
e01 – Interpolation e01sac

nag 2d scat interpolant (e01sac)

1. Purpose

nag 2d scat interpolant (e01sac) generates a two-dimensional surface interpolating a set of scattered
data points, using either the method of Renka and Cline or a modification of Shepard’s method.

2. Specification

#include <nag.h>
#include <nage01.h>

void nag_2d_scat_interpolant(Nag_2d_Scat_Method method, Integer m,
double x[], double y[], double f[], Nag_Scat_Struct *comm,
Nag_E01_Opt *optional, NagError *fail)

3. Description

This function constructs an interpolating surface F (x, y) through a set of m scattered data points
(xr , yr, fr), for r = 1, 2, . . . , m, using either a method due to Renka and Cline or a modification of
Shepard’s method. In the (x, y) plane, the data points must be distinct. The constructed surface
is continuous and has continuous first derivatives.

If method = Nag RC, the method due to Renka and Cline is used. This involves firstly creating a
triangulation with all the (x, y) data points as nodes, the triangulation being as nearly equiangular
as possible (see Cline and Renka (1984)). Then gradients in the x- and y-directions are estimated
at node r, for r = 1, 2, . . . , m, as the partial derivatives of a quadratic function of x and y which
interpolates the data value fr, and which fits the data values at nearby nodes (those within a certain
distance chosen by the algorithm) in a weighted least-squares sense. The weights are chosen such
that closer nodes have more influence than more distant nodes on derivative estimates at node r.
The computed partial derivatives, with the fr values, at the three nodes of each triangle define a
piecewise polynomial surface of a certain form which is the interpolant on that triangle. See Renka
and Cline (1984) for more detailed information on the algorithm, a development of that by Lawson
(1977). The code is derived from Renka (1984).

The interpolant F (x, y) can subsequently be evaluated at n points (xk, yk), for k = 1, 2, . . . , n,
inside or outside the domain of the data by a call to nag 2d scat eval (e01sbc). Points outside the
domain are evaluated by extrapolation.

If method = Nag Shep, then a modification of Shepard’s method is used. The basic Shepard
method, described in Shepard (1968), interpolates the input data with the weighted mean

F (x, y) =

m∑
r=1

wr(x, y)fr

m∑
r=1

wr(x, y)
,

where wr(x, y) =
1
d2

r

and d2
r = (x − xr)

2 + (y − yr)
2.

The basic method is global in that the interpolated value at any point depends on all the data, but
this routine uses a modification due to Franke and Nielson (1980), whereby the method becomes
local by adjusting each wr(x, y) to be zero outside a circle with centre (xr , yr) and some radius
Rw. Also, to improve the performance of the basic method, each fr above is replaced by a function
fr(x, y), which is a quadratic fitted by weighted least-squares to data local to (xr , yr) and forced to
interpolate (xr, yr, fr). In this context, a point (x, y) is defined to be local to another point if it lies
within some distance Rq of it. Computation of these quadratics constitutes the main work done by
this part of the routine. If there are less than 5 other points within distance Rq from (xr, yr), the
quadratic is replaced by a linear function. In cases of rank-deficiency, the minimum norm solution
is computed.

[NP3275/5/pdf] 3.e01sac.1



nag 2d scat interpolant NAG C Library Manual

The user may specify values for Rw and Rq, but it is usually easier to choose instead two integers
Nw and Nq, from which the routine will compute Rw and Rq. These integers can be thought of as
the average numbers of data points lying within distances Rw and Rq respectively from each node.
Default values are provided, and advice on alternatives is given in Section 6.

The interpolant F (x, y) generated by this routine can subsequently be evaluated for n points
(xk, yk), for k = 1, 2, . . . , n, in the domain of the data by a call to nag 2d scat eval (e01sbc).

4. Parameters

method
Input: indicates the method to be used in interpolating the surface.
If method = Nag RC, the method due to Renka and Cline is used.
If method = Nag Shep, then a modification of Shepard’s method is used.
Constraint: method = Nag RC or Nag Shep.

m
Input: the number of data points, m.
Constraint: m ≥ 3.

x[m]
y[m]
f[m]

Input: the co-ordinates of the rth data point, for r = 1, 2, . . . , m. The data points are
accepted in any order, but see Section 6.
Constraint: Each node must be unique. Additionally for Nag RC method the (x, y) nodes
must not be all collinear.

comm
Pointer to a communication structure of type Nag Scat Struct. For method = Nag RC, this
structure contains the computed triangulation and the estimated partial derivatives at the
nodes. For method = Nag Shep, this structure contains the coefficients of the constructed
nodal functions.

This structure must be passed unchanged to the interpolant evaluating function
nag 2d scat eval (e01sbc).

optional
Pointer to structure of type Nag E01 Opt, which may be used only if method = Nag Shep.
It has the following members:

rnw – double
rnq – double

Input: suitable values for the radii Rw and Rq, described in Section 3.
Constraint: 0 < optional.rnw ≤ optional.rnq.
If this constraint is satisfied then these values are used, otherwise if rnq ≤ 0 then
suitable values of Rw and Rq are computed from other members of this structure, nw
and nq.
Output: optional.rnw and optional.rnq contain the actual values of Rw and Rq used by
nag 2d scat interpolant.

nw – Integer
nq – Integer

Input: these are integer values which can be used to compute the radii Rw and Rq, if
the user does not wish to supply appropriate values directly, i.e., optional.rnq ≤ 0.
Constraint: 0 < optional.nw ≤ optional.nq.
If this constraint is satisfied then nag 2d scat interpolant computes the appropriate
values of the radii Rw and Rq. Otherwise, if optional.nq ≤ 0, then optional.nw and
optional.nq are set to 9 and 18 respectively and these values are used to compute the
radii Rw and Rq.
Output: If the values of optional.rnw and optional.rnq as supplied are used for the radii
Rw and Rq then optional.nw and optional.nq are set to zero, otherwise optional.nw and
optional.nq contain the actual values used for computing the radii Rw and Rq.

3.e01sac.2 [NP3275/5/pdf]



e01 – Interpolation e01sac

If this structure is supplied as a null pointer (Nag E01 Opt)*0, also defined by Nag
as E01 DEFAULT when method = Nag Shep, then the default values of nw = 9 and
nq = 18 are used to compute the radii.

minnq – Integer
Output: the minimum number of data points that lie within radius optional.rnq of any
node, and thus define a nodal function. If optional.minnq is very small (say, less than
5), then the interpolant may be unsatisfactory in regions where the data points are
sparse. nag 2d scat interpolant generates a warning in this case.
Note that this structure is not referenced when method = Nag RC. It should however
be specified as E01 DEFAULT.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE BAD PARAM
On entry, parameter method had an illegal value.

NE INT ARG LT
On entry, m must not be less than 3: m = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

NE ALL DATA COLLINEAR
On entry, all the (x,y) pairs are collinear. Consider specifying method = Nag Shep or using
a one-dimensional interpolating function nag 1d spline interpolant (e01bac).

NE DATA NOT UNIQUE
On entry, each data pair is not unique since data points (x[〈value〉],y[〈value〉]) and
(x[〈value〉],y[〈value〉]) are identical and equal to (〈value〉,〈value〉).

NE NUM PARAM INVALID
On entry, either or both of optional.nq and optional.nw are invalid, optional.nq = 〈value〉 and
optional.nw = 〈value〉. optional.nq and optional.nw must satisfy the following constraints: 0
< optional.nw ≤ optional.nq.

NE RAD PARAM INVALID
On entry, either or both of optional.rnq and optional.rnw are invalid, optional.rnq = 〈value〉
and optional.rnw = 〈value〉. optional.rnq and optional.rnw must satisfy the following
constraints: 0.0 < optional.rnw ≤ optional.rnq.

NW SPARSE DATA FIT
The minimum number of data points 〈value〉 that lie within the radius optional.rnq of any
node is small enough to indicate that the interpolant may be unsatisfactory in regions where
the data points are sparse. Current values of other relevant parameters (available as members
of the structure optional, if this has been defined) are rnq = 〈value〉, rnw = 〈value〉, nq =
〈value〉, nw = 〈value〉.

6. Further Comments

If method = Nag RC, the time taken for a call of nag 2d scat interpolant is approximately
proportional to the number of data points, m. The routine is more efficient if, before entry, the
values in x, y, f are arranged so that the x array is in ascending order.

If method = Nag Shep, the time taken for a call of nag 2d scat interpolant is also approximately
proportional to the number of data points, m, provided that Nq is of the same order as its default
value (18). However, if Nq is increased so that the method becomes more global, the time taken
becomes approximately proportional to m2.

In particular, when method = Nag Shep, note first that the radii Rw and Rq, described in Section

3, are computed as D
2

√
Nw

m and D
2

√
Nq

m respectively, where D is the maximum distance between
any pair of data points.

[NP3275/5/pdf] 3.e01sac.3



nag 2d scat interpolant NAG C Library Manual

Default values Nw = 9 and Nq = 18 work quite well when the data points are fairly uniformly
distributed. However, for data having some regions with relatively few points or for small data sets
(m < 25), a larger value of Nw may be needed. This is to ensure a reasonable number of data points
within a distance Rw of each node, and to avoid some regions in the data area being left outside all
the discs of radius Rw on which the weights wr(x, y) are non-zero. Maintaining Nq approximately
equal to 2Nw is usually an advantage.
Note however that increasing Nw and Nq does not improve the quality of the interpolant in all
cases. It does increase the computational cost and makes the method less local.

At the end of the program, especially before any repeated call to nag 2d scat interpolant, the
function nag 2d scat free (e01szc) must be called with the communication structure comm as the
argument in order to free the memory previously allocated to the pointer members of comm.

6.1. Accuracy

On successful exit, the computational errors should be negligible in most situations but the user
should always check the computed surface for acceptability, by drawing contours for instance. The
surface always interpolates the input data exactly.

6.2. References

Cline A K and Renka R L (1984) A Storage-efficient Method for Construction of a Thiessen
Triangulation Rocky Mountain J. Math. 14 119–139.

Franke R and Nielson G (1980) Smooth Interpolation of Large Sets of Scattered Data Internat. J.
Num. Methods Engrg. 15 1691–1704.

Lawson C L (1977) Software for C1 Surface Interpolation Mathematical Software III (ed J R Rice)
Academic Press pp 161–194.

Renka R L (1984) Algorithm 624: Triangulation and Interpolation of Arbitrarily Distributed Points
in the Plane ACM Trans. Math. Softw. 10 440–442.

Renka R L and Cline A K (1984) A Triangle-based C1 Interpolation Method Rocky Mountain J.
Math. 14 223–237.

Shepard D (1968) A Two-dimensional Interpolation Function for Irregularly Spaced Data Proc.
23rd Nat. Conf. ACM. Brandon/Systems Press Inc, Princeton pp 517–523.

7. See Also

nag 2d scat eval (e01sbc)
nag 2d scat free (e01szc)

8. Example

This program reads in a set of 30 data points and calls nag 2d scat interpolant to construct an
interpolating surface. It then calls nag 2d scat eval (e01sbc) to evaluate the interpolant at a sample
of points on a rectangular grid. The two methods described in Section 3 are used in the construction
of the interpolating surface and the subsequent evaluation of the interpolant.

Note that this example is not typical of a realistic problem: the number of data points would
normally be larger, and the interpolant would need to be evaluated on a finer grid to obtain an
accurate plot, say.

8.1. Program Text

/* nag_2d_scat_interpolant(e01sac) Example Program
*
* Copyright 1996 Numerical Algorithms Group.
*
* Mark 4, 1996.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage01.h>

#define MMAX 100

3.e01sac.4 [NP3275/5/pdf]



e01 – Interpolation e01sac

#define NMAX 10
#define NXYM NMAX*NMAX
#define TDX MMAX
#define TDQ MMAX+1

main()
{

Integer i, isel, j, m, n, nx, ny;
double xhi, xlo, yhi, ylo;
double f[MMAX], pf[NXYM], px[NXYM], py[NXYM], x[MMAX], y[MMAX];
Nag_Scat_Struct comm;
Nag_2d_Scat_Method method;
Nag_E01_Opt optional;

Vprintf("e01sac Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
/* Input the number of nodes. */
Vscanf("%ld", &m);

if (m>=1 && m<=MMAX)
{
/* Input the nodes (x,y) and heights, f. */
for (i=0; i<m; ++i)
Vscanf("%lf%lf%lf", &x[i], &y[i], &f[i]);

/* Input the domain for evaluating the interpolant. */
Vscanf("%ld%lf%lf", &nx, &xlo, &xhi);
Vscanf("%ld%lf%lf", &ny, &ylo, &yhi);

for (isel=1; isel<=2; ++isel)
{
/* Select the method of interpolation. */
if (isel==1)
method = Nag_RC;

else if (isel==2)
method = Nag_Shep;

if (method==Nag_RC)
{
Vprintf("\nExample 1: Surface interpolation by method\

of Renka and Cline.\n\n");
/*
* Generate the triangulation and gradients using the selected
* method.
*/

e01sac(method, m, x, y, f, &comm, (Nag_E01_Opt *)0,
NAGERR_DEFAULT);

}
else if (method==Nag_Shep)
{
Vprintf("\n\nExample 2: Surface interpolation by modified\

Shepard’s method.\n\n");
/* Compute the nodal function coefficients. */
optional.nq = 24;
optional.nw = 12;
optional.rnq = -1.0;

e01sac(method, m, x, y, f, &comm, &optional, NAGERR_DEFAULT);

Vprintf(" optional.rnw =%8.2f optional.rnq =%8.2f\n\n",
optional.rnw, optional.rnq);

Vprintf(" minimum number of data points that lie within radius\
optional.rnq =%3ld\n", optional.minnq);

}
/*
* Evaluate the interpolant on a rectangular grid at nx*ny points
* over the domain (xlo to xhi) x (ylo to yhi).

[NP3275/5/pdf] 3.e01sac.5



nag 2d scat interpolant NAG C Library Manual

*/
n = 0;
if (nx*ny<=NXYM)
{
for (j=0; j<ny; ++j)

{
for (i=0; i<nx; ++i)
{
px[i+nx*j] = ((double)(nx-i-1) / (nx-1)) * xlo +
((double)(i) / (nx-1)) * xhi;

py[i+nx*j] = ((double)(ny-j-1) / (ny-1)) * ylo +
((double)(j) / (ny-1)) * yhi;

++n;
}

}
if (method == Nag_RC)

e01sbc(&comm, n, px, py, pf, NAGERR_DEFAULT);
else if (method == Nag_Shep)

e01sbc(&comm, n, px, py, pf, NAGERR_DEFAULT);

Vprintf("\n x");
for (i = 0; i < nx; i++)

Vprintf("%8.2f", px[i]);
Vprintf("\n y\n");
for (i = ny-1; i >= 0; --i)

{
Vprintf("%8.2f ", py[nx * i]);
for (j = 0; j < nx; j++)
Vprintf("%8.2f", pf[nx * i + j]);

Vprintf("\n");
}

}
/* Free the memory allocated to the pointers in structure comm. */
e01szc(&comm);

}
exit(EXIT_SUCCESS);

}
else

{
Vfprintf(stderr, "m is out of range: m = %-3ld\n", m);
exit(EXIT_FAILURE);

}
} /* main */

8.2. Program Data

e01sac Example Program Data
30

11.16 1.24 22.15
12.85 3.06 22.11
19.85 10.72 7.97
19.72 1.39 16.83
15.91 7.74 15.30
0.00 20.00 34.60

20.87 20.00 5.74
3.45 12.78 41.24

14.26 17.87 10.74
17.43 3.46 18.60
22.80 12.39 5.47
7.58 1.98 29.87

25.00 11.87 4.40
0.00 0.00 58.20
9.66 20.00 4.73
5.22 14.66 40.36

17.25 19.57 6.43
25.00 3.87 8.74
12.13 10.79 13.71
22.23 6.21 10.25
11.52 8.53 15.74
15.20 0.00 21.60
7.54 10.69 19.31

3.e01sac.6 [NP3275/5/pdf]



e01 – Interpolation e01sac

17.32 13.78 12.11
2.14 15.03 53.10
0.51 8.37 49.43

22.69 19.63 3.25
5.47 17.13 28.63

21.67 14.36 5.52
3.31 0.33 44.08

7 3.0 21.0
6 2.0 17.0

8.3. Program Results

e01sac Example Program Results

Example 1: Surface interpolation by method of Renka and Cline.

x 3.00 6.00 9.00 12.00 15.00 18.00 21.00
y

17.00 41.25 27.62 18.03 12.29 11.68 9.09 5.37
14.00 47.61 36.66 22.87 14.02 13.44 11.20 6.46
11.00 38.55 25.25 16.72 13.83 13.08 10.71 6.88
8.00 37.90 23.97 16.79 16.43 15.46 13.02 9.30
5.00 40.49 29.26 22.51 20.72 19.30 16.72 12.87
2.00 43.52 33.91 26.59 22.23 21.15 18.67 14.88

Example 2: Surface interpolation by modified Shepard’s method.

optional.rnw = 9.49 optional.rnq = 13.42

minimum number of data points that lie within radius optional.rnq = 7

x 3.00 6.00 9.00 12.00 15.00 18.00 21.00
y

17.00 40.23 27.72 21.23 14.59 12.00 9.43 5.46
14.00 46.96 37.37 23.74 14.67 13.25 11.29 6.26
11.00 39.42 25.42 16.32 13.78 12.60 10.39 7.03
8.00 37.50 22.36 18.57 15.63 15.55 13.05 9.69
5.00 41.25 31.76 24.74 21.17 18.93 16.83 12.65
2.00 44.58 34.35 26.47 22.27 20.98 18.69 15.06

[NP3275/5/pdf] 3.e01sac.7


