
Output: minpts contains the actual number of integrand evaluations used by this function.

maxpts
Input: the maximum number of integrand evaluations to be allowed.
Constraints: maxpts ≥ minpts,

maxpts ≥ 2ndim + 2× ndim2 + 2× ndim + 1.

eps
Input: the relative error acceptable to the user. When the solution is zero or very small
relative accuracy may not be achievable but the user may still set eps to a reasonable value
and check fail.code for NE QUAD MAX INTEGRAND EVAL.
Constraint: eps > 0.0.

finval
Output: the best estimate obtained for the integral.

acc
Output: the estimated relative error in finval.

comm
Input/Output: pointer to a structure of type Nag User with the following member:

p - Pointer
Input/Output: the pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined function f(). An object of the required type
should be declared by the user, e.g. a structure, and its address assigned to the pointer
p by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer)&s.
The type pointer will be void * with a C compiler that defines void * and char *
otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialize fail and set fail.print = TRUE for this
function.

5. Error Indications and Warnings

NE INVALID INT RANGE 2
Value 〈value〉 given to ndim not valid. Correct range is 2 ≤ ndim ≤ 15.

3.d01wcc.2 [NP3275/5/pdf]

d01 – Quadrature d01wcc

NE 2 INT ARG LT
On entry, maxpts = 〈value〉 while minpts = 〈value〉.
These parameters must satisfy maxpts ≥ minpts.

NE QUAD MAX INTEGRAND CONS
maxpts < 〈value〉. Constraint: maxpts ≥ 2ndim + 2× ndim2 + 2× ndim + 1.

NE REAL ARG LE
On entry, eps must not be less than or equal to 0.0: eps = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

NE QUAD MAX INTEGRAND EVAL
maxpts was too small to obtain the required accuracy.
On return, finval and acc contain estimates of the integral and the relative error, but acc will
be greater than eps.

6. Further Comments

Execution time will usually be dominated by the time taken to evaluate the integrand f, and hence
the maximum time that could be taken will be proportional to maxpts.

6.1. Accuracy

A relative error estimate is output through the parameter acc.

6.2. References

Genz A C and Malik A A (1980) An Adaptive Algorithm for Numerical Integration over an N-
dimensional Rectangular Region J. Comput. Appl. Math. 6 295–302.

Van Dooren P and De Ridder L (1976) An Adaptive Algorithm for Numerical Integration over an
N-dimensional Cube J. Comput. Appl. Math. 2 (3) 207–217.

7. See Also

nag multid quad monte carlo 1 (d01xbc)

8. Example

This example program estimates the integral

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

4z1z
2
3 exp(2z1z3)

(1 + z2 + z4)2
dz4dz3dz2dz1 = 0.575364.

The accuracy requested is one part in 10,000.

8.1. Program Text

/* nag_multid_quad_adapt_1(d01wcc) Example Program
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>

#ifdef NAG_PROTO
static double f(Integer n, double z[], Nag_User *comm);
#else
static double f();
#endif

[NP3275/5/pdf] 3.d01wcc.3

nag multid quad adapt 1 NAG C Library Manual

#define NDIM 4
#define MAXPTS 1000*NDIM

main()
{

Integer ndim = NDIM;
Integer maxpts = MAXPTS;
double a[4], b[4];
Integer k;
static NagError fail;
double finval;
Integer minpts;
double acc, eps;
Nag_User comm;

Vprintf("d01wcc Example Program Results\n");
for (k=0; k < 4; ++k)

{
a[k] = 0.0;
b[k] = 1.0;

}
eps = 0.0001;
minpts = 0;

d01wcc(ndim, f, a, b, &minpts, maxpts, eps, &finval, &acc, &comm, &fail);

if (fail.code != NE_NOERROR)
Vprintf("%s\n",fail.message);

if (fail.code == NE_NOERROR || fail.code == NE_QUAD_MAX_INTEGRAND_EVAL)
{
Vprintf("Requested accuracy =%12.2e\n", eps);
Vprintf("Estimated value =%12.4f\n", finval);
Vprintf("Estimated accuracy =%12.2e\n", acc);
exit(EXIT_SUCCESS);

}
else

exit(EXIT_FAILURE);
}

#ifdef NAG_PROTO
static double f(Integer n, double z[], Nag_User *comm)
#else

static double f(n, z, comm)
Integer n;
double z[];
Nag_User *comm;

#endif
{

double tmp_pwr;
tmp_pwr = z[1]+1.0+z[3];
return z[0]*4.0*z[2]*z[2]*exp(z[0]*2.0*z[2])/(tmp_pwr*tmp_pwr);

}

8.2. Program Data

None.

8.3. Program Results

d01wcc Example Program Results
Requested accuracy = 1.00e-04
Estimated value = 0.5754
Estimated accuracy = 9.89e-05

3.d01wcc.4 [NP3275/5/pdf]

