
d02 – Ordinary Differential Equations d02pdc

nag ode ivp rk onestep (d02pdc)

1. Purpose

nag ode ivp rk onestep (d02pdc) is a one-step function for solving the initial value problem for a
first order system of ordinary differential equations using Runge-Kutta methods.

2. Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_rk_1step(Integer neq, void (*f)(Integer neq, double t, double y[],
double yp[], Nag_User *comm),

double *tnow, double ynow[],
double ypnow[], Nag_ODE_RK *opt, Nag_User *comm,
NagError *fail)

3. Description

This function and its associated functions (nag ode ivp rk setup (d02pvc),
nag ode ivp rk reset tend (d02pwc), nag ode ivp rk interp (d02pxc), nag ode ivp rk errass (d02pzc))
solve the initial value problem for a first order system of ordinary differential equations. The func-
tions, based on Runge-Kutta methods and derived from RKSUITE (Brankin et al , 1991), integrate

y′ = f(t, y) given y(t0) = y0

where y is the vector of neq solution components and t is the independent variable.

This function is designed to be used in complicated tasks when solving systems of ordinary
differential equations. You must first call nag ode ivp rk setup (d02pvc) to specify the problem
and how it is to be solved. Thereafter you (repeatedly) call nag ode ivp rk onestep to take one
integration step at a time from tstart in the direction of tend (as specified in nag ode ivp rk setup
(d02pvc)). In this manner nag ode ivp rk onestep returns an approximation to the solution ynow
and its derivative ypnow at successive points tnow. If nag ode ivp rk onestep encounters some
difficulty in taking a step, the integration is not advanced and the routine returns with the same
values of tnow, ynow and ypnow as returned on the previous successful step. nag ode ivp rk onestep
tries to advance the integration as far as possible subject to passing the test on the local error and
not going past tend. In the call to nag ode ivp rk setup (d02pvc) you can specify either the first
step size for nag ode ivp rk onestep to attempt or that it compute automatically an appropriate
value. Thereafter nag ode ivp rk onestep estimates an appropriate step size for its next step. This
value and other details of the integration can be obtained after any call to nag ode ivp rk onestep
by examining the contents of the structure opt, see Section 4. The local error is controlled at every
step as specified in nag ode ivp rk setup (d02pvc). If you wish to assess the true error, you must set
errass = Nag ErrorAssess on in the call to nag ode ivp rk setup (d02pvc). This assessment can be
obtained after any call to nag ode ivp rk onestep by a call to the subroutine nag ode ivp rk errass
(d02pzc).

If you want answers at specific points there are two ways to proceed:

The more efficient way is to step past the point where a solution is desired, and then call
nag ode ivp rk interp (d02pxc) to get an answer there. Within the span of the current step, you can
get all the answers you want at very little cost by repeated calls to nag ode ivp rk interp (d02pxc).
This is very valuable when you want to find where something happens, e.g., where a particular
solution component vanishes. You cannot proceed in this way with method = Nag RK 7 8.

The other way to get an answer at a specific point is to set tend to this value and integrate to tend.
nag ode ivp rk onestep will not step past tend, so when a step would carry it past, it will reduce
the step size so as to produce an answer at tend exactly. After getting an answer there (tnow =
tend), you can reset tend to the next point where you want an answer, and repeat. tend could
be reset by a call to nag ode ivp rk setup (d02pvc), but you should not do this. You should use

[NP3275/5/pdf] 3.d02pdc.1

nag ode ivp rk onestep NAG C Library Manual

nag ode ivp rk reset tend (d02pwc) because it is both easier to use and much more efficient. This
way of getting answers at specific points can be used with any of the available methods, but it is
the only way with method = Nag RK 7 8. It can be inefficient. Should this be the case, the code
will bring the matter to your attention.

4. Parameters

neq
Input: the number of ordinary differential equations in the system to be solved.
Constraint: neq ≥ 1.

f
This function must evaluate the first derivatives y′

i (that is the functions fi) for given values
of the arguments t, yi.

void f (Integer neq, double t, double y[], double yp[], Nag_User *comm)

neq
Input: the number of differential equations.

t
Input: the current value of the independent variable, t.

y[neq]
Input: the current values of the dependent variables, yi for i = 1, 2, . . . ,neq.

yp[neq]
Output: the values of fi for i = 1, 2, . . . ,neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

tnow
Output: the value of the independent variable t at which a solution has been computed.

ynow[neq]
Output: an approximation to the solution at tnow. The local error of the step to tnow was
no greater than permitted by the specified tolerances (see nag ode ivp rk setup (d02pvc)).

ypnow[neq]
Output: an approximation to the derivative of the solution at tnow.

opt
Input: pointer to a structure of type Nag ODE RK as initialised by the setup function
nag ode ivp rk setup (d02pvc).
Output: the following structure members hold information as follows:

totfcn - Integer
The total number of evaluations of f used in the primary integration so far; this does
not include evaluations of f for the secondary integration specified by a prior call to
nag ode ivp rk setup (d02pvc) with errass = Nag ErrorAssess on.

stpcst - Integer
The cost in terms of number of evaluations of f of a typical step with the method being
used for the integration. The method is specified by the parameter method in a prior call to
nag ode ivp rk setup (d02pvc).

waste - double
The number of attempted steps that failed to meet the local error requirement divided by the
total number of steps attempted so far in the integration. A “large” fraction indicates that

3.d02pdc.2 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02pdc

the integrator is having trouble with the problem being solved. This can happen when the
problem is “stiff” and also when the solution has discontinuities in a low order derivative.

stpsok - Integer
The number of accepted steps.

hnext - double
The step size the integrator plans to use for the next step.

comm
Input/Output: pointer to a structure of type Nag User with the following member:

p - Pointer
Input/Output: The pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined function f(). An object of the required type
should be declared by the user, e.g. a structure, and its address assigned to the pointer
p by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer)&s.
The type pointer will be void * with a C compiler that defines void * and char *
otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE PREV CALL
The previous call to a function had resulted in a severe error. You must call
nag ode ivp rk setup (d02pvc) to start another problem.

NE NO SETUP
The setup function nag ode ivp rk setup (d02pvc) has not been called.

NE RK INVALID CALL
The function to be called as specified in the setup routine nag ode ivp rk setup (d02pvc) was
nag ode ivp rk range (d02pcc). However the actual call was made to nag ode ivp rk onestep.
This is not permitted.

NE PREV CALL INI
The previous call to the function nag ode ivp rk onestep had resulted in a severe error. You
must call nag ode ivp rk setup (d02pvc) to start another problem.

NE NEQ
The value of neq supplied is not the same as that given to the setup function
nag ode ivp rk setup (d02pvc). neq = 〈value〉 but the value given to nag ode ivp rk setup
(d02pvc) was 〈value〉.

NE RK PDC TEND
tend (= 〈value〉) has been reached already. To integrate further with same problem the
function nag ode ivp rk reset tend (d02pwc) must be called with a new value of tend.

NE RK PDC STEP
In order to satisfy the error requirements nag ode ivp rk onestep would have to use a step
size of 〈value〉 at current t = 〈value〉. This is too small for the machine precision.

NW RK TOO MANY
Approximately 〈value〉 function evaluations have been used to compute the solution since the
integration started or since this message was last printed.

NE RK PDC GLOBAL ERROR T
The global error assessment may not be reliable for t past tnow. tnow = 〈value〉.

NE RK PDC GLOBAL ERROR S
The global error assessment algorithm failed at the start of the integration.

[NP3275/5/pdf] 3.d02pdc.3

nag ode ivp rk onestep NAG C Library Manual

NE RK PDC POINTS
More than 100 output points have been obtained by integrating to tend. They have
been sufficiently close to one another that the efficiency of the integration has been
degraded. It would probably be (much) more efficient to obtain output by interpolating
with nag ode ivp rk interp (d02pxc) (after changing to method = Nag RK 4 5 if you are
using method = Nag RK 7 8).

NE STIFF PROBLEM
The problem appears to be stiff.

NE MEMORY FREED
Internally allocated memory has been freed by a call to nag ode ivp rk free (d02ppc) without
a subsequent call to the set up function nag ode ivp rk setup (d02pvc).

6. Further Comments

If nag ode ivp rk onestep returns with fail.code = NE RK PDC STEP and the accuracy specified
by tol and thres is really required then you should consider whether there is a more fundamental
difficulty. For example, the solution may contain a singularity. In such a region the solution
components will usually be of a large magnitude. Successive output values of ynow should be
monitored with the aim of trapping the solution before the singularity. In any case numerical
integration cannot be continued through a singularity, and analytical treatment may be necessary.

If nag ode ivp rk onestep returns with a non-trivial value of fail.code (i.e., those not related to an
invalid call) then performance statistics are available by examining the structure opt (see Section 4).
Furthermore if errass was set to Nag ErrorAssess on then global error assessment is available by a
call to the function nag ode ivp rk errass (d02pzc). The approximate extra number of evaluations
of f used is given by 2 × stpsok × stpcst for method Nag RK 4 5 or Nag RK 7 8 and 3 × stpsok
× stpcst for method = Nag RK 2 3.

After a failure with fail.code = NE RK PDC STEP, NE RK PDC GLOBAL ERROR T or
NE RK PDC GLOBAL ERROR S the diagnostic function nag ode ivp rk errass (d02pzc) may be
called only once.

If nag ode ivp rk onestep returns with fail.code = NE STIFF PROBLEM then it is advisable to
change to another code more suited to the solution of stiff problems. nag ode ivp rk onestep will
not return with fail.code = NE STIFF PROBLEM if the problem is actually stiff but it is estimated
that integration can be completed using less function evaluations than already computed.

6.1. Accuracy

The accuracy of integration is determined by the parameters tol and thres in a prior call to
nag ode ivp rk setup (d02pvc). Note that only the local error at each step is controlled by these
parameters. The error estimates obtained are not strict bounds but are usually reliable over one
step. Over a number of steps the overall error may accumulate in various ways, depending on the
properties of the differential system.

6.2. References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: a suite of Runge-Kutta codes for
the initial value problem for ODEs SoftReport 91-S1, Department of Mathematics, Southern
Methodist University, Dallas, TX 75275, U.S.A.

7. See Also

nag ode ivp rk setup (d02pvc)
nag ode ivp rk reset tend (d02pwc)
nag ode ivp rk interp (d02pxc)
nag ode ivp rk errass (d02pzc)

3.d02pdc.4 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02pdc

8. Example

We solve the equation

y′′ = −y, y(0) = 0, y′(0) = 1

reposed as

y′
1 = y2 y′

2 = −y1

over the range [0, 2π] with initial conditions y1 = 0.0 and y2 = 1.0. We use relative error control with
threshold values of 1.0e−8 for each solution component and print the solution at each integration
step across the range. We use a medium order Runge-Kutta method (method = Nag RK 4 5) with
tolerances tol = 1.0e−4 and tol = 1.0e−5 in turn so that we may compare the solutions. The value
of π is obtained by using X01AAC.

See also the example programs for nag ode ivp rk reset tend (d02pwc) and nag ode ivp rk interp
(d02pxc).

8.1. Program Text

/* nag_ode_ivp_rk_onestep(d02pdc) Example Program
*
* Copyright 1994 Numerical Algorithms Group.
*
* Mark 3, 1994.
*
*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>
#include <nagx01.h>

#ifdef NAG_PROTO
static void f(Integer neq, double t1, double y[], double yp[], Nag_User *comm);
#else
static void f();
#endif

#define NEQ 2
#define ZERO 0.0
#define ONE 1.0
#define TWO 2.0
#define FOUR 4.0

main()
{
Integer neq;
Nag_RK_method method;
double hstart, pi, tnow, tend;
double tol, tstart;
Integer i;
double thres[NEQ], ynow[NEQ], ypnow[NEQ], ystart[NEQ];
Nag_ErrorAssess errass;
Nag_ODE_RK opt;
Nag_User comm;

Vprintf("d02pdc Example Program Results\n");

/* Set initial conditions and input for d02pvc */
neq = NEQ;
pi = X01AAC;
tstart = ZERO;
ystart[0] = ZERO;
ystart[1] = ONE;
tend = TWO*pi;

[NP3275/5/pdf] 3.d02pdc.5

nag ode ivp rk onestep NAG C Library Manual

for (i=0; i<neq; i++)
thres[i] = 1.0e-8;

errass = Nag_ErrorAssess_off;
hstart = ZERO;
method = Nag_RK_4_5;

for (i=1; i<=2; i++)
{
if (i==1) tol = 1.0e-4;
if (i==2) tol = 1.0e-5;
d02pvc(neq, tstart, ystart, tend, tol, thres, method,

Nag_RK_onestep, errass, hstart, &opt, NAGERR_DEFAULT);

Vprintf("\nCalculation with tol = %8.1e\n\n",tol);
Vprintf (" t y1 y2\n\n");
Vprintf("%8.3f %8.3f %8.3f\n", tstart, ystart[0], ystart[1]);
do
{

d02pdc(neq, f, &tnow, ynow, ypnow, &opt, &comm,
NAGERR_DEFAULT);

Vprintf("%8.3f %8.3f %8.3f\n", tnow, ynow[0], ynow[1]);
} while (tnow<tend);

Vprintf("\nCost of the integration in evaluations of f is %ld\n\n",
opt.totfcn);

d02ppc(&opt);
}

exit(EXIT_SUCCESS);
}
#ifdef NAG_PROTO
static void f(Integer neq, double t, double y[], double yp[], Nag_User *comm)
#else

static void f(neq, t, y, yp, comm)
Integer neq;
double t;
double y[], yp[];
Nag_User *comm;

#endif

{
yp[0] = y[1];
yp[1] = -y[0];

}

8.2. Program Data

None.

8.3. Program Results

d02pdc Example Program Results

Calculation with tol = 1.0e-04

t y1 y2

0.000 0.000 1.000
0.785 0.707 0.707
1.519 0.999 0.051
2.282 0.757 -0.653
2.911 0.229 -0.974
3.706 -0.535 -0.845
4.364 -0.940 -0.341
5.320 -0.821 0.571
5.802 -0.463 0.886
6.283 0.000 1.000

Cost of the integration in evaluations of f is 78

3.d02pdc.6 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02pdc

Calculation with tol = 1.0e-05

t y1 y2

0.000 0.000 1.000
0.393 0.383 0.924
0.785 0.707 0.707
1.416 0.988 0.154
1.870 0.956 -0.294
2.204 0.806 -0.592
2.761 0.371 -0.929
3.230 -0.088 -0.996
3.587 -0.430 -0.903
4.022 -0.771 -0.637
4.641 -0.997 -0.072
5.152 -0.905 0.426
5.521 -0.690 0.724
5.902 -0.372 0.928
6.283 0.000 1.000

Cost of the integration in evaluations of f is 118

[NP3275/5/pdf] 3.d02pdc.7

