
d02 – Ordinary Differential Equations d02rac

nag ode bvp fd nonlin gen (d02rac)

1. Purpose

nag ode bvp fd nonlin gen (d02rac) solves the two-point boundary-value problem with general
boundary conditions for a system of ordinary differential equations, using a deferred correction
technique and Newton iteration.

2. Specification

#include <nag.h>
#include <nagd02.h>

void d02rac(Integer neq, double *deleps,
void (*fcn) (Integer neq, double x, double eps, double y[],

double f[], Nag_User *comm),
Integer numbeg, Integer nummix,
void (*g) (Integer neq, double eps, double ya[], double yb[],

double bc[], Nag_User *comm),
Nag_MeshSet init, Integer mnp, Integer *np, double x[],
double y[],
double tol, double abt[],
void (*jacobf) (Integer neq, double x, double eps, double y[],

double f[], Nag_User *comm),
void (*jacobg) (Integer neq, double eps, double ya[],

double yb[], double aj[], double bj[],
Nag_User *comm),

void (*jaceps) (Integer neq, double x, double eps, double y[],
double f[], Nag_User *comm),

void (*jacgep) (Integer neq, double eps, double ya[], double yb[],
double bcep[], Nag_User *comm),

Nag_User *comm, NagError *fail)

3. Description

This function solves a two-point boundary-value problem for a system of neq ordinary differential
equations in the interval [a, b] with b > a. The system is written in the form

y′
i = fi(x, y1, y2, . . . , yneq) , i = 1, 2, . . . ,neq (1)

and the derivatives fi are evaluated by a function fcn supplied by the user. With the differential
equations (1) must be given a system of neq (nonlinear) boundary conditions

gi(y(a), y(b)) = 0 , i = 1, 2, . . . ,neq

where

y(x) = [y1(x), y2(x), . . . , yneq(x)]
T . (2)

The functions gi are evaluated by a function g supplied by the user. The solution is computed
using a finite-difference technique with deferred correction allied to a Newton iteration to solve the
finite-difference equations. The technique used is described fully in Pereyra (1979).

The user must supply an absolute error tolerance and may also supply an initial mesh for the
finite-difference equations and an initial approximate solution (alternatively a default mesh and
approximation are used). The approximate solution is corrected using a Newton iteration and
deferred correction. Then, additional points are added to the mesh and the solution is recomputed
with the aim of making the error everywhere less than the user’s tolerance and of approximately
equidistributing the error on the final mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh.
If, on the other hand, the solution is required at several specific points then the user should use the

[NP3275/5/pdf] 3.d02rac.1

nag ode bvp fd nonlin gen NAG C Library Manual

interpolation routines provided in Chapter e01 if these points do not themselves form a convenient
mesh.

The Newton iteration requires Jacobian matrices

(
∂fi

∂yj

)
,

(
∂gi

∂yj(a)

)
and

(
∂gi

∂yj(b)

)
.

These may be supplied by the user through functions jacobf for
(

∂fi
∂yj

)
and jacobg for the others.

Alternatively the Jacobians may be calculated by numerical differentiation using the algorithm
described in Curtis et al (1974).

For problems of the type (1) and (2) for which it is difficult to determine an initial approximation
from which the Newton iteration will converge, a continuation facility is provided. The user must
set up a family of problems

y′ = f(x, y, ε), g(y(a), y(b), ε) = 0, (3)

where f = [f1, f2, . . . , fneq]
T etc, and where ε is a continuation parameter. The choice ε = 0 must

give a problem (3) which is easy to solve and ε = 1 must define the problem whose solution is
actually required. The routine solves a sequence of problems with ε values

0 = ε1 < ε2 < . . . < εp = 1. (4)

The number p and the values εi are chosen by the routine so that each problem can be solved using

the solution of its predecessor as a starting approximation. Jacobians ∂f
∂ε

and ∂g
∂ε

are required and
they may be supplied by the user via routines jaceps and jacgep respectively or may be computed
by numerical differentiation.

4. Parameters

neq
Input: the number of differential equations, neq.
Constraint: neq > 0.

deleps
Input: must be given a value which specifies whether continuation is required. If deleps ≤
0.0 or deleps ≥ 1.0 then it is assumed that continuation is not required. If 0.0 < deleps < 1.0
then it is assumed that continuation is required unless deleps <

√
machine precision when

an error exit is taken. deleps is used as the increment ε2 − ε1 (see (4)) and the choice deleps
= 0.1 is recommended.
Output: an overestimate of the increment εp − εp−1 (in fact the value of the increment which
would have been tried if the restriction εp = 1 had not been imposed). If continuation was
not requested then deleps = 0.0.
If continuation is not requested then the parameters jaceps and jacgep may be replaced by
the NAG defined two null functions macro, NULL 2 FUN.

fcn
The function fcn must evaluate the functions fi (i.e., the derivatives y′

i) at a general point x
for a given value of ε, the continuation parameter (see Section 3).

3.d02rac.2 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02rac

The specification of fcn is:

void fcn (Integer neq, double x, double eps, double y[], double f[],
Nag_User *comm)

neq
Input: the number of equations.

x
Input: the value of the argument x.

eps
Input: the value of the continuation parameter, ε. This is 1 if continuation is
not being used.

y[neq]
Input: y[i − 1] contains the value of the argument yi, for i = 1, 2, . . . ,neq.

f[neq]
Output: f [i − 1] must contain the values of fi, for i = 1, 2, . . . ,neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

numbeg
Input: the number of left-hand boundary conditions (that is the number involving y(a) only).
Constraint: 0 ≤ numbeg < neq.

nummix
Input: the number of coupled boundary conditions (that is the number involving both y(a)
and y(b)).
Constraint: 0 ≤ nummix ≤ neq − numbeg.

g
The function g must evaluate the boundary conditions in equation (3) and place them in the
array bc.
The specification of g is:

void g (Integer neq, double eps, double ya[], double yb[], double bc[],
Nag_User *comm)

neq
Input: the number of equations.

eps
Input: the value of the continuation parameter, ε. This is 1 if continuation is
not being used.

ya[neq]
Input: ya[i − 1] contains the value yi(a), for i = 1, 2, . . . , neq.

yb[neq]
Input: yb[i − 1] contains the value yi(b), for i = 1, 2, . . . , neq.

bc[neq]
Output: must contain the values gi(y(a), y(b), ε), for i = 1, 2, . . . ,neq. These
must be ordered as follows:

[NP3275/5/pdf] 3.d02rac.3

nag ode bvp fd nonlin gen NAG C Library Manual

(i) first, the conditions involving only y(a) (see numbeg description above);

(ii) next, the nummix coupled conditions involving both y(a) and y(b) (see nummix
description above); and,

(iii) finally, the conditions involving only y(b) (neq −numbeg − nummix).
comm

Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

init
Input: indicates whether the user wishes to supply an initial mesh and approximate
solution (init = Nag UserInitMesh) or whether default values are to be used, (init =
Nag DefInitMesh).
Constraint: init = Nag UserInitMesh or Nag DefInitMesh.

mnp
Input: must be set to the maximum permitted number of points in the finite-difference mesh.
Constraint: mnp ≥ 32.

np
Input: must be set to the number of points to be used in the initial mesh.
Constraint: 4 ≤ np ≤ mnp.
Output: the number of points in the final mesh.

x[mnp]
Input: the user must set x[0] = a and x[np−1] = b. If init = Nag DefInitMesh on entry
a default equispaced mesh will be used, otherwise the user must specify a mesh by setting
x[i − 1] = xi, for i = 2, 3, . . . ,np−1.
Constraints: x[0] < x[np−1], if init = Nag DefInitMesh,

x[0] < x[1] < . . . < x[np−1], if init = Nag UserInitMesh.
Output: x[0],x[1],. . .,x[np−1] define the final mesh (with the returned value of np) and
x[0] = a and x[np−1] = b.

y[neq][mnp]
Input: if init = Nag DefInitMesh, then y need not be set.
If init = Nag UserInitMesh, then the array y must contain an initial approximation to the
solution such that y[j − 1][i − 1] contains an approximation to
yj(xi), i = 1, 2, . . .,np j = 1, 2, . . . ,neq.
Output: the approximate solution zj(xi) satisfying (5) on the final mesh, that is
y[j − 1][i − 1] = zj(xi), i = 1, 2, . . . ,np j = 1, 2, . . . ,neq, where np is the number of points
in the final mesh. If an error has occurred then y contains the latest approximation to the
solution. The remaining columns of y are not used.

tol
Input: a positive absolute error tolerance. If a = x1 < x2 < . . . < xnp = b is the final mesh,
zj(xi) is the jth component of the approximate solution at xi, and yj(x) is the jth component
of the true solution of (1) and (2), then, except in extreme circumstances, it is expected that
|zj(xi) − yj(xi)| ≤ tol i = 1, 2, . . . ,np; j = 1, 2, . . . ,neq. (5)
Constraint: tol > 0.0.

abt[neq]
Output: abt[i − 1], for i = 1, 2, . . . ,neq, holds the largest estimated error (in magnitude) of
the ith component of the solution over all mesh points.

jacobf

The function jacobf must evaluate the Jacobian
(

∂fi
∂yj

)
for i, j = 1, 2, . . . ,neq, given x and

yj, for j = 1, 2, . . . ,neq.

3.d02rac.4 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02rac

The specification of jacobf is:

void jacobf (Integer neq, double x, double eps, double y[], double f[],
Nag_User *comm)

neq
Input: the number of equations.

x
Input: the value of the argument x.

eps
Input: the value of the continuation parameter, ε. This is 1 if continuation is
not being used.

y[neq]
Input: y[i − 1] contains the value of the argument yi, for i = 1, 2, . . . ,neq.

f[neq∗neq]
Output: f[(i − 1) ∗ neq + (j − 1)] must be set to the value of ∂fi

∂yj
, evaluated at

the point (x, y), for i, j = 1, 2, . . . ,neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

Note that if jacobf is supplied then jacobg (see below) must also be supplied. Note that if
jacobf is supplied and continuation is requested then jaceps and jacgep (see below) must also
be supplied.

jacobg

The function jacobg must evaluate the Jacobians
(

∂gi

∂yj(a)

)
and

(
∂gi

∂yj(b)

)
. The ordering of

the rows of aj and bj must correspond to the ordering of the boundary conditions described
in the specification of function g above.
The specification of jacobg is:

void jacobg (Integer neq, double eps, double ya[], double yb[], double aj[],
double bj[], Nag_User *comm)

neq
Input: the number of equations.

eps
Input: the value of the continuation parameter, ε. This is 1 if continuation is
not being used.

ya[neq]
Input: ya[i − 1] contains the value yi(a), for i = 1, 2, . . . , neq.

yb[neq]
Input: yb[i − 1] contains the value yi(b), for i = 1, 2, . . . , neq.

[NP3275/5/pdf] 3.d02rac.5

nag ode bvp fd nonlin gen NAG C Library Manual

aj[neq∗neq]
Output: aj[(i − 1) ∗ neq + (j − 1)] must be set to the value ∂gi

∂yj(a)
,

for i, j = 1, 2, . . . ,neq.

bj[neq∗neq]
Output: bj[(i − 1) ∗ neq + (j − 1)] must be set to the value ∂gi

∂yj(b)
,

for i, j = 1, 2 . . . ,neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

Note that if jacobg is supplied then jacobf (see above) must also be supplied. If numerical
differentiation is to be used to calculate the Jacobian then jacobf and jacobg may be replaced
by the NAG-defined two null functions macro, NULL 2 FUN.

jaceps

The function jaceps must evaluate the derivative ∂fi
∂ε

given x, y and ε if continuation is being
used.
The specification of jaceps is:

void jaceps (Integer neq, double x, double eps, double y[], double f[],
Nag_User *comm)

neq
Input: the number of equations.

x
Input: the value of the argument x.

eps
Input: the value of the continuation parameter, ε.

y[neq]
Input: y[i − 1] contains the solution values yi at the point x,
for i = 1, 2, . . . ,neq.

f[neq]

Output: f[i− 1] must contain f(i), the value ∂fi
∂ε

at the point (x, y), given ε, for
i = 1, 2, . . . ,neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

Note that if jaceps is defined then jacgep (see below) must also be defined.

jacgep

The function jacgep must evaluate the derivatives ∂gi
∂ε

if continuation is being used.

3.d02rac.6 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02rac

The specification of jacgep is:

void jacgep (Integer neq, double eps, double ya[], double yb[],
double bcep[], Nag_User *comm)

neq
Input: the number of equations.

eps
Input: the value of the continuation parameter, ε.

ya[neq]
Input: ya[i − 1] contains the value of yi(a), for i = 1, 2, . . .neq.

yb[neq]
Input: yb[i − 1] contains the value of yi(b), for i = 1, 2, . . . ,neq.

bcep[neq]

Output: bcep[i − 1] must contain the value of ∂gi
∂ε

, for i = 1, 2, . . . ,neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

Note that if jacgep is defined then jaceps (see above) must also be defined. If numerical
differentiation is to be used to calculate the Jacobian and continuation is not required then
jacobf, jacobg, jaceps and jacgep may be replaced by the NAG-defined four null functions
macro, NULL 4 FUN.

comm
Input/Output: pointer to a structure of type Nag User with the following member:

p - Pointer
Input/Output: The pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined functions fcn(), g(), jacobf(), jacobg(),
jaceps(), and jacgep(). An object of the required type should be declared by the user,
e.g. a structure, and its address assigned to the pointer p by means of a cast to Pointer
in the calling program, e.g. comm.p = (Pointer)&s. The type pointer will be void *
with a C compiler that defines void * and char * otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, neq must not be less than 1: neq = 〈value〉.
On entry, mnp must not be less than 32: mnp = 〈value〉.

NE REAL ARG LE
On entry, tol must not be less than or equal to 0.0: tol = 〈value〉.

NE INT RANGE CONS
On entry, np = 〈value〉 and mnp = 〈value〉. The parameter np must satisfy 4 ≤ np ≤ mnp.
On entry, numbeg = 〈value〉 and neq = 〈value〉. The parameter numbeg must satisfy 0 ≤
numbeg ≤ neq.
On entry, nummix = 〈value〉 and neq − numbeg = 〈value〉. The parameter nummix must
satisfy 0 ≤ nummix ≤ neq − numbeg.

NE 2 INT ARG ZERO
On entry, numbeg = 0 and nummix = 0. These parameters must not both be zero.

[NP3275/5/pdf] 3.d02rac.7

nag ode bvp fd nonlin gen NAG C Library Manual

NE BAD PARAM
On entry parameter init had an illegal value.

NE 2 REAL ARG LE
On entry x[np−1] = 〈value〉 while x[0] = 〈value〉.
These parameters must satisfy x[np−1] > x[0]

NE NOT STRICTLY INCREASING
The sequence x is not strictly increasing: x[〈value〉] = 〈value〉, x[〈value〉] = 〈value〉.

NE INVALID FUN JAC
Only one of jacobf or jacobg has been set to non-null possibly implying user-defined jacobians.
Both must be non-null.

NE INVALID FUN JAC CONT
deleps has been set to 〈value〉 implying continuation and both jacobf and jacobg have been
set to non-null implying user-defined jacobians. Hence the functions jaceps and jacgep must
also be non-null.

NE INVALID FUN JAC NO CONT
deleps has been set to 〈value〉 implying no continuation and both jacobf and jacobg have been
set to non-null implying user-defined jacobians. Hence the functions jaceps and jacgep must
be null.

NE INVALID FUN NO JAC CONT
deleps has been set to 〈value〉 implying continuation and both jacobf and jacobg have been
set to null implying no user-defined jacobians. Hence the functions jaceps and jacgep must
also be null.

NE ALLOC FAIL
Memory allocation failed.

NE CONV MESH
A finer mesh is required for the accuracy requested; that is mnp is not large enough.

NE CONV CONT
Convergence failure. There are a number of possible causes.
a) Faulty coding of the Jacobian calculation functions.
b) If Jacobians have not been supplied then inaccurate Jacobians have been calculated

internally (not very likely).
c) A poor choice of initial mesh or initial starting conditions either by the user or by default.

Try using the continuation facility.

NE CONV ROUNDOFF
Solution cannot be improved due to roundoff error. Too much accuracy might have been
requested.

NE CONV CONT DEP
There is no dependence on epsilon when continuation is being used. This may be due to faulty
coding of jaceps or jacgep, or in some circumstances, to a zero initial choice of approximate
solution (such as is chosen when init=Nag DefInitMesh).

NE CONV JACOBG
The Jacobian calculated by jacobg (or the equivalent matrix calculated by numerical
differentiation) is singular. This may be due to faulty coding of jacobg or in some
circumstances, to a zero initial choice of approximate solution (such as is chosen when
init=Nag DefInitMesh).

NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

NE CONV CONT DELEPS
deleps is required to be less than machine precision for continuation to proceed. It is likely
that either the problem has no solution for some value near the current value of ε or that
the problem is so difficult that even with continuation it is unlikely to be solved using this
function. Using more mesh points may help.

3.d02rac.8 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02rac

6. Further Comments

There are too many factors present to quantify the timing. The time taken by the function is
negligible only on very simple problems.

In the case where the user wishes to solve a sequence of similar problems, the use of the final mesh
and solution from one case as the initial mesh is strongly recommended for the next.

6.1. Accuracy

The solution returned by the function will be accurate to the user’s tolerance as defined by the
relation (5) except in extreme circumstances. The final error estimate over the whole mesh for each
component is given in the array abt. If too many points are specified in the initial mesh, the solution
may be more accurate than requested and the error may not be approximately equidistributed.

6.2. References

Curtis AR, Powell MJD and Reid JK (1974) On the Estimation of Sparse Jacobian Matrices. J. Inst.
Maths Applics. 13 117–119.

Pereyra V (1979) PASVA3: An Adaptive Finite-Difference Fortran Program for First Order
Nonlinear, Ordinary Boundary Problems. In ‘Codes for Boundary Value Problems in Ordinary
Differential Equations’. Lecture Notes in Computer Science. (ed B Childs, M Scott JW Daniel,
E Denman and P Nelson) 76 Springer-Verlag.

7. See Also

nag ode bvp fd nonlin fixedbc (d02gac)
nag ode bvp fd lin gen (d02gbc)

8. Example

We solve the differential equation

y′′′ = −yy′′ − 2ε(1− y′2)

with ε = 1 and boundary conditions

y(0) = y′(0) = 0, y′(10) = 1

to an accuracy specified by tol = 1.0e−4. The continuation facility is used with the continuation
parameter ε introduced as in the differential equation above and with deleps = 0.1 initially. (The
continuation facility is not needed for this problem and is used here for illustration.)

8.1. Program Text

/* nag_ode_bvp_fd_nonlin_gen(d02rac) Example Program
*
* Copyright 1994 Numerical Algorithms Group.
*
* Mark 3, 1994.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef NAG_PROTO
static void fcn(Integer neq, double x, double eps, double y[], double f[],

Nag_User *comm);
#else
static void fcn();
#endif

#ifdef NAG_PROTO
static void g(Integer neq, double eps, double ya[], double yb[],

[NP3275/5/pdf] 3.d02rac.9

nag ode bvp fd nonlin gen NAG C Library Manual

double bc[], Nag_User *comm);
#else
static void g();
#endif

#ifdef NAG_PROTO
static void jaceps(Integer neq, double x, double eps, double y[], double f[],

Nag_User *comm);
#else
static void jaceps();
#endif

#ifdef NAG_PROTO
static void jacgep(Integer neq, double eps, double ya[], double yb[],

double bcep[], Nag_User *comm);
#else
static void jacgep();
#endif

#ifdef NAG_PROTO
static void jacobf(Integer neq, double x, double eps, double y[],

double f[], Nag_User *comm);
#else
static void jacobf();
#endif

#ifdef NAG_PROTO
static void jacobg(Integer neq, double eps, double ya[], double yb[],

double aj[], double bj[], Nag_User *comm);
#else
static void jacobg();
#endif

#define NEQ 3
#define MNP 40

main()
{
Integer i, j;
double x[MNP], y[NEQ][MNP];
Integer np;
double deleps;
Integer numbeg, nummix;
double abt[NEQ];
double tol;
Integer neq, mnp;
Nag_User comm;

Vprintf("d02rac Example Program Results\n");

Vprintf ("\nCalculation using analytic Jacobians\n\n");

neq = NEQ;
mnp = MNP;
tol = 1.0e-4;
np = 17;
numbeg = 2;
nummix = 0;
x[0] = 0.0;
x[np-1] = 10.0;
deleps = 0.1;

d02rac(neq, &deleps, fcn, numbeg, nummix, g, Nag_DefInitMesh, mnp, &np, x,
(double *)y, tol, abt, jacobf, jacobg, jaceps, jacgep,
&comm, NAGERR_DEFAULT);

Vprintf ("Solution on final mesh of %ld points \n", np);
Vprintf (" X Y(1) Y(2) Y(3)\n");

3.d02rac.10 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02rac

for (j=0; j< np; ++j)
{
Vprintf (" %9.3f ", x[j]);
for (i=0; i<neq; ++i)
Vprintf (" %9.4f", y[i][j]);

Vprintf ("\n");
}

Vprintf ("\n\nMaximum estimated error by components \n");

for (i=1; i<=3; ++i)
Vprintf (" %9.2e", abt[i-1]);

Vprintf (" \n");

exit(EXIT_SUCCESS);
}

#ifdef NAG_PROTO
static void fcn(Integer neq, double x, double eps, double y[], double f[],

Nag_User *comm)
#else

static void fcn(neq, x, eps, y, f, comm)
Integer neq;
double x, eps;
double y[], f[];
Nag_User *comm;

#endif
{
f[0] = y[1];
f[1] = y[2];
f[2] = -y[0] * y[2] - (1.0 - y[1]*y[1])*2.0*eps;

}

#ifdef NAG_PROTO
static void g(Integer neq, double eps, double ya[], double yb[],

double bc[], Nag_User *comm)
#else

static void g(neq, eps, ya, yb, bc, comm)
Integer neq;
double eps;
double ya[], yb[], bc[];
Nag_User *comm;

#endif
{
bc[0] = ya[0];
bc[1] = ya[1];
bc[2] = yb[1] - 1.0;

} /* g */

#ifdef NAG_PROTO
static void jaceps(Integer neq, double x, double eps, double y[],

double f[], Nag_User *comm)

#else
static void jaceps(neq, x, eps, y, f, comm)
Integer neq;
double x, eps;
double y[], f[];
Nag_User *comm;

#endif
{
f[0] = 0.0;
f[1] = 0.0;
f[2] = (1.0 - y[1]*y[1]) * -2.0;

}

[NP3275/5/pdf] 3.d02rac.11

nag ode bvp fd nonlin gen NAG C Library Manual

#ifdef NAG_PROTO
static void jacgep(Integer neq, double eps, double ya[], double yb[],

double bcep[], Nag_User *comm)
#else

static void jacgep(neq, eps, ya, yb, bcep, comm)
Integer neq;
double eps;
double ya[], yb[], bcep[];
Nag_User *comm;

#endif
{
Integer i;

for (i=0; i< neq; ++i)
bcep[i] = 0.0;

}

#ifdef NAG_PROTO
static void jacobf(Integer neq, double x, double eps, double y[],

double f[], Nag_User *comm)
#else

static void jacobf(neq, x, eps, y, f, comm)
Integer neq;
double x, eps;
double y[], f[];
Nag_User *comm;

#endif
{

Integer i, j;

#define Y(I) y[(I)-1]
#define F(I,J) f[((I)-1)*neq+(J)-1]

for (i=1; i<= neq; ++i)
{
for (j=1; j<= neq; ++j)
F(i, j) = 0.0;

}
F(1,2) = 1.0;
F(2,3) = 1.0;
F(3,1) = -Y(3);
F(3,2) = Y(2) * 4.0 * eps;
F(3,3) = -Y(1);

}

#ifdef NAG_PROTO
static void jacobg(Integer neq, double eps, double ya[], double yb[],

double aj[], double bj[], Nag_User *comm)
#else

static void jacobg(neq, eps, ya, yb, aj, bj, comm)
Integer neq;
double eps;
double ya[], yb[], aj[], bj[];
Nag_User *comm;

#endif
{
Integer i, j;

#define YA(I) ya[(I)-1]
#define YB(I) yb[(I)-1]
#define AJ(I,J) aj[((I)-1)*neq+(J)-1]
#define BJ(I,J) bj[((I)-1)*neq+(J)-1]

for (i=1; i<= neq; ++i)
for (j=1; j<= neq; ++j)
{

3.d02rac.12 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02rac

AJ(i,j) = 0.0;
BJ(i,j) = 0.0;

}
AJ(1,1) = 1.0;
AJ(2,2) = 1.0;
BJ(3,2) = 1.0;

}

8.2. Program Data

None.

8.3. Program Results

d02rac Example Program Results

Calculation using analytic Jacobians

Solution on final mesh of 33 points
X Y(1) Y(2) Y(3)

0.000 0.0000 0.0000 1.6872
0.062 0.0032 0.1016 1.5626
0.125 0.0125 0.1954 1.4398
0.188 0.0275 0.2816 1.3203
0.250 0.0476 0.3605 1.2054
0.375 0.1015 0.4976 0.9924
0.500 0.1709 0.6097 0.8048
0.625 0.2530 0.6999 0.6438
0.703 0.3095 0.7467 0.5563
0.781 0.3695 0.7871 0.4784
0.938 0.4978 0.8513 0.3490
1.094 0.6346 0.8977 0.2502
1.250 0.7776 0.9308 0.1763
1.458 0.9748 0.9598 0.1077
1.667 1.1768 0.9773 0.0639
1.875 1.3815 0.9876 0.0367
2.031 1.5362 0.9922 0.0238
2.188 1.6915 0.9952 0.0151
2.500 2.0031 0.9983 0.0058
2.656 2.1591 0.9990 0.0035
2.812 2.3153 0.9994 0.0021
3.125 2.6277 0.9998 0.0007
3.750 3.2526 1.0000 0.0001
4.375 3.8776 1.0000 0.0000
5.000 4.5026 1.0000 0.0000
5.625 5.1276 1.0000 0.0000
6.250 5.7526 1.0000 0.0000
6.875 6.3776 1.0000 0.0000
7.500 7.0026 1.0000 0.0000
8.125 7.6276 1.0000 0.0000
8.750 8.2526 1.0000 0.0000
9.375 8.8776 1.0000 0.0000
10.000 9.5026 1.0000 0.0000

Maximum estimated error by components
6.92e-05 1.81e-05 6.42e-05

[NP3275/5/pdf] 3.d02rac.13

