nag_1d_spline_deriv (e02bcc)

1. Purpose

nag_1d_spline_deriv (e02bcc) evaluates a cubic spline and its first three derivatives from its B-spline representation.

2. Specification

```
#include <nag.h>
#include <nage02.h>
void nag_1d_spline_deriv(Nag_DerivType derivs, double x, double s[4],
    Nag_Spline *spline, NagError *fail)
```


3. Description

This routine evaluates the cubic spline $s(x)$ and its first three derivatives at a prescribed argument x. It is assumed that $s(x)$ is represented in terms of its B-spline coefficients c_{i}, for $i=1,2, \ldots, \bar{n}+3$ and (augmented) ordered knot set λ_{i}, for $i=1,2, \ldots, \bar{n}+7$, (see nag_1d_spline_fit_knots (e02bac)), i.e.

$$
s(x)=\sum_{i=1}^{q} c_{i} N_{i}(x)
$$

Here $q=\bar{n}+3, \bar{n}$ is the number of intervals of the spline and $N_{i}(x)$ denotes the normalised B-spline of degree 3 (order 4) defined upon the knots $\lambda_{i}, \lambda_{i+1}, \ldots, \lambda_{i+4}$. The prescribed argument x must satisfy $\lambda_{4} \leq x \leq \lambda_{\bar{n}+4}$.
At a simple knot λ_{i} (i.e., one satisfying $\lambda_{i-1}<\lambda_{i}<\lambda_{i+1}$), the third derivative of the spline is in general discontinuous. At a multiple knot (i.e., two or more knots with the same value), lower derivatives, and even the spline itself, may be discontinuous. Specifically, at a point $x=u$ where (exactly) r knots coincide (such a point is termed a knot of multiplicity r), the values of the derivatives of order $4-j$, for $j=1,2, \ldots, r$, are in general discontinuous. (Here $1 \leq r \leq 4 ; r>4$ is not meaningful.) The user must specify whether the value at such a point is required to be the left- or right-hand derivative.
The method employed is based upon:
(i) carrying out a binary search for the knot interval containing the argument x (see Cox (1978)),
(ii) evaluating the non-zero B-splines of orders $1,2,3$ and 4 by recurrence (see Cox (1972) and Cox (1978)),
(iii) computing all derivatives of the B-splines of order 4 by applying a second recurrence to these computed B-spline values (see de Boor (1972)),
(iv) multiplying the 4th-order B-spline values and their derivative by the appropriate B-spline coefficients, and summing, to yield the values of $s(x)$ and its derivatives.
nag_1d_spline_deriv can be used to compute the values and derivatives of cubic spline fits and interpolants produced by nag_1d_spline_fit_knots (e02bac), nag_1d_spline_fit (e02bec) or nag_1d_spline_interpolant (e01bac).
If only values and not derivatives are required, nag_1d_spline_evaluate (e02bbc)may be used instead of nag_1d_spline_deriv, which takes about 50% longer than nag_1d_spline_evaluate (e02bbc).

4. Parameters

derivs

Input: derivs, of type Nag_DerivType, specifies whether left- or right-hand values of the spline and its derivatives are to be computed (see Section 3). Left- or right-hand values are formed according to whether derivs is equal to Nag_LeftDerivs or Nag_RightDerivs respectively. If x does not coincide with a knot, the value of derivs is immaterial. If $x=$ spline.lamda[3], right-hand values are computed, and if $x=$ spline.lamda[spline.n-4]), left-hand values are formed, regardless of the value of derivs.
Constraint: derivs = Nag_LeftDerivs or Nag_RightDerivs .
x
Input: the argument x at which the cubic spline and its derivatives are to be evaluated.
Constraint: spline.lamda[3] $\leq \mathrm{x} \leq$ spline.lamda[spline. $\mathbf{n}-4]$.
$\mathrm{s}[4]$
Output: $\mathbf{s}[j]$ contains the value of the j th derivative of the spline at the argument x, for $j=0,1,2,3$. Note that $\mathbf{s}[0]$ contains the value of the spline.
spline
Input: Pointer to structure of type Nag_Spline with the following members:
\mathbf{n} - Integer
Input: $\bar{n}+7$, where \bar{n} is the number of intervals of the spline (which is one greater than the number of interior knots, i.e., the knots strictly within the range λ_{4} to $\lambda_{\bar{n}+4}$ over which the spline is defined).
Constraint: spline. $n \geq 8$.
lamda - double *
Input: a pointer to which memory of size spline.n must be allocated. spline.lamda $[j-1]$ must be set to the value of the j th member of the complete set of knots, λ_{j}, for $j=1,2, \ldots, \bar{n}+7$.
Constraint: the λ_{j} must be in non-decreasing order with
spline.lamda[spline. $n-4]>$ spline.lamda[3].
c-double *
Input: a pointer to which memory of size spline.n-4 must be allocated. spline.c holds the coefficient c_{i} of the B-spline $N_{i}(x)$, for $i=1,2, \ldots, \bar{n}+3$.

Under normal usage, the call to nag_1d_spline_deriv will follow a call to nag_1d_spline_fit_knots (e02bac), nag_1d_spline_fit_knots (e02bac)or nag_1d_spline_fit (e02bec). In that case, the structure spline will have been set up correctly for input to nag_1d_spline_deriv.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_INT_ARG_LT

On entry, spline.n must not be less than 8: spline. $\mathbf{n}=\langle$ value \rangle.

NE_BAD_PARAM

On entry, parameter derivs had an illegal value.

NE_ABSCI_OUTSIDE_KNOT_INTVL

On entry, x must satisfy spline.lamda[3] $\leq \mathrm{x} \leq$ spline.lamda[spline. $n-4]$:
spline.lamda $[3]=\langle$ value $\rangle, \quad \mathbf{x}=\langle$ value \rangle, spline.lamda $[\langle$ value $\rangle]=\langle$ value \rangle.

NE_SPLINE_RANGE_INVALID

On entry, the cubic spline range is invalid:
spline.lamda $[3]=\langle$ value \rangle while spline.lamda $[$ spline. $n-4]=\langle$ value \rangle.
These must satisfy spline.lamda[3] < spline.lamda[spline.n-4].

6. Further Comments

The time taken by this function is approximately linear in $\log (\bar{n}+7)$.
Note: the function does not test all the conditions on the knots given in the description of spline.lamda in Section 4, since to do this would result in a computation time approximately linear in $\bar{n}+7$ instead of $\log (\bar{n}+7)$. All the conditions are tested in nag_1d_spline_fit_knots (e02bac), however, and the knots returned by nag_1d_spline_interpolant (e01bac) or nag_1d_spline_fit (e02bec) will satisfy the conditions.

6.1. Accuracy

The computed value of $s(x)$ has negligible error in most practical situations. Specifically, this value has an absolute error bounded in modulus by $18 \times c_{\max } \times$ machine precision, where $c_{\max }$ is the largest in modulus of c_{j}, c_{j+1}, c_{j+2} and c_{j+3}, and j is an integer such that $\lambda_{j+3} \leq x \leq \lambda_{j+4}$. If c_{j}, c_{j+1}, c_{j+2} and c_{j+3} are all of the same sign, then the computed value of $s(x)$ has relative error bounded by $20 \times$ machine precision. For full details see Cox (1978).
No complete error analysis is available for the computation of the derivatives of $s(x)$. However, for most practical purposes the absolute errors in the computed derivatives should be small.

6.2. References

Cox M G (1972) The Numerical Evaluation of B-splines J. Inst. Math. Appl. 10 134-149.
Cox M G (1978) The Numerical Evaluation of a Spline from its B-spline Representation J. Inst. Math. Appl. 21 135-143.
De Boor C (1972) On Calculating with B-splines J. Approx. Theory 6 50-62.
7. See Also

```
nag_1d_spline_interpolant (e01bac)
nag_1d_spline_fit_knots (e02bac)
nag_1d_spline_evaluate (e02bbc)
nag_1d_spline_fit (e02bec)
```


8. Example

Compute, at the 7 arguments $x=0,1,2,3,4,5,6$, the left- and right-hand values and first 3 derivatives of the cubic spline defined over the interval $0 \leq x \leq 6$ having the 6 interior knots $x=1,3,3,3,4,4$, the 8 additional knots $0,0,0,0,6,6,6,6$, and the 10 B-spline coefficients 10 , $12,13,15,22,26,24,18,14,12$.
The input data items (using the notation of Section 4) comprise the following values in the order indicated:

```
\overline{n}
spline.lamda[j],
spline.c[j],
```

x

$$
\begin{aligned}
& m \\
& \text { for } j=0,1, \ldots, \bar{n}+6 \\
& \text { for } j=0,1, \ldots, \bar{n}+2 \\
& \mathrm{~m} \text { values of } \mathbf{x}
\end{aligned}
$$

The example program is written in a general form that will enable the values and derivatives of a cubic spline having an arbitrary number of knots to be evaluated at a set of arbitrary points. Any number of data sets may be supplied.

8.1. Program Text

```
/* nag_1d_spline_deriv(e02bcc) Example Program
    *
    * Copyright 1991 Numerical Algorithms Group.
    *
    * Mark 2, 1991.
    *
    * Mark 3 revised, 1994.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>
main()
{
    Integer i, j, l, m, ncap, ncap7;
    double s[4], x;
    Nag_Spline spline;
    Nag_DerivType derivs;
```

```
    Vprintf("eO2bcc Example Program Results\n");
    Vscanf("%*[^\n]"); /* Skip heading in data file */
    while(scanf("%ld%ld",&ncap,&m) != EOF)
    {
        if (m>0)
            {
            if (ncap>0)
                {
                    ncap7 = ncap+7;
                    spline.n = ncap7;
                    spline.c = NAG_ALLOC(ncap7, double);
                    spline.lamda = NAG_ALLOC(ncap7, double);
                    if (spline.c != (double *)0 && spline.lamda != (double *)0)
                            {
                                for (j=0; j<ncap7; j++)
                            Vscanf("%lf",&(spline.lamda[j]));
                                for (j=0; j<ncap+3; j++)
                            Vscanf("%lf",&(spline.c[j]));
                                Vprintf(" x Spline 1st deriv \
2nd deriv 3rd deriv");
                for (i=1; i<=m; i++)
                            {
                                Vscanf("%lf",&x);
                                derivs = Nag_LeftDerivs;
                                for ( }\textrm{j}=1;\textrm{j}<=2; j++
                            {
                                e02bcc(derivs, x, s, &spline, NAGERR_DEFAULT);
                                if (derivs ==Nag_LeftDerivs)
                            {
                                Vprintf("\n\n%11.4f Left",x);
                                for (l=0; l<4; l++)
                                    Vprintf("%11.4f",s[1]);
                                    }
                                    else
                                    {
                                    Vprintf("\n%11.4f Right",x);
                                    for (l=0; l<4; l++)
                                    Vprintf("%11.4f",s[l]);
                                    }
                                    derivs = Nag_RightDerivs;
                                    }
                                    }
                                    Vprintf("\n");
                                    NAG_FREE(spline.c);
                                    NAG_FREE(spline.lamda);
                    }
                        else
                        {
                        Vfprintf(stderr,"Storage allocation failed. Reduce the \
size of spline.n\n");
                        exit(EXIT_FAILURE);
                    }
            }
            else
            {
                        Vfprintf(stderr,"ncap is negative or zero : ncap = %ld\n",ncap);
                        exit(EXIT_FAILURE);
            }
            }
        else
            {
            Vfprintf(stderr,"m is negative or zero : m = %ld\n",m);
            exit(EXIT_FAILURE);
        }
        }
    exit(EXIT_SUCCESS);
}
```


8.2. Program Data

e02bcc Example Program Data

7	7						
0.0	0.0	0.0	0.0	1.0	3.0	3.0	3.0
4.0	4.0	6.0	6.0	6.0	6.0		
10.0	12.0	13.0	15.0	22.0	26.0	24.0	18.0
14.0	12.0						
0.0							
1.0							
2.0							
3.0							
4.0							
5.0							
6.0							

8.3. Program Results

| e02bcc Example Program Results | | | | | |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| x | | Spline | 1st deriv | 2nd deriv | 3rd deriv |
| 0.0000 | Left | 10.0000 | 6.0000 | -10.0000 | 10.6667 |
| 0.0000 | Right | 10.0000 | 6.0000 | -10.0000 | 10.6667 |
| | | | | | |
| 1.0000 | Left | 12.7778 | 1.3333 | 0.6667 | 10.6667 |
| 1.0000 | Right | 12.7778 | 1.3333 | 0.6667 | 3.9167 |
| | | | | | |
| 2.0000 | Left | 15.0972 | 3.9583 | 4.5833 | 3.9167 |
| 2.0000 | Right | 15.0972 | 3.9583 | 4.5833 | 3.9167 |
| | | | | | |
| 3.0000 | Left | 22.0000 | 10.5000 | 8.5000 | 3.9167 |
| 3.0000 | Right | 22.0000 | 12.0000 | -36.0000 | 36.0000 |
| | | | | | |
| 4.0000 | Left | 22.0000 | -6.0000 | 0.0000 | 36.0000 |
| 4.0000 | Right | 22.0000 | -6.0000 | 0.0000 | 1.5000 |
| 5.0000 | Left | 16.2500 | -5.2500 | 1.5000 | 1.5000 |
| 5.0000 | Right | 16.2500 | -5.2500 | 1.5000 | 1.5000 |
| | | | | | |
| 6.0000 | Left | 12.0000 | -3.0000 | 3.0000 | 1.5000 |
| 6.0000 | Right | 12.0000 | -3.000 | 3.0000 | 1.5000 |

