
e04 – Minimizing or Maximizing a Function e04hcc

nag opt check deriv (e04hcc)

1. Purpose

nag opt check deriv (e04hcc) checks that a user-defined C function for evaluating an objective
function and its first derivatives produces derivative values which are consistent with the function
values calculated.

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_check_deriv(Integer n,
void (*objfun)(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm),
double x[], double *objf, double g[],
Nag_Comm *comm, NagError *fail)

3. Description

The function nag opt bounds deriv (e04kbc) for minimizing a function of several variables requires
the user to supply a C function to evaluate the objective function F (x1, x2, . . . , xn) and its first
derivatives. nag opt check deriv is designed to check the derivatives calculated by such a user-
supplied function. As well as the function to be checked (objfun), the user must supply a point
x = (x1, x2, . . . , xn)

T at which the check is to be made.

nag opt check deriv first calls the supplied function objfun to evaluate F and its first derivatives

gj =
∂F

∂xj

, for j = 1, 2, . . . , n at x. The components of the user-supplied derivatives along two

orthogonal directions (defined by unit vectors p1 and p2, say) are then calculated; these will be
gT p1 and gT p2 respectively. The same components are also estimated by finite differences, giving
quantities

vk =
F (x + hpk)− F (x)

h
, k = 1, 2

where h is a small positive scalar. If the relative difference between v1 and gT p1 or between v2 and
gT p2 is judged too large, an error indicator is set.

4. Parameters

n
Input: the number n of independent variables in the objective function.
Constraint: n ≥ 1.

objfun
objfun must evaluate the objective function and its first derivatives at a given point.
(The minimization function nag opt bounds deriv (e04kbc) gives the user the option of
resetting a parameter, comm->flag, to terminate the minimization process immediately.
nag opt check deriv will also terminate immediately, without finishing the checking process,
if the parameter in question is reset to a negative value.)
The specification of objfun is:

[NP3275/5/pdf] 3.e04hcc.1



nag opt check deriv NAG C Library Manual

void objfun(Integer n, double x[], double *objf, double g[], Nag_Comm *comm)

n
Input: the number n of variables.

x[n]
Input: the point x at which F and its derivatives are required.

objf
Output: objfun must set objf to the value of the objective function F at the
current point x. If it is not possible to evaluate F thenobjfun should assign a
negative value to comm->flag; nag opt check deriv will then terminate.

g[n]
Output: unless comm->flag is reset to a negative number, objfunmust set g[j−1]

to the value of the first derivative
∂F

∂xj

at the current point x for j = 1, 2, . . . , n

comm
Pointer to structure of type Nag Comm; the following members are relevant to
objfun.

flag – Integer
Input: comm->flag will be set to 2.
Output: if objfun resets comm->flag to some negative number then
nag opt check deriv will terminate immediately with the error indicator
NE USER STOP. If fail is supplied to nag opt check deriv fail.errnum will
be set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to objfun and FALSE for all
subsequent calls.

nf – Integer
Input: the number of calculations of the objective function; this value will
be equal to the number of calls made to objfun including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and
char * otherwise. Before calling nag opt check deriv these pointers may
be allocated memory by the user and initialised with various quantities for
use by objfun when called from nag opt check deriv.

The array x must not be changed by objfun.

x[n]
Input: x[j− 1], for j = 1, 2, . . . , n must be set to the co-ordinates of a suitable point at which
to check the derivatives calculated by objfun. ‘Obvious’ settings, such as 0.0 or 1.0, should not
be used since, at such particular points, incorrect terms may take correct values (particularly
zero), so that errors could go undetected. Similarly, it is preferable that no two elements of
x should be the same.

objf
Output: unless the user sets comm->flag negative in the first call of objfun, objf contains the
value of the objective function F (x) at the point given by the user in x.

g[n]
Output: unless the user sets comm->flag negative in the first call of objfun, g[j − 1] contains

the value of the derivative
∂F

∂xj

at the point given in x, as calculated by objfun, for

j = 1, 2, . . . , n.

comm
Input/Output: structure containing pointers for communication with the user defined

3.e04hcc.2 [NP3275/5/pdf]



e04 – Minimizing or Maximizing a Function e04hcc

function; see the above description of objfun for details. If the user does not need to make
use of this communication feature the null pointer NAGCOMM NULL may be used in the call to
nag opt check deriv; comm will then be declared internally for use in calls to objfun.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE USER STOP
User requested termination, user flag value = 〈value〉.

This exit occurs if the user sets comm->flag to a negative value in objfun. If fail is supplied
the value of fail.errnum will be the same as the user’s setting of comm->flag. The check on
objfun will not have been completed.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

NE DERIV ERRORS
Large errors were found in the derivatives of the objective function.

The user should check carefully the derivation and programming of expressions for the
derivatives of F (x), because it is very unlikely that objfun is calculating them correctly.

6. Further Comments

The user-defined function objfun is called three times.

Before using nag opt check deriv to check the calculation of first derivatives, the user should
be confident that objfun is calculating F correctly. The usual way of checking the calculation
of the function is to compare values of F (x) calculated by objfun at non-trivial points x with
values calculated independently. (‘Non-trivial’ means that, as when setting x before calling
nag opt check deriv, co-ordinates such as 0.0 or 1.0 should be avoided.)

6.1. Accuracy

fail.code is set to NE DERIV ERRORS if

(vk − gT pk)
2 ≥ h × ((gT pk)

2 + 1)

for k = 1 or 2. (See Section 3 for definitions of the quantities involved.) The scalar h is set equal
to

√
ε, where ε is the machine precision as given by nag machine precision (X02AJC).

7. See Also

nag opt bounds deriv (e04kbc)

8. Example

Suppose that it is intended to use nag opt bounds deriv (e04kbc) to minimize

F = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4.

The following program could be used to check the first derivatives calculated by the required function
objfun. (The test of whether comm->flag �= 0 in objfun is present for when objfun is called by
nag opt bounds deriv (e04kbc). nag opt check deriv will always call objfun with comm->flag set
to 2.)

[NP3275/5/pdf] 3.e04hcc.3



nag opt check deriv NAG C Library Manual

8.1. Program Text

/* nag_opt_check_deriv (e04hcc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage04.h>

#ifdef NAG_PROTO
static void objfun(Integer n, double x[], double *f,

double g[], Nag_Comm *comm);
#else
static void objfun();
#endif

#define NMAX 4

#ifdef NAG_PROTO
static void objfun(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm)
#else

static void objfun(n, x, objf, g, comm)
Integer n;
double x[];
double *objf;
double g[];
Nag_Comm *comm;

#endif
{
/* objfun evaluates the objective function and its derivatives. */

double x1, x2, x3, x4;
double tmp, tmp1, tmp2, tmp3, tmp4;

x1 = x[0];
x2 = x[1];
x3 = x[2];
x4 = x[3];

/* Supply a single function value */
tmp1 = x1 + 10.0*x2;
tmp2 = x3 - x4;
tmp3 = x2 - 2.0*x3, tmp3 *= tmp3;
tmp4 = x1 - x4, tmp4 *= tmp4;
*objf = tmp1*tmp1 + 5.0*tmp2*tmp2 + tmp3*tmp3 + 10.0*tmp4*tmp4;

if (comm->flag != 0)
{
/* Calculate the derivatives */
tmp = x1 - x4;
g[0] = 2.0*(x1 + 10.0*x2) + 40.0*tmp*tmp*tmp;
tmp = x2 - 2.0*x3;
g[1] = 20.0*(x1 + 10.0*x2) + 4.0*tmp*tmp*tmp;
tmp = x2 - 2.0*x3;
g[2] = 10.0*(x3 - x4) - 8.0*tmp*tmp*tmp;
tmp = x1 - x4;
g[3] = 10.0*(x4 - x3) - 40.0*tmp*tmp*tmp;

}
} /* objfun */

main()
{
double x[NMAX], g[NMAX];

3.e04hcc.4 [NP3275/5/pdf]



e04 – Minimizing or Maximizing a Function e04hcc

double objf;
Integer i, n;
static NagError fail;

fail.print = TRUE;

Vprintf("e04hcc Example Program Results.\n");

n = NMAX;
x[0] = 1.46;
x[1] = -0.82;
x[2] = 0.57;
x[3] = 1.21;

Vprintf("\nThe test point is:\n");
for (i = 0; i < n; ++i)

Vprintf(" %8.4f", x[i]);
Vprintf("\n");

/* Call derivative checker */
e04hcc(n, objfun, x, &objf, g, NAGCOMM_NULL, &fail);

if (fail.code != NE_NOERROR) exit(EXIT_FAILURE);

Vprintf("\nFirst derivatives are consistent with function values.\n\n");
Vprintf("At the test point, objfun gives the function value %11.4e\n", objf);
Vprintf("and the 1st derivatives\n\n");
for (i = 0; i < n; ++i)

Vprintf(" %9.3e ", g[i]);
Vprintf("\n");
exit(EXIT_SUCCESS);

} /* main */

8.2. Program Data

None.

8.3. Program Results

e04hcc Example Program Results.

The test point is:
1.4600 -0.8200 0.5700 1.2100

First derivatives are consistent with function values.

At the test point, objfun gives the function value 6.2273e+01
and the 1st derivatives

-1.285e+01 -1.649e+02 5.384e+01 5.775e+00

[NP3275/5/pdf] 3.e04hcc.5


