nag_ode_bvp_fd_nonlin_gen (d02rac)

1. Purpose

nag_ode_bvp_fd_nonlin_gen (d02rac) solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations, using a deferred correction technique and Newton iteration.
2. Specification

```
#include <nag.h>
```

\#include <nagd02.h>
void d02rac(Integer neq, double $*$ deleps,
void ($* \mathrm{f} \mathrm{cn}$) (Integer neq, double x , double eps, double y[],
double f[], Nag_User *comm),
Integer numbeg, Integer nummix,
void (*g) (Integer neq, double eps, double ya[], double yb[],
double bc[], Nag_User *(omm),
Nag_MeshSet init, Integer mnp, Integer $* n p$, double x[],
double y[],
double tol, double abt[],
void (*jacobf) (Integer neq, double x, double eps, double y[],
double f[], Nag_User *comm),
void (*jacobg) (Integer neq, double eps, double ya[],
double yb[], double aj[], double bj[],
Nag_User *comm),
void (*jaceps) (Integer neq, double x, double eps, double y[],
double f[], Nag_User *comm),
void (*jacgep) (Integer neq, double eps, double ya[], double yb[],
double bcep[], Nag_User *comm),
Nag_User *comm, NagError *fail)

3. Description

This function solves a two-point boundary-value problem for a system of neq ordinary differential equations in the interval $[a, b]$ with $b>a$. The system is written in the form

$$
\begin{equation*}
y_{i}^{\prime}=f_{i}\left(x, y_{1}, y_{2}, \ldots, y_{\mathbf{n e q}}\right), i=1,2, \ldots, \mathbf{n e q} \tag{1}
\end{equation*}
$$

and the derivatives f_{i} are evaluated by a function fcn supplied by the user. With the differential equations (1) must be given a system of neq (nonlinear) boundary conditions

$$
g_{i}(y(a), y(b))=0, i=1,2, \ldots, \mathbf{n e q}
$$

where

$$
\begin{equation*}
y(x)=\left[y_{1}(x), y_{2}(x), \ldots, y_{\mathbf{n e q}}(x)\right]^{T} \tag{2}
\end{equation*}
$$

The functions g_{i} are evaluated by a function \mathbf{g} supplied by the user. The solution is computed using a finite-difference technique with deferred correction allied to a Newton iteration to solve the finite-difference equations. The technique used is described fully in Pereyra (1979).
The user must supply an absolute error tolerance and may also supply an initial mesh for the finite-difference equations and an initial approximate solution (alternatively a default mesh and approximation are used). The approximate solution is corrected using a Newton iteration and deferred correction. Then, additional points are added to the mesh and the solution is recomputed with the aim of making the error everywhere less than the user's tolerance and of approximately equidistributing the error on the final mesh. The solution is returned on this final mesh.
If the solution is required at a few specific points then these should be included in the initial mesh. If, on the other hand, the solution is required at several specific points then the user should use the
interpolation routines provided in Chapter e01 if these points do not themselves form a convenient mesh.

The Newton iteration requires Jacobian matrices

$$
\left(\frac{\partial f_{i}}{\partial y_{j}}\right),\left(\frac{\partial g_{i}}{\partial y_{j}(a)}\right) \text { and }\left(\frac{\partial g_{i}}{\partial y_{j}(b)}\right) .
$$

These may be supplied by the user through functions jacobf for $\left(\frac{\partial f_{i}}{\partial y_{j}}\right)$ and jacobg for the others. Alternatively the Jacobians may be calculated by numerical differentiation using the algorithm described in Curtis et al (1974).

For problems of the type (1) and (2) for which it is difficult to determine an initial approximation from which the Newton iteration will converge, a continuation facility is provided. The user must set up a family of problems

$$
\begin{equation*}
y^{\prime}=f(x, y, \varepsilon), \quad g(y(a), y(b), \varepsilon)=0 \tag{3}
\end{equation*}
$$

where $f=\left[f_{1}, f_{2}, \ldots, f_{\text {neq }}\right]^{T}$ etc, and where ε is a continuation parameter. The choice $\varepsilon=0$ must give a problem (3) which is easy to solve and $\varepsilon=1$ must define the problem whose solution is actually required. The routine solves a sequence of problems with ε values

$$
\begin{equation*}
0=\varepsilon_{1}<\varepsilon_{2}<\ldots<\varepsilon_{p}=1 \tag{4}
\end{equation*}
$$

The number p and the values ε_{i} are chosen by the routine so that each problem can be solved using the solution of its predecessor as a starting approximation. Jacobians $\frac{\partial f}{\partial \varepsilon}$ and $\frac{\partial g}{\partial \varepsilon}$ are required and they may be supplied by the user via routines jaceps and jacgep respectively or may be computed by numerical differentiation.

4. Parameters

neq
Input: the number of differential equations, neq.
Constraint: neq >0.

deleps

Input: must be given a value which specifies whether continuation is required. If deleps \leq 0.0 or deleps ≥ 1.0 then it is assumed that continuation is not required. If $0.0<$ deleps <1.0 then it is assumed that continuation is required unless deleps $<\sqrt{\text { machine precision }}$ when an error exit is taken. deleps is used as the increment $\varepsilon_{2}-\varepsilon_{1}$ (see (4)) and the choice deleps $=0.1$ is recommended.
Output: an overestimate of the increment $\varepsilon_{p}-\varepsilon_{p-1}$ (in fact the value of the increment which would have been tried if the restriction $\varepsilon_{p}=1$ had not been imposed). If continuation was not requested then deleps $=0.0$.
If continuation is not requested then the parameters jaceps and jacgep may be replaced by the NAG defined two null functions macro, NULL_2_FUN.

fcn

The function fen must evaluate the functions f_{i} (i.e., the derivatives y_{i}^{\prime}) at a general point x for a given value of ε, the continuation parameter (see Section 3).

The specification of $\mathbf{f c n}$ is:

```
void fcn (Integer neq, double x, double eps, double y[], double f[],
    Nag_User *comm)
    neq
```

 Input: the number of equations.
 x
 Input: the value of the argument \(x\).
 eps
 Input: the value of the continuation parameter, \(\varepsilon\). This is 1 if continuation is
 not being used.
 \(y[n e q]\)
 Input: \(y[i-1]\) contains the value of the argument \(y_{i}\), for \(i=1,2, \ldots\), neq.
 f[neq]
 Output: \(f[i-1]\) must contain the values of \(f_{i}\), for \(i=1,2, \ldots\), neq.
 comm
 Input/Output: pointer to a structure of type Nag_User with the following
 member:
 p - Pointer
 Input/Output: The pointer comm->p should be cast to the required type,
 e.g. struct user \(*\) s \(=\) (struct user \(*\)) comm->p, to obtain the original
 object's address with appropriate type. (See the argument comm below.)

numbeg

Input: the number of left-hand boundary conditions (that is the number involving $y(a)$ only). Constraint: $0 \leq$ numbeg $<$ neq.

nummix

Input: the number of coupled boundary conditions (that is the number involving both $y(a)$ and $y(b))$.
Constraint: $0 \leq$ nummix \leq neq - numbeg.
g
The function \mathbf{g} must evaluate the boundary conditions in equation (3) and place them in the array bc.
The specification of \mathbf{g} is:

```
void g (Integer neq, double eps, double ya[], double yb[], double bc[],
    Nag_User *comm)
    neq
            Input: the number of equations.
    eps
```

 Input: the value of the continuation parameter, \(\varepsilon\). This is 1 if continuation is
 not being used.
 ya[neq]
 Input: \(\mathbf{y a}[i-1]\) contains the value \(y_{i}(a)\), for \(i=1,2, \ldots\), neq.
 yb[neq]
 Input: \(\mathbf{y b}[i-1]\) contains the value \(y_{i}(b)\), for \(i=1,2, \ldots\), neq.
 bc[neq]
 Output: must contain the values \(g_{i}(y(a), y(b), \varepsilon)\), for \(i=1,2, \ldots\), neq. These
 must be ordered as follows:
 (i) first, the conditions involving only $y(a)$ (see numbeg description above);
(ii) next, the nummix coupled conditions involving both $y(a)$ and $y(b)$ (see nummix description above); and,
(iii) finally, the conditions involving only $y(b)$ (neq -numbeg - nummix). comm

Input/Output: pointer to a structure of type Nag_User with the following member:
p - Pointer
Input/Output: The pointer comm->p should be cast to the required type, e.g. struct user $* s=$ (struct user $*$) comm->p, to obtain the original object's address with appropriate type. (See the argument comm below.)
init
Input: indicates whether the user wishes to supply an initial mesh and approximate solution (init = Nag_UserInitMesh) or whether default values are to be used, (init = Nag_DefInitMesh).
Constraint: init = Nag_UserInitMesh or Nag_DefInitMesh.
mnp
Input: must be set to the maximum permitted number of points in the finite-difference mesh.
Constraint: mnp ≥ 32.
np
Input: must be set to the number of points to be used in the initial mesh.
Constraint: $4 \leq \mathbf{n p} \leq \mathbf{m n p}$.
Output: the number of points in the final mesh.
x [mnp]
Input: the user must set $\mathbf{x}[0]=a$ and $\mathbf{x}[\mathbf{n p}-1]=b$. If init $=$ Nag_DefInitMesh on entry
a default equispaced mesh will be used, otherwise the user must specify a mesh by setting $\mathbf{x}[i-1]=x_{i}$, for $i=2,3, \ldots, \mathbf{n p}-1$.
Constraints: $\mathbf{x}[0]<\mathbf{x}[\mathbf{n p}-1]$, if init $=$ Nag_DefInitMesh,

$$
\mathbf{x}[0]<\mathbf{x}[1]<\ldots<\mathbf{x}[\mathbf{n p}-1], \text { if init }=\text { Nag_UserInitMesh. }
$$

Output: $\mathbf{x}[0], \mathbf{x}[1], \ldots, \mathbf{x}[\mathbf{n p}-1]$ define the final mesh (with the returned value of $\mathbf{n p}$) and $\mathbf{x}[0]=\mathrm{a}$ and $\mathbf{x}[\mathbf{n p}-1]=b$.
$\mathrm{y}[\mathrm{neq}][\mathrm{mnp}]$
Input: if init $=$ Nag_DefInitMesh, then \mathbf{y} need not be set.
If init $=$ Nag_UserInitMesh, then the array \mathbf{y} must contain an initial approximation to the solution such that $\mathbf{y}[j-1][i-1]$ contains an approximation to
$y_{j}\left(x_{i}\right), i=1,2, \ldots, \mathbf{n p} j=1,2, \ldots$, neq.
Output: the approximate solution $z_{j}\left(x_{i}\right)$ satisfying (5) on the final mesh, that is
$\mathbf{y}[j-1][i-1]=z_{j}\left(x_{i}\right), i=1,2, \ldots, \mathbf{n p} j=1,2, \ldots$, neq, where $\mathbf{n p}$ is the number of points in the final mesh. If an error has occurred then \mathbf{y} contains the latest approximation to the solution. The remaining columns of \mathbf{y} are not used.
tol
Input: a positive absolute error tolerance. If $a=x_{1}<x_{2}<\ldots<x_{\mathbf{n p}}=b$ is the final mesh, $z_{j}\left(x_{i}\right)$ is the j th component of the approximate solution at x_{i}, and $y_{j}(x)$ is the j th component of the true solution of (1) and (2), then, except in extreme circumstances, it is expected that $\left|z_{j}\left(x_{i}\right)-y_{j}\left(x_{i}\right)\right| \leq \mathbf{t o l} i=1,2, \ldots, \mathbf{n p} ; j=1,2, \ldots$, neq.
Constraint: tol >0.0.
$\operatorname{abt}[\mathbf{n e q}]$
Output: $\mathbf{a b t}[i-1]$, for $i=1,2, \ldots$, neq, holds the largest estimated error (in magnitude) of the i th component of the solution over all mesh points.

jacobf

The function jacobf must evaluate the Jacobian $\left(\frac{\partial f_{i}}{\partial y_{j}}\right)$ for $i, j=1,2, \ldots$, neq, given x and y_{j}, for $j=1,2, \ldots$, neq.

The specification of jacobf is:

```
void jacobf (Integer neq, double x, double eps, double y[], double f[],
    Nag_User *comm)
    neq
            Input: the number of equations.
    x
        Input: the value of the argument }x\mathrm{ .
    eps
```

 Input: the value of the continuation parameter, \(\varepsilon\). This is 1 if continuation is
 not being used.
 \(\mathrm{y}[\mathrm{neq}]\)
 Input: \(\mathbf{y}[i-1]\) contains the value of the argument \(y_{i}\), for \(i=1,2, \ldots\), neq.
 f[neq*neq]
 Output: \(\mathbf{f}[(i-1) * \mathbf{n e q}+(j-1)]\) must be set to the value of \(\frac{\partial f_{i}}{\partial y_{j}}\), evaluated at
 the point \((x, y)\), for \(i, j=1,2, \ldots\), neq.
 comm
 Input/Output: pointer to a structure of type Nag_User with the following
 member:
 p - Pointer
 Input/Output: The pointer comm->p should be cast to the required type,
 e.g. struct user \(*\) s \(=\) (struct user \(*\)) comm->p, to obtain the original
 object's address with appropriate type. (See the argument comm below.)
 Note that if jacobf is supplied then jacobg (see below) must also be supplied. Note that if jacobf is supplied and continuation is requested then jaceps and jacgep (see below) must also be supplied.

jacobg

The function jacobg must evaluate the Jacobians $\left(\frac{\partial g_{i}}{\partial y_{j}(a)}\right)$ and $\left(\frac{\partial g_{i}}{\partial y_{j}(b)}\right)$. The ordering of the rows of $\mathbf{a j}$ and $\mathbf{b j}$ must correspond to the ordering of the boundary conditions described in the specification of function \mathbf{g} above.
The specification of jacobg is:

```
void jacobg (Integer neq, double eps, double ya[], double yb[], double aj[],
    double bj[], Nag_User *comm)
    neq
        Input: the number of equations.
    eps
```

Input: the value of the continuation parameter, ε. This is 1 if continuation is not being used.
ya[neq]
Input: ya $[i-1]$ contains the value $y_{i}(a)$, for $i=1,2, \ldots$, neq.
$\mathrm{yb}[\mathrm{neq}]$
Input: $\mathbf{y b}[i-1]$ contains the value $y_{i}(b)$, for $i=1,2, \ldots$, neq.

aj[neq*neq]

Output: $\mathbf{a j}[(i-1) *$ neq $+(j-1)]$ must be set to the value $\frac{\partial g_{i}}{\partial y_{j}(a)}$, for $i, j=1,2, \ldots$, neq.

bj[neq*neq]

Output: $\mathbf{b j}[(i-1) * \mathbf{n e q}+(j-1)]$ must be set to the value $\frac{\partial g_{i}}{\partial y_{j}(b)}$,
for $i, j=1,2 \ldots$, neq.
comm
Input/Output: pointer to a structure of type Nag_User with the following member:
p - Pointer
Input/Output: The pointer comm->p should be cast to the required type, e.g. struct user $*$ s = (struct user $*$) comm->p, to obtain the original object's address with appropriate type. (See the argument comm below.)
Note that if jacobg is supplied then jacobf (see above) must also be supplied. If numerical differentiation is to be used to calculate the Jacobian then jacobf and jacobg may be replaced by the NAG-defined two null functions macro, NULL_2_FUN.
jaceps
The function jaceps must evaluate the derivative $\frac{\partial f_{i}}{\partial \varepsilon}$ given x, y and ε if continuation is being used.
The specification of jaceps is:

```
void jaceps (Integer neq, double x, double eps, double y[], double f[],
    Nag_User *comm)
    neq
```

 Input: the number of equations.
 x
 Input: the value of the argument \(x\).
 eps
 Input: the value of the continuation parameter, \(\varepsilon\).
 y [neq]
 Input: \(\mathbf{y}[i-1]\) contains the solution values \(y_{i}\) at the point \(x\),
 for \(i=1,2, \ldots\), neq.
 f[neq]
 Output: \(\mathbf{f}[i-1]\) must contain \(f(i)\), the value \(\frac{\partial f_{i}}{\partial \varepsilon}\) at the point \((x, y)\), given \(\varepsilon\), for
 \(i=1,2, \ldots\), neq.
 comm
 Input/Output: pointer to a structure of type Nag_User with the following
 member:
 p - Pointer
 Input/Output: The pointer comm->p should be cast to the required type,
 e.g. struct user \(*\) s \(=\) (struct user \(*\)) comm->p, to obtain the original
 object's address with appropriate type. (See the argument comm below.)
 Note that if jaceps is defined then jacgep (see below) must also be defined.
jacgep
The function jacgep must evaluate the derivatives $\frac{\partial g_{i}}{\partial \varepsilon}$ if continuation is being used.

The specification of jacgep is:

```
void jacgep (Integer neq, double eps, double ya[], double yb[],
    double bcep[], Nag_User *comm)
    neq
        Input: the number of equations.
    eps
    Input: the value of the continuation parameter, \varepsilon.
    ya[neq]
            Input: ya [i-1] contains the value of }\mp@subsup{y}{i}{}(a)\mathrm{ , for }i=1,2,\ldots.neq
    yb[neq]
        Input: }\mathbf{yb}[i-1]\mathrm{ contains the value of }\mp@subsup{y}{i}{}(b)\mathrm{ , for }i=1,2,\ldots,neq
    bcep[neq]
        Output: bcep [i-1] must contain the value of }\frac{\partial\mp@subsup{g}{i}{}}{\partial\varepsilon}\mathrm{ , for }i=1,2,\ldots,neq
    comm
        Input/Output: pointer to a structure of type Nag_User with the following
        member:
        p - Pointer
            Input/Output: The pointer comm->p should be cast to the required type,
            e.g. struct user *s = (struct user *) comm }>>\textrm{p}\mathrm{ , to obtain the original
            object's address with appropriate type. (See the argument comm below.)
```

Note that if jacgep is defined then jaceps (see above) must also be defined. If numerical differentiation is to be used to calculate the Jacobian and continuation is not required then jacobf, jacobg, jaceps and jacgep may be replaced by the NAG-defined four null functions macro, NULL_4_FUN.
comm
Input/Output: pointer to a structure of type Nag_User with the following member:
p - Pointer
Input/Output: The pointer \mathbf{p}, of type Pointer, allows the user to communicate information to and from the user-defined functions $\mathbf{f c n}(), \mathbf{g}(), \operatorname{jacobf}(), \operatorname{jacobg}()$, jaceps(), and jacgep(). An object of the required type should be declared by the user, e.g. a structure, and its address assigned to the pointer \mathbf{p} by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer) \&s. The type pointer will be void $*$ with a C compiler that defines void $*$ and char $*$ otherwise.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_INT_ARG_LT

On entry, neq must not be less than 1: neq $=\langle$ value \rangle.
On entry, mnp must not be less than 32: mnp $=\langle$ value \rangle.

NE_REAL_ARG_LE

On entry, tol must not be less than or equal to 0.0 : $\mathbf{t o l}=\langle$ value \rangle.

NE_INT_RANGE_CONS

On entry, $\mathbf{n p}=\langle$ value \rangle and $\mathbf{m n p}=\langle$ value \rangle. The parameter $\mathbf{n p}$ must satisfy $4 \leq \mathbf{n p} \leq \mathbf{m n p}$. On entry, numbeg $=\langle$ value \rangle and neq $=\langle$ value \rangle. The parameter numbeg must satisfy $0 \leq$ numbeg \leq neq.
On entry, nummix $=\langle$ value \rangle and neq - numbeg $=\langle$ value \rangle. The parameter nummix must satisfy $0 \leq$ nummix \leq neq - numbeg.

NE_2_INT_ARG_ZERO

On entry, numbeg $=0$ and nummix $=0$. These parameters must not both be zero.

NE＿BAD＿PARAM

On entry parameter init had an illegal value．

NE＿2＿REAL＿ARG＿LE

On entry $\mathbf{x}[\mathbf{n p}-1]=\langle$ value \rangle while $\mathbf{x}[0]=\langle$ value \rangle ．
These parameters must satisfy $\mathbf{x}[\mathbf{n p}-1]>\mathbf{x}[0]$

NE＿NOT＿STRICTLY＿INCREASING

The sequence \mathbf{x} is not strictly increasing： $\mathbf{x}[\langle$ value $\rangle]=\langle$ value $\rangle, \mathbf{x}[\langle$ value $\rangle]=\langle$ value \rangle.

NE＿INVALID＿FUN＿JAC

Only one of jacobf or jacobg has been set to non－null possibly implying user－defined jacobians． Both must be non－null．

NE＿INVALID＿FUN＿JAC＿CONT

deleps has been set to 〈value〉 implying continuation and both jacobf and jacobg have been set to non－null implying user－defined jacobians．Hence the functions jaceps and jacgep must also be non－null．

NE＿INVALID＿FUN＿JAC＿NO＿CONT

deleps has been set to 〈value〉 implying no continuation and both jacobf and jacobg have been set to non－null implying user－defined jacobians．Hence the functions jaceps and jacgep must be null．

NE＿INVALID＿FUN＿NO＿JAC＿CONT

deleps has been set to 〈value〉 implying continuation and both jacobf and jacobg have been set to null implying no user－defined jacobians．Hence the functions jaceps and jacgep must also be null．

NE＿ALLOC＿FAIL

Memory allocation failed．

NE＿CONV＿MESH

A finer mesh is required for the accuracy requested；that is mnp is not large enough．

NE＿CONV＿CONT

Convergence failure．There are a number of possible causes．
a）Faulty coding of the Jacobian calculation functions．
b）If Jacobians have not been supplied then inaccurate Jacobians have been calculated internally（not very likely）．
c）A poor choice of initial mesh or initial starting conditions either by the user or by default． Try using the continuation facility．

NE＿CONV＿ROUNDOFF

Solution cannot be improved due to roundoff error．Too much accuracy might have been requested．

NE＿CONV＿CONT＿DEP

There is no dependence on epsilon when continuation is being used．This may be due to faulty coding of jaceps or jacgep，or in some circumstances，to a zero initial choice of approximate solution（such as is chosen when init＝Nag＿DefInitMesh）．

NE＿CONV＿JACOBG

The Jacobian calculated by jacobg（or the equivalent matrix calculated by numerical differentiation）is singular．This may be due to faulty coding of jacobg or in some circumstances，to a zero initial choice of approximate solution（such as is chosen when init＝Nag＿DefInitMesh）．

NE＿INTERNAL＿ERROR

An internal error has occurred in this function．Check the function call and any array sizes． If the call is correct then please consult NAG for assistance．

NE＿CONV＿CONT＿DELEPS

deleps is required to be less than machine precision for continuation to proceed．It is likely that either the problem has no solution for some value near the current value of ε or that the problem is so difficult that even with continuation it is unlikely to be solved using this function．Using more mesh points may help．

6. Further Comments

There are too many factors present to quantify the timing. The time taken by the function is negligible only on very simple problems.
In the case where the user wishes to solve a sequence of similar problems, the use of the final mesh and solution from one case as the initial mesh is strongly recommended for the next.

6.1. Accuracy

The solution returned by the function will be accurate to the user's tolerance as defined by the relation (5) except in extreme circumstances. The final error estimate over the whole mesh for each component is given in the array abt. If too many points are specified in the initial mesh, the solution may be more accurate than requested and the error may not be approximately equidistributed.

6.2. References

Curtis AR, Powell MJD and Reid JK (1974) On the Estimation of Sparse Jacobian Matrices. J. Inst. Maths Applics. 13 117-119.
Pereyra V (1979) PASVA3: An Adaptive Finite-Difference Fortran Program for First Order Nonlinear, Ordinary Boundary Problems. In 'Codes for Boundary Value Problems in Ordinary Differential Equations'. Lecture Notes in Computer Science. (ed B Childs, M Scott JW Daniel, E Denman and P Nelson) 76 Springer-Verlag.
7. See Also
nag_ode_bvp_fd_nonlin_fixedbc (d02gac)
nag_ode_bvp_fd_lin_gen (d02gbc)

8. Example

We solve the differential equation

$$
y^{\prime \prime \prime}=-y y^{\prime \prime}-2 \varepsilon\left(1-y^{2}\right)
$$

with $\varepsilon=1$ and boundary conditions

$$
y(0)=y^{\prime}(0)=0, \quad y^{\prime}(10)=1
$$

to an accuracy specified by $\mathbf{t o l}=1.0 \mathrm{e}-4$. The continuation facility is used with the continuation parameter ε introduced as in the differential equation above and with deleps $=0.1$ initially. (The continuation facility is not needed for this problem and is used here for illustration.)

8.1. Program Text

```
/* nag_ode_bvp_fd_nonlin_gen(d02rac) Example Program
    *
    * Copyright }1994\mathrm{ Numerical Algorithms Group.
*
* Mark 3, 1994.
*
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>
#ifdef NAG_PROTO
static void fcn(Integer neq, double x, double eps, double y[], double f[],
                    Nag_User *comm);
#else
static void fcn();
#endif
#ifdef NAG_PROTO
static void g(Integer neq, double eps, double ya[], double yb[],
```

```
    double bc[], Nag_User *comm);
#else
static void g();
#endif
#ifdef NAG_PROTO
static void jaceps(Integer neq, double x, double eps, double y[], double f[],
                                    Nag_User *comm);
#else
static void jaceps();
#endif
#ifdef NAG_PROTO
static void jacgep(Integer neq, double eps, double ya[], double yb[],
    double bcep[], Nag_User *comm);
#else
static void jacgep();
#endif
#ifdef NAG_PROTO
static void jacobf(Integer neq, double x, double eps, double y[],
    double f[], Nag_User *comm);
#else
static void jacobf();
#endif
#ifdef NAG_PROTO
static void jacobg(Integer neq, double eps, double ya[], double yb[],
                                    double aj[], double bj[], Nag_User *comm);
#else
static void jacobg();
#endif
#define NEQ 3
#define MNP 40
main()
{
    Integer i, j;
    double x[MNP], y[NEQ] [MNP];
    Integer np;
    double deleps;
    Integer numbeg, nummix;
    double abt[NEQ];
    double tol;
    Integer neq, mnp;
    Nag_User comm;
    Vprintf("d02rac Example Program Results\n");
    Vprintf ("\nCalculation using analytic Jacobians\n\n");
    neq = NEQ;
    mnp = MNP;
    tol = 1.0e-4;
    np = 17;
    numbeg = 2;
    nummix = 0;
    x[0] = 0.0;
    x[np-1] = 10.0;
    deleps = 0.1;
    d02rac(neq, &deleps, fcn, numbeg, nummix, g, Nag_DefInitMesh, mnp, &np, x,
                (double *)y, tol, abt, jacobf, jacobg, jaceps, jacgep,
        &comm, NAGERR_DEFAULT);
    Vprintf ("Solution on final mesh of %ld points \n", np);
    Vprintf (" X Y(1) Y(2) Y(3)\n");
```

```
    for (j=0; j< np; ++j)
        {
            Vprintf (" %9.3f ", x[j]);
            for (i=0; i<neq; ++i)
                Vprintf (" %9.4f", y[i][j]);
            Vprintf ("\n");
    }
    Vprintf ("\n\nMaximum estimated error by components \n");
    for (i=1; i<=3; ++i)
        Vprintf (" %9.2e", abt[i-1]);
    Vprintf (" \n");
    exit(EXIT_SUCCESS);
}
#ifdef NAG_PROTO
static void fcn(Integer neq, double x, double eps, double y[], double f[],
                    Nag_User *comm)
#else
        static void fcn(neq, x, eps, y, f, comm)
        Integer neq;
        double x, eps;
        double y[], f[];
        Nag_User *comm;
#endif
{
    f[0] = y[1];
    f[1] = y[2];
    f[2] = -y[0] * y[2] - (1.0 - y[1]*y[1])*2.0*eps;
}
#ifdef NAG_PROTO
static void g(Integer neq, double eps, double ya[], double yb[],
            double bc[], Nag_User *comm)
#else
        static void g(neq, eps, ya, yb, bc, comm)
        Integer neq;
        double eps;
        double ya[], yb[], bc[];
        Nag_User *comm;
#endif
{
    bc[0] = ya[0];
    bc[1] = ya[1];
    bc[2] = yb[1] - 1.0;
}
    /* g */
#ifdef NAG_PROTO
static void jaceps(Integer neq, double x, double eps, double y[],
    double f[], Nag_User *comm)
#else
            static void jaceps(neq, x, eps, y, f, comm)
            Integer neq;
            double x, eps;
            double y[], f[];
            Nag_User *comm;
#endif
{
    f[0] = 0.0;
    f[1] = 0.0;
    f[2] = (1.0 - y[1]*y[1]) * -2.0;
}
```

```
#ifdef NAG_PROTO
static void jacgep(Integer neq, double eps, double ya[], double yb[],
                                    double bcep[], Nag_User *comm)
#else
    static void jacgep(neq, eps, ya, yb, bcep, comm)
        Integer neq;
        double eps;
        double ya[], yb[], bcep[];
        Nag_User *comm;
#endif
{
    Integer i;
    for (i=0; i< neq; ++i)
        bcep[i] = 0.0;
}
#ifdef NAG_PROTO
static void jacobf(Integer neq, double x, double eps, double y[],
                            double f[], Nag_User *comm)
#else
        static void jacobf(neq, x, eps, y, f, comm)
        Integer neq;
        double x, eps;
        double y[], f[];
        Nag_User *comm;
#endif
{
    Integer i, j;
#define Y(I) y[(I)-1]
#define F(I,J) f[((I)-1)*neq+(J)-1]
    for (i=1; i<= neq; ++i)
            for ( j=1; j<= neq; ++j)
                F(i, j) = 0.0;
            }
        F(1,2) = 1.0;
        F(2,3) = 1.0;
        F(3,1) = -Y(3);
        F(3,2) = Y(2) * 4.0 * eps;
        F(3,3) = -Y(1);
}
#ifdef NAG_PROTO
static void jacobg(Integer neq, double eps, double ya[], double yb[],
                double aj[], double bj[], Nag_User *comm)
#else
            static void jacobg(neq, eps, ya, yb, aj, bj, comm)
            Integer neq;
            double eps;
            double ya[], yb[], aj[], bj[];
            Nag_User *comm;
#endif
{
    Integer i, j;
#define YA(I) ya[(I)-1]
#define YB(I) yb[(I)-1]
#define AJ(I,J) aj[((I)-1)*neq+(J)-1]
#define BJ(I,J) bj[((I)-1)*neq+(J)-1]
        for (i=1; i<= neq; ++i)
            for ( }j=1; j<= neq; ++j
```

```
            AJ(i,j) = 0.0;
            BJ(i,j) = 0.0;
                }
        AJ (1,1) = 1.0;
    AJ (2,2) = 1.0;
    BJ (3,2) = 1.0;
}
```


8.2. Program Data

None.

8.3. Program Results

Calculation using analytic Jacobians			
Solution on final mesh of 33 points			
X	Y(1)	Y(2)	Y (3)
0.000	0.0000	0.0000	1.6872
0.062	0.0032	0.1016	1.5626
0.125	0.0125	0.1954	1.4398
0.188	0.0275	0.2816	1.3203
0.250	0.0476	0.3605	1.2054
0.375	0.1015	0.4976	0.9924
0.500	0.1709	0.6097	0.8048
0.625	0.2530	0.6999	0.6438
0.703	0.3095	0.7467	0.5563
0.781	0.3695	0.7871	0.4784
0.938	0.4978	0.8513	0.3490
1.094	0.6346	0.8977	0.2502
1.250	0.7776	0.9308	0.1763
1.458	0.9748	0.9598	0.1077
1.667	1.1768	0.9773	0.0639
1.875	1.3815	0.9876	0.0367
2.031	1.5362	0.9922	0.0238
2.188	1.6915	0.9952	0.0151
2.500	2.0031	0.9983	0.0058
2.656	2.1591	0.9990	0.0035
2.812	2.3153	0.9994	0.0021
3.125	2.6277	0.9998	0.0007
3.750	3.2526	1.0000	0.0001
4.375	3.8776	1.0000	0.0000
5.000	4.5026	1.0000	0.0000
5.625	5.1276	1.0000	0.0000
6.250	5.7526	1.0000	0.0000
6.875	6.3776	1.0000	0.0000
7.500	7.0026	1.0000	0.0000
8.125	7.6276	1.0000	0.0000
8.750	8.2526	1.0000	0.0000
9.375	8.8776	1.0000	0.0000
10.000	9.5026	1.0000	0.0000

Maximum estimated error by components $6.92 \mathrm{e}-05 \quad 1.81 \mathrm{e}-05 \quad 6.42 \mathrm{e}-05$

