
e04 – Minimizing or Maximizing a Function e04nkc

nag opt sparse convex qp (e04nkc)

1. Purpose

nag opt sparse convex qp (e04nkc) solves sparse linear programming or convex quadratic
programming problems.

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_sparse_convex_qp(Integer n, Integer m, Integer nnz,
Integer iobj, Integer ncolh,
void (*qphx)(Integer ncolh, double x[],

double hx[], Nag_Comm *comm),
double a[], Integer ha[], Integer ka[],
double bl[], double bu[], double xs[],
Integer *ninf, double *sinf, double *obj,
Nag_E04_Opt *options, Nag_Comm *comm,
NagError *fail)

3. Description

nag opt sparse convex qp is designed to solve a class of quadratic programming problems that are
assumed to be stated in the following general form:

minimize
x∈Rn

f(x) subject to l ≤
{

x
Ax

}
≤ u, (1)

where x is a set of variables, A is an m by n matrix and the objective function f(x) may be
specified in a variety of ways depending upon the particular problem to be solved. The optional
parameter minimize (see Section 8.2) may be used to specify an alternative problem in which f(x)
is maximized. The possible forms for f(x) are listed in Table 1 below, in which the prefixes FP, LP
and QP stand for ‘feasible point’, ‘linear programming’ and ‘quadratic programming’ respectively, c
is an n element vector and H is the n by n second-derivative matrix ∇2f(x) (the Hessian matrix).

Problem Type Objective Function f(x) Hessian Matrix H
FP Not applicable Not applicable
LP cTx Not applicable
QP cTx+ 1

2x
THx Symmetric positive semi-definite

Table 1

For LP and QP problems, the unique global minimum value of f(x) is found. For FP problems,
f(x) is omitted and the function attempts to find a feasible point for the set of constraints. For
QP problems, a function must also be provided to compute Hx for any given vector x. (H need
not be stored explicitly.)

nag opt sparse convex qp is intended to solve large-scale linear and quadratic programming
problems in which the constraint matrix A is sparse (i.e., when the number of zero elements is
sufficiently large that it is worthwhile using algorithms which avoid computations and storage
involving zero elements). nag opt sparse convex qp also takes advantage of sparsity in c. (Sparsity
in H can be exploited in the function that computes Hx.) For problems in which A can be treated
as a dense matrix, it is usually more efficient to use nag opt lp (e04mfc), nag opt lin lsq (e04ncc)
or nag opt qp (e04nfc).

If H is positive-definite, then the final x will be unique. If nag opt sparse convex qp detects that
H is indefinite, it terminates immediately with an error condition (see Section 9). In that case, it
may be more appropriate to call nag opt nlp sparse (e04ugc) instead. If H is the zero matrix, the
function will still solve the resulting LP problem; however, this can be accomplished more efficiently
by setting the parameter ncolh = 0 (see Section 4).
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The upper and lower bounds on the m elements of Ax are said to define the general constraints
of the problem. Internally, nag opt sparse convex qp converts the general constraints to equalities
by introducing a set of slack variables s, where s = (s1, s2, . . . , sm)T . For example, the linear
constraint 5 ≤ 2x1 +3x2 ≤ +∞ is replaced by 2x1 +3x2 − s1 = 0, together with the bounded slack
5 ≤ s1 ≤ +∞. The problem defined by (1) can therefore be re-written in the following equivalent
form:

minimize
x∈Rn,s∈Rm

f(x) subject to Ax− s = 0, l ≤
{
x
s

}
≤ u.

Since the slack variables s are subject to the same upper and lower bounds as the elements of Ax,
the bounds on Ax and x can simply be thought of as bounds on the combined vector (x, s). (In
order to indicate their special role in QP problems, the original variables x are sometimes known
as ‘column variables’, and the slack variables s are known as ‘row variables’.)

Each LP or QP problem is solved using an active-set method. This is an iterative procedure with
two phases: a feasibility phase, in which the sum of infeasibilities is minimized to find a feasible
point; and an optimality phase, in which f(x) is minimized by constructing a sequence of iterations
that lies within the feasible region.

A constraint is said to be active or binding at x if the associated element of either x or Ax is equal to
one of its upper or lower bounds. Since an active constraint in Ax has its associated slack variable
at a bound, the status of both simple and general upper and lower bounds can be conveniently
described in terms of the status of the variables (x, s). A variable is said to be nonbasic if it is
temporarily fixed at its upper or lower bound. It follows that regarding a general constraint as
being active is equivalent to thinking of its associated slack as being nonbasic.

At each iteration of an active-set method, the constraints Ax−s = 0 are (conceptually) partitioned
into the form

BxB + SxS +NxN = 0,

where xN consists of the nonbasic elements of (x, s) and the basis matrix B is square and non-
singular. The elements of xB and xS are called the basic and superbasic variables respectively; with
xN they are a permutation of the elements of x and s. At a QP solution, the basic and superbasic
variables will lie somewhere between their upper or lower bounds, while the nonbasic variables
will be equal to one of their bounds. At each iteration, xS is regarded as a set of independent
variables that are free to move in any desired direction, namely one that will improve the value of
the objective function (or sum of infeasibilities). The basic variables are then adjusted in order to
ensure that (x, s) continues to satisfy Ax − s = 0. The number of superbasic variables (nS say)
therefore indicates the number of degrees of freedom remaining after the constraints have been
satisfied. In broad terms, nS is a measure of how nonlinear the problem is. In particular, nS will
always be zero for FP and LP problems.

If it appears that no improvement can be made with the current definition of B, S and N , a
nonbasic variable is selected to be added to S, and the process is repeated with the value of nS

increased by one. At all stages, if a basic or superbasic variable encounters one of its bounds, the
variable is made nonbasic and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax − s = 0 is a dual variable πi. Similarly,
each variable in (x, s) has an associated reduced gradient dj (also known as a reduced cost). The
reduced gradients for the variables x are the quantities g−ATπ, where g is the gradient of the QP
objective function; and the reduced gradients for the slack variables s are the dual variables π. The
QP subproblem is optimal if dj ≥ 0 for all nonbasic variables at their lower bounds, dj ≤ 0 for all
nonbasic variables at their upper bounds and dj = 0 for all superbasic variables. In practice, an
approximate QP solution is found by slightly relaxing these conditions on dj (see the description of
the optional parameter optim tol in Section 8.2).

The process of computing and comparing reduced gradients is known as pricing (a term first
introduced in the context of the simplex method for linear programming). To ‘price’ a nonbasic
variable xj means that the reduced gradient dj associated with the relevant active upper or lower
bound on xj is computed via the formula dj = gj−aTπ, where aj is the jth column of (A −I). (The
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variable selected by such a process and the corresponding value of dj (i.e., its reduced gradient) are
the quantities +S and dj in the detailed printed output from nag opt sparse convex qp; see Section
8.3.) If A has significantly more columns than rows (i.e., n � m), pricing can be computationally
expensive. In this case, a strategy known as partial pricing can be used to compute and compare
only a subset of the dj ’s.

nag opt sparse convex qp is based on SQOPT, which is part of the SNOPT package described
in Gill et al (1996), which in turn utilizes routines from the MINOS package (see Murtagh and
Saunders (1995)). It uses stable numerical methods throughout and includes a reliable basis package
(for maintaining sparse LU factors of the basis matrix B), a practical anti-degeneracy procedure,
efficient handling of linear constraints and bounds on the variables (by an active-set strategy), as
well as automatic scaling of the constraints. Further details can be found in Section 7.

4. Parameters

n
Input: n, the number of variables (excluding slacks). This is the number of columns in the
linear constraint matrix A.
Constraint: n ≥ 1.

m
Input: m, the number of general linear constraints (or slacks). This is the number of rows in
A, including the free row (if any; see parameter iobj below).
Constraint: m ≥ 1.

nnz
Input: the number of non-zero elements in A.
Constraint: 1 ≤ nnz ≤ n × m.

iobj
Input: if iobj > 0, row iobj of A is a free row containing the non-zero elements of the vector c
appearing in the linear objective term cTx. If iobj = 0, there is no free row – i.e., the problem
is either an FP problem (in which case iobj must be set to zero), or a QP problem with c =
0.
Constraint: 0 ≤ iobj ≤ m.

ncolh
Input: nH , the number of leading non-zero columns of the Hessian matrix H. For FP and
LP problems, ncolh must be set to zero.
Constraint: 0 ≤ ncolh ≤ n.

qphx
qphx must be supplied for QP problems to compute the matrix product Hx. If H has zero
rows and columns, it is most efficient to order the variables x = (y z)T so that

Hx =
(
H1 0
0 0

) (
y
z

)
=

(
H1y
0

)
,

where the nonlinear variables y appear first as shown. For FP and LP problems, qphx will
never be called and the NAG defined null function pointer, NULLFN, can be supplied in the
call to nag opt sparse convex qp.

[NP3491/6] 3.e04nkc.3



nag opt sparse convex qp NAG C Library Manual

The specification for qphx is:

void qphx(Integer ncolh, double x[], double hx[], Nag_Comm *comm)

ncolh
Input: the number of leading non-zero columns of the Hessian matrix H, as
supplied to nag opt sparse convex qp.

x[ncolh]
Input: the first ncolh elements of x.

hx[ncolh]
Output: the product Hx.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
qphx.

first – Boolean
Input: will be set to TRUE on the first call to qphx and FALSE for all
subsequent calls.

nf – Integer
Input: the number of evaluations of the objective function; this value will
be equal to the number of calls made to qphx including the current one.

user – double ∗
iuser – Integer ∗
p – Pointer

The type Pointer is void *.
Before calling nag opt sparse convex qp these pointers may be allocated
memory by the user and initialized with various quantities for use by qphx
when called from nag opt sparse convex qp.

Note: qphx should be tested separately before being used in conjunction with
nag opt sparse convex qp. The array x must not be changed by qphx.

a[nnz]
Input: the non-zero elements of A, ordered by increasing column index. Note that elements
with the same row and column indices are not allowed. The row and column indices are
specified by parameters ha and ka (see below).

ha[nnz]
Input: ha[i] must contain the row index of the non-zero element stored in a[i], for i =
0, 1, . . . ,nnz−1. Note that the row indices for a column may be supplied in any order.
Constraint: 1 ≤ ha[i] ≤ m, for i = 0, 1, . . . ,nnz−1.

ka[n+1]
Input: ka[j− 1] must contain the index in a of the start of the jth column, for j = 1, 2, . . . ,n.
To specify the jth column as empty, set ka[j−1] = ka[j]. Note that the first and last elements
of ka must be such that ka[0] = 0 and ka[n] = nnz.
Constraints:

ka[0] = 0,

ka[j − 1] ≥ 0 for j = 2, 3, . . . ,n,

ka[n] = nnz,

0 ≤ ka[j] − ka[j − 1] ≤ m, for j = 1, 2, . . . ,n.

bl[n+m]
bu[n+m]

Input: bl must contain the lower bounds and bu the upper bounds, for all the constraints
in the following order. The first n elements of each array must contain the bounds on the
variables, and the next m elements the bounds for the general linear constraints Ax and
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the free row (if any). To specify a non-existent lower bound (i.e., lj = −∞), set bl[j − 1]
≤ −inf bound, and to specify a non-existent upper bound (i.e., uj = +∞), set bu[j − 1] ≥
inf bound, where inf bound is one of the optional parameters (default value 1020, see Section
8.2). To specify the jth constraint as an equality, set bl[j − 1] = bu[j − 1] = β, say, where
|β| < inf bound. Note that, for LP and QP problems, the lower bound corresponding to the
free row must be set to −∞ and stored in bl[n+iobj−1]; similarly, the upper bound must be
set to +∞ and stored in bu[n+iobj−1].
Constraints:

bl[j] ≤ bu[j], for j = 0, 1, . . . ,n+m−1,
|β| < inf bound when bl[j] = bu[j] = β,

bl[n+iobj−1] ≤ −inf bound and bu[n+iobj−1] ≥ inf bound, when iobj > 0.

xs[n+m]
Input: xs[j − 1], for j = 1, 2, . . . ,n must contain the initial values of the variables, x. In
addition, if a ‘warm start’ is specified by means of the optional parameter start (see Section
8.2) the elements xs[n+i−1], for i = 1, 2, . . . ,m must contain the initial values of the slack
variables, s.
Output: the final values of the variables and slacks (x, s).

ninf
Output: the number of infeasibilities. This will be zero if an optimal solution
is found, i.e., if nag opt sparse convex qp exits with fail.code = NE NOERROR or
NW SOLN NOT UNIQUE.

sinf
Output: the sum of infeasibilities. This will be zero if ninf = 0. (Note that
nag opt sparse convex qp does not attempt to compute the minimum value of sinf in the
event that the problem is determined to be infeasible, i.e., when nag opt sparse convex qp
exits with fail.code = NW NOT FEASIBLE.)

obj
Output: the value of the objective function. If ninf = 0, obj includes the quadratic objective
term 1

2x
THx (if any). If ninf > 0, obj is just the linear objective term cTx (if any). For FP

problems, obj is set to zero.

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters for nag opt sparse convex qp. These structure members offer the means of
adjusting some of the parameter values of the algorithm and on output will supply further
details of the results. A description of the members of options is given below in Section 8.
Some of the results returned in options can be used by nag opt sparse convex qp to perform
a ‘warm start’ (see the member start in Section 8.2).

The options structure also allows names to be assigned to the columns and rows
(i.e., the variables and constraints) of the problem, which are then used in solution
output. In particular, if the problem data is defined by an MPSX file, the function
nag opt sparse mps read (e04mzc) may be used to read the file, and to store the column
and row names in options for use by nag opt sparse convex qp.

If any of these optional parameters are required then the structure options should be
declared and initialized by a call to nag opt init (e04xxc) and supplied as an argument to
nag opt sparse convex qp. However, if the optional parameters are not required the NAG
defined null pointer, E04 DEFAULT, can be used in the function call.

comm
Input/Output: structure containing pointers for communication to the user-supplied function,
qphx, and the optional user-defined printing function; see the description of qphx and Section
8.3.1 for details. If the user does not need to make use of this communication feature the null
pointer NAGCOMM NULL may be used in the call to nag opt sparse convex qp; comm will then
be declared internally for use in calls to user-supplied functions.
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fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialize fail and set fail.print = TRUE for this
function.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be
controlled by the user with the structure member options.print level (see Section 8.2). The default
print level of Nag Soln Iter provides a single line of output at each iteration and the final result.
This section describes the default printout produced by nag opt sparse convex qp.

The following line of summary output (< 80 characters) is produced at every iteration. In all cases,
the values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction.

Ninf is the number of violated constraints (infeasibilities). This will be zero during
the optimality phase.

Sinf/Objective is the current value of the objective function. If x is not feasible, Sinf gives
the sum of magnitudes of constraint violations. If x is feasible, Objective is
the value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value
of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities
will not increase until either a feasible point is found, or the optimality of the
multipliers implies that no feasible point exists.

Norm rg is ‖dS‖, the Euclidean norm of the reduced gradient (see Section 7.3). During
the optimality phase, this norm will be approximately zero after a unit step. For
FP and LP problems, Norm rg is not printed.

The final printout includes a listing of the status of every variable and constraint. The following
describes the printout for each variable.

Variable gives the name of variable j, for j = 1, 2, . . . ,n. If an options structure is supplied
to nag opt sparse convex qp, and the crnames member is assigned to an array
of column and row names (see Section 8.2 for details), the name supplied in
crnames[j − 1] is assigned to the jth variable. Otherwise, a default name is
assigned to the variable.

State gives the state of the variable (LL if nonbasic on its lower bound, UL if nonbasic
on its upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between
its bounds, BS if basic and SBS if superbasic).

A key is sometimes printed before State to give some additional information
about the state of a variable. Note that unless the optional parameter scale =
Nag No Scale (default value is Nag ExtraScale; see Section 8.2) is specified, the
tests for assigning a key are applied to the variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value of
the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one
of them could encounter a bound immediately. In either case, the values of
the Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.
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I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional parameter ftol (default
value = max(10−6,

√
ε), where ε is the machine precision; see Section

8.2).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value
of the reduced gradient for the variable exceeds the value of the optional
parameter optim tol (default value = max(10−6,

√
ε); see Section 8.2), the

solution would not be declared optimal because the reduced gradient for the
variable would not be considered negligible.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for variable j. (None indicates that
bl[j − 1] ≤ −inf bound, where inf bound is the optional parameter.)

Upper Bound is the upper bound specified for variable j. (None indicates that
bu[j − 1] ≥ inf bound.)

Lagr Mult is the value of the Lagrange multiplier for the associated bound. This will be
zero if State is FR. If x is optimal, the multiplier should be non-negative if State
is LL, non-positive if State is UL, and zero if State is BS or SBS.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl[j − 1] and bu[j − 1]. A blank entry indicates that the associated variable is
not bounded (i.e., bl[j − 1] ≤ −inf bound and bu[j − 1] ≥ inf bound).

The meaning of the printout for general constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, n replaced by m, crnames[j − 1] replaced by
crnames[n+j−1], bl[j − 1] and bu[j − 1] replaced by bl[n+j−1] and bu[n+j−1] respectively, and
with the following change in the heading:

Constrnt gives the name of the linear constraint.

Note that the movement off a constraint (as opposed to a variable moving away from its bound)
can be interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate
to this precision.

5. Comments

A list of possible error exits and warnings from nag opt sparse convex qp is given in Section 9. The
accuracy of nag opt sparse convex qp is considered in Section 10.

6. Example 1

To minimize the quadratic function f(x) = cTx+ 1
2x

THx, where

c = (−200, −2000, −2000, −2000, −2000, 400, 400)T

H =




2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 2
0 0 0 0 0 2 2




subject to the bounds
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0 ≤ x1 ≤ 200
0 ≤ x2 ≤ 2500

400 ≤ x3 ≤ 800
100 ≤ x4 ≤ 700
0 ≤ x5 ≤ 1500
0 ≤ x6

0 ≤ x7

and the general constraints

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 2000
0.15x1 + 0.04x2 + 0.02x3 + 0.04x4 + 0.02x5 + 0.01x6 + 0.03x7 ≤ 60
0.03x1 + 0.05x2 + 0.08x3 + 0.02x4 + 0.06x5 + 0.01x6 ≤ 100
0.02x1 + 0.04x2 + 0.01x3 + 0.02x4 + 0.02x5 ≤ 40
0.02x1 + 0.03x2 + 0.01x5 ≤ 30

1500 ≤ 0.70x1 + 0.75x2 + 0.80x3 + 0.75x4 + 0.80x5 + 0.97x6

250 ≤ 0.02x1 + 0.06x2 + 0.08x3 + 0.12x4 + 0.02x5 + 0.01x6 + 0.97x7 ≤ 300

The initial point, which is infeasible, is

x0 = (0, 0, 0, 0, 0, 0, 0)T .

The optimal solution (to five figures) is

x∗ = (0.0, 349.40, 648.85, 172.85, 407.52, 271.36, 150.02)T .

One bound constraint and four linear constraints are active at the solution. Note that the Hessian
matrix H is positive semi-definite.

This example shows the simple use of nag opt sparse convex qp where default values are used for
all optional parameters. An example showing the use of optional parameters is given in Section
13. There is one example program file, the main program of which calls both examples. The main
program and Example 1 are given below.

The function to calculate Hx (qphx in the parameter list; see Section 4) is qphess1 for this example.

6.1. Program Text

/* nag_opt_sparse_convex_qp(e04nkc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
* Mark 6 revised, 2000.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage04.h>

static void qphess1(Integer ncolh, double x[], double hx[], Nag_Comm *comm);
static void qphess2(Integer ncolh, double x[], double hx[], Nag_Comm *comm);

static void ex1(void);
static void ex2(void);

main()
{

/* Two examples are called: ex1() uses the
* default settings to solve a problem while
* ex2() solves another problem with some
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* of the optional parameters set by the user.
*/
Vprintf("e04nkc Example Program Results.\n");
ex1();
ex2();
exit(EXIT_SUCCESS);

}

static void ex1(void)
{
#define MAXN 10
#define MAXM 10
#define MAXBND MAXN+MAXM
#define MAXNNZ 50

double a[MAXNNZ], bl[MAXBND], bu[MAXBND];
double x[MAXBND];
double sinf, obj;
Integer i, icol, j, jcol;
Integer iobj, ncolh;
Integer m, n, nbnd, nnz;
Integer ninf;
Integer ha[MAXNNZ], ka[MAXN+1];
static NagError fail;

Vprintf("\nExample 1: default options used.\n");
Vscanf(" %*[^\n]"); /* Skip headings in data file */
Vscanf(" %*[^\n]");

fail.print = TRUE;

/* Read the problem dimensions */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld", &n, &m);

/* Read nnz, iobj, ncolh */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%ld", &nnz, &iobj, &ncolh);

/* Read the matrix and set up ka */
jcol = 1;
ka[jcol-1] = 0;
Vscanf(" %*[^\n]");
for (i = 0; i < nnz; ++i)
{
/* a[i] stores the (ha[i], icol) element of matrix */
Vscanf("%lf%ld%ld", &a[i], &ha[i], &icol);

/* Check whether we have started a new column */
if (icol == jcol+1)
{

ka[icol-1] = i; /* Start of icol-th column in a */
jcol = icol;

}
else if (icol > jcol+1)
{

/* Index in a of the start of the icol-th column
* equals i, but columns jcol+1, jcol+2, ...,
* icol-1 are empty. Set the corresponding elements
* of ka to i.
*/
for (j = jcol+1; j < icol; ++j)
ka[j-1] = i;

ka[icol-1] = i;
jcol = icol;

}
}

ka[n] = nnz;
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/* If the last columns are empty, set ka accordingly */
if (n>icol)
{
for (j = icol; j<=n - 1; ++j)
ka[j]=nnz;

}

/* Read the bounds */
nbnd = n+m;
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < nbnd; ++i)
Vscanf("%lf", &bl[i]);

Vscanf(" %*[^\n]");
for (i = 0; i < nbnd; ++i)
Vscanf("%lf", &bu[i]);

/* Read the initial estimate of x */
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < n; ++i)
Vscanf("%lf", &x[i]);

/* Solve the problem */
e04nkc(n, m, nnz, iobj, ncolh, qphess1, a, ha, ka, bl, bu,

x, &ninf, &sinf, &obj, E04_DEFAULT, NAGCOMM_NULL, &fail);

if (fail.code != NE_NOERROR)
exit(EXIT_FAILURE);

} /* ex1 */

static void qphess1(Integer ncolh, double x[], double hx[], Nag_Comm *comm)
{

/* Function to compute H*x. */
hx[0] = 2.0*x[0]; /* 2.0 0.0 0.0 0.0 0.0 0.0 0.0 */
hx[1] = 2.0*x[1]; /* 0.0 2.0 0.0 0.0 0.0 0.0 0.0 */
hx[2] = 2.0*(x[2] + x[3]); /* 0.0 0.0 2.0 2.0 0.0 0.0 0.0 */
hx[3] = hx[2]; /* 0.0 0.0 2.0 2.0 0.0 0.0 0.0 */
hx[4] = 2.0*x[4]; /* 0.0 0.0 0.0 0.0 2.0 0.0 0.0 */
hx[5] = 2.0*(x[5] + x[6]); /* 0.0 0.0 0.0 0.0 0.0 2.0 2.0 */
hx[6] = hx[5]; /* 0.0 0.0 0.0 0.0 0.0 2.0 2.0 */

} /* qphess1 */

6.2. Program Data

e04nkc Example Program Data

Data for example 1.

Values of n and m
7 8

Values of nnz, iobj and ncolh
48 8 7

Matrix nonzeros: value, row index, column index
0.02 7 1
0.02 5 1
0.03 3 1
1.00 1 1
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
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1.00 1 2
-2000.00 8 2

0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
0.04 2 4

-2000.00 8 4
0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7

Lower bounds
0.0 0.0 4.0e+02 1.0e+02 0.0 0.0 0.0 2.0e+03
-1.0e+25 -1.0e+25 -1.0e+25 -1.0e+25 1.5e+03 2.5e+02 -1.0e+25

Upper bounds
2.0e+02 2.5e+03 8.0e+02 7.0e+02 1.5e+03 1.0e+25 1.0e+25 2.0e+03
6.0e+01 1.0e+02 4.0e+01 3.0e+01 1.0e+25 3.0e+02 1.0e+25

Initial estimate of x
0.0 0.0 0.0 0.0 0.0 0.0 0.1

6.3. Program Results

e04nkc Example Program Results.

Example 1: default options used.

Parameters to e04nkc
--------------------

Problem type............ sparse QP Number of variables..... 7
Linear constraints...... 8 Hessian columns......... 7

prob_name...............
obj_name................ rhs_name................
range_name.............. bnd_name................
crnames.............. not supplied

minimize................ TRUE start................... Nag_Cold
ftol.................... 1.00e-06 reset_ftol.............. 10000
fcheck.................. 60 factor_freq............. 100
scale.............. Nag_ExtraScale scale_tol............... 9.00e-01
optim_tol............... 1.00e-06 max_iter................ 75
crash.............. Nag_CrashTwice crash_tol............... 1.00e-01
partial_price........... 10 pivot_tol............... 2.04e-11
max_sb.................. 7
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inf_bound............... 1.00e+20 inf_step................ 1.00e+20
lu_factor_tol........... 1.00e+02 lu_update_tol........... 1.00e+01
lu_sing_tol............. 2.04e-11 machine precision....... 1.11e-16
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag lambda.................. Nag

Itn Step Ninf Sinf/Objective Norm rg
Itn 0 -- Infeasible

0 0.0e+00 1 1.152802e+03 0.0e+00
1 4.3e+02 0 0.000000e+00 0.0e+00

Itn 1 -- Feasible point found (for 1 equality constraints).
1 0.0e+00 0 0.000000e+00 0.0e+00
1 0.0e+00 0 1.460000e+06 0.0e+00

Itn 1 -- Feasible QP solution.
2 8.7e-02 0 9.409959e+05 0.0e+00
3 5.3e-01 0 -1.056552e+06 0.0e+00
4 1.0e+00 0 -1.462190e+06 2.3e-12
5 1.0e+00 0 -1.698092e+06 2.2e-12
6 4.6e-02 0 -1.764906e+06 7.0e+02
7 1.0e+00 0 -1.811946e+06 2.8e-12
8 1.7e-02 0 -1.847325e+06 1.7e+02
9 1.0e+00 0 -1.847785e+06 7.0e-12

Variable State Value Lower Bound Upper Bound Lagr Mult Residual
X1...... LL 0.00000e+00 0.0000e+00 2.0000e+02 2.361e+03 0.000e+00
X2...... BS 3.49399e+02 0.0000e+00 2.5000e+03 -3.657e-12 3.494e+02
X3...... SBS 6.48853e+02 4.0000e+02 8.0000e+02 -5.924e-12 1.511e+02
X4...... SBS 1.72847e+02 1.0000e+02 7.0000e+02 1.949e-12 7.285e+01
X5...... BS 4.07521e+02 0.0000e+00 1.5000e+03 0.000e+00 4.075e+02
X6...... BS 2.71356e+02 0.0000e+00 None -3.280e-12 2.714e+02
X7...... BS 1.50023e+02 0.0000e+00 None -1.413e-12 1.500e+02

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual
R1...... EQ 2.00000e+03 2.0000e+03 2.0000e+03 -1.290e+04 0.000e+00
R2...... BS 4.92316e+01 None 6.0000e+01 0.000e+00 -1.077e+01
R3...... UL 1.00000e+02 None 1.0000e+02 -2.325e+03 0.000e+00
R4...... BS 3.20719e+01 None 4.0000e+01 0.000e+00 -7.928e+00
R5...... BS 1.45572e+01 None 3.0000e+01 0.000e+00 -1.544e+01
R6...... LL 1.50000e+03 1.5000e+03 None 1.445e+04 0.000e+00
R7...... LL 2.50000e+02 2.5000e+02 3.0000e+02 1.458e+04 0.000e+00
Free Row BS -2.98869e+06 None None -1.000e+00 -2.989e+06

Exit after 9 iterations.

Optimal QP solution found.

Final QP objective value = -1.8477847e+06

7. Further Description

This section gives a detailed description of the algorithm used in nag opt sparse convex qp. This,
and possibly the next section, Section 8, may be omitted if the more sophisticated features of the
algorithm and software are not currently of interest.

7.1. Overview

nag opt sparse convex qp is based on an inertia-controlling method that maintains a Cholesky
factorization of the reduced Hessian (see below). The method is similar to that of Gill and Murray
(1978), and is described in detail by Gill et al. (1991). Here we briefly summarize the main
features of the method. Where possible, explicit reference is made to the names of variables that
are parameters of the function or appear in the printed output.

The method used has two distinct phases: finding an initial feasible point by minimizing the sum
of infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the
feasible region (the optimality phase). The computations in both phases are performed by the same
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code. The two-phase nature of the algorithm is reflected by changing the function being minimized
from the sum of infeasibilities (the quantity Sinf described in Section 4.1) to the quadratic objective
function (the quantity Objective, see Section 4.1).

In general, an iterative process is required to solve a quadratic program. Given an iterate (x, s) in
both the original variables x and the slack variables s, a new iterate (x̄, s̄) is defined by

(
x̄
s̄

)
=

(
x
s

)
+ αp, (2)

where the step length α is a non-negative scalar (the printed quantity Step, see Section 4.1), and
p is called the search direction. (For simplicity, we shall consider a typical iteration and avoid
reference to the index of the iteration.) Once an iterate is feasible (i.e., satisfies the constraints),
all subsequent iterates remain feasible.

7.2. Definition of the Working Set and Search Direction

At each iterate (x, s), a working set of constraints is defined to be a linearly independent subset of
the constraints that are satisfied ‘exactly’ (to within the value of the optional parameter ftol; see
Section 8.2). The working set is the current prediction of the constraints that hold with equality at
a solution of the LP or QP problem. Let mW denote the number of constraints in the working set
(including bounds), and let W denote the associated mW by (n+m) working set matrix consisting
of the mW gradients of the working set constraints.

The search direction is defined so that constraints in the working set remain unaltered for any value
of the step length. It follows that p must satisfy the identity

Wp = 0. (3)

This characterization allows p to be computed using any n by nZ full-rank matrix Z that spans
the null space of W . (Thus, nZ = n−mW and WZ = 0.) The null space matrix Z is defined from
a sparse LU factorization of part of W (see (6) and (7) below). The direction p will satisfy (3) if

p = ZpZ , (4)

where pZ is any nZ-vector.

The working set contains the constraints Ax− s = 0 and a subset of the upper and lower bounds
on the variables (x, s). Since the gradient of a bound constraint xj ≥ lj or xj ≤ uj is a vector of
all zeros except for ±1 in position j, it follows that the working set matrix contains the rows of
(A − I) and the unit rows associated with the upper and lower bounds in the working set.

The working set matrix W can be represented in terms of a certain column partition of the matrix
(A − I). As in Section 3 we partition the constraints Ax− s = 0 so that

BxB + SxS +NxN = 0, (5)

where B is a square non-singular basis and xB, xS and xN are the basic, superbasic and nonbasic
variables respectively. The nonbasic variables are equal to their upper or lower bounds at (x, s),
and the superbasic variables are independent variables that are chosen to improve the value of
the current objective function. The number of superbasic variables is nS (the quantity Ns in the
detailed printed output; see Section 8.3). Given values of xN and xS , the basic variables xB are
adjusted so that (x, s) satisfies (5).

If P is a permutation matrix such that (A − I)P = (B S N), then the working set matrix W
satisfies

WP =
(
B S N
0 0 IN

)
, (6)

where IN is the identity matrix with the same number of columns as N .

The null space matrix Z is defined from a sparse LU factorization of part of W . In particular,
Z is maintained in ‘reduced gradient’ form, using the LUSOL package (see Gill et al. (1987)) to
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maintain sparse LU factors of the basis matrix B that alters as the working set W changes. Given
the permutation P , the null space basis is given by

Z = P


−B−1S

I
0


 . (7)

This matrix is used only as an operator, i.e., it is never computed explicitly. Products of the form
Zv and ZT g are obtained by solving with B or BT . This choice of Z implies that nZ , the number
of ‘degrees of freedom’ at (x, s), is the same as nS , the number of superbasic variables.

Let gZ and HZ denote the reduced gradient and reduced Hessian of the objective function:

gZ = ZT g and HZ = ZTHZ, (8)

where g is the objective gradient at (x, s). Roughly speaking, gZ and HZ describe the first and
second derivatives of an nS-dimensional unconstrained problem for the calculation of pZ . (The
condition estimator of HZ is the quantity Cond Hz in the detailed printed output; see Section 8.3.)

At each iteration, an upper triangular factor R is available such that HZ = RTR. Normally, R is
computed from RTR = ZTHZ at the start of the optimality phase and then updated as the QP
working set changes. For efficiency, the dimension of R should not be excessive (say, nS ≤ 1000).
This is guaranteed if the number of nonlinear variables is ‘moderate’.

If the QP problem contains linear variables, H is positive semi-definite and R may be singular with
at least one zero diagonal element. However, an inertia-controlling strategy is used to ensure that
only the last diagonal element of R can be zero. (See Gill et al. (1991) for a discussion of a similar
strategy for indefinite quadratic programming.)

If the initial R is singular, enough variables are fixed at their current value to give a non-singular
R. This is equivalent to including temporary bound constraints in the working set. Thereafter,
R can become singular only when a constraint is deleted from the working set (in which case no
further constraints are deleted until R becomes non-singular).

7.3. The Main Iteration

If the reduced gradient is zero, (x, s) is a constrained stationary point on the working set. During
the feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may
be zero elsewhere in the presence of constraint dependencies). During the optimality phase, a zero
reduced gradient implies that x minimizes the quadratic objective function when the constraints in
the working set are treated as equalities. At a constrained stationary point, Lagrange multipliers
λ are defined from the equations

WTλ = g(x). (9)

A Lagrange multiplier λj corresponding to an inequality constraint in the working set is said to
be optimal if λj ≤ σ when the associated constraint is at its upper bound, or if λj ≥ −σ when
the associated constraint is at its lower bound, where σ depends on the value of the optional
parameter optim tol (see Section 8.2). If a multiplier is non-optimal, the objective function (either
the true objective or the sum of infeasibilities) can be reduced by continuing the minimization with
the corresponding constraint excluded from the working set. (This step is sometimes referred to
as ‘deleting’ a constraint from the working set.) If optimal multipliers occur during the feasibility
phase but the sum of infeasibilities is non-zero, there is no feasible point and the function terminates
immediately with fail.code = NW NOT FEASIBLE (see Section 9).

The special form (6) of the working set allows the multiplier vector λ, the solution of (9), to be
written in terms of the vector

d =
(
g
0

)
− (A − I)Tπ =

(
g −ATπ

π

)
, (10)

where π satisfies the equations BTπ = gB , and gB denotes the basic elements of g. The elements of
π are the Lagrange multipliers λj associated with the equality constraints Ax− s = 0. The vector
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dN of nonbasic elements of d consists of the Lagrange multipliers λj associated with the upper and
lower bound constraints in the working set. The vector dS of superbasic elements of d is the reduced
gradient gZ in (8). The vector dB of basic elements of d is zero, by construction. (The Euclidean
norm of dS and the final values of dS , g and π are the quantities Norm rg, Reduced Gradnt, Obj
Gradient and Dual Activity in the detailed printed output; see Section 8.3.)

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the search
direction is given by p = ZpZ (see (7) and (11)). The step length is chosen to maintain feasibility
with respect to the satisfied constraints.

There are two possible choices for pZ , depending on whether or not HZ is singular. If HZ is
non-singular, R is non-singular and pZ in (4) is computed from the equations

RTRpZ = −gZ , (11)

where gZ is the reduced gradient at x. In this case, (x, s) + p is the minimizer of the objective
function subject to the working set constraints being treated as equalities. If (x, s) + p is feasible,
α is defined to be unity. In this case, the reduced gradient at (x̄, s̄) will be zero, and Lagrange
multipliers are computed at the next iteration. Otherwise, α is set to αM, the step to the ‘nearest’
constraint along p. This constraint is added to the working set at the next iteration.

If HZ is singular, then R must also be singular, and an inertia-controlling strategy is used to ensure
that only the last diagonal element of R is zero. (See Gill et al. (1991) for a discussion of a similar
strategy for indefinite quadratic programming.) In this case, pZ satisfies

pT
ZHZpZ = 0 and gT

ZpZ ≤ 0, (12)

which allows the objective function to be reduced by any step of the form (x, s)+αp, where α > 0.
The vector p = ZpZ is a direction of unbounded descent for the QP problem in the sense that the
QP objective is linear and decreases without bound along p. If no finite step of the form (x, s)+αp
(where α > 0) reaches a constraint not in the working set, the QP problem is unbounded and the
function terminates immediately with fail.code = NE UNBOUNDED (see Section 9). Otherwise,
α is defined as the maximum feasible step along p and a constraint active at (x, s) + αp is added
to the working set for the next iteration.

7.4. Miscellaneous

If the basis matrix is not chosen carefully, the condition of the null space matrix Z in (7) could be
arbitrarily high. To guard against this, the function implements a ‘basis repair’ feature in which
the LUSOL package (see Gill et al. (1987)) is used to compute the rectangular factorization

(B S)T = LU, (13)

returning just the permutation P that makes PLPT unit lower triangular. The pivot tolerance
is set to require |PLPT |ij ≤ 2, and the permutation is used to define P in (6). It can be shown
that ‖Z‖ is likely to be little more than unity. Hence, Z should be well conditioned regardless of
the condition of W . This feature is applied at the beginning of the optimality phase if a potential
B − S ordering is known.

The EXPAND procedure (see Gill et al. (1989)) is used to reduce the possibility of cycling at a
point where the active constraints are nearly linearly dependent. Although there is no absolute
guarantee that cycling will not occur, the probability of cycling is extremely small (see Hall and
McKinnon (1996)). The main feature of EXPAND is that the feasibility tolerance is increased at
the start of every iteration. This allows a positive step to be taken at every iteration, perhaps at
the expense of violating the bounds on (x, s) by a small amount.

Suppose that the value of the optional parameter ftol (see Section 8.2) is δ. Over a period of K
iterations (where K is the value of the optional parameter reset ftol; see Section 8.2), the feasibility
tolerance actually used by nag opt sparse convex qp (i.e., the working feasibility tolerance) increases
from 0.5δ to δ (in steps of 0.5δ/K).

At certain stages the following ‘resetting procedure’ is used to remove small constraint infeasibilities.
First, all nonbasic variables are moved exactly onto their bounds. A count is kept of the number of
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non-trivial adjustments made. If the count is non-zero, the basic variables are recomputed. Finally,
the working feasibility tolerance is reinitialized to 0.5δ.

If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle
of iterations is started. (The decision to resume the feasibility phase or optimality phase is based
on comparing any constraint infeasibilites with δ.)

The resetting procedure is also invoked when nag opt sparse convex qp reaches an apparently
optimal, infeasible or unbounded solution, unless this situation has already occurred twice. If
any non-trivial adjustments are made, iterations are continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration, but also
provides a potential choice of constraints to be added to the working set. All constraints at a
distance α (where α ≤ αM) along p from the current point are then viewed as acceptable candidates
for inclusion in the working set. The constraint whose normal makes the largest angle with the
search direction is added to the working set. This strategy helps keep the basis matrix B well
conditioned.

8. Optional Parameters

A number of optional input and output parameters to nag opt sparse convex qp are available
through the structure argument options, type Nag E04 Opt. A parameter may be selected by
assigning an appropriate value to the relevant structure member; those parameters not selected
will be assigned default values. If no use is to be made of any of the optional parameters the
user should use the NAG defined null pointer, E04 DEFAULT, in place of options when calling
nag opt sparse convex qp; the default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function
nag opt init (e04xxc). Values may then be assigned to the structure members in the normal C
manner.

Option settings may also be read from a text file using the function nag opt read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, then this
must be done directly in the calling program; they cannot be assigned using nag opt read (e04xyc).

8.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag opt sparse convex qp together with their default values where relevant. The number ε is a
generic notation for machine precision (see nag machine precision (X02AJC)).

Nag Start start Nag Cold
Boolean list TRUE
Nag PrintType print level Nag Soln Iter
char outfile[80] stdout
void (*print fun)() NULL
char prob name[9] ’\0’
char obj name[9] ’\0’
char rhs name[9] ’\0’
char range name[9] ’\0’
char bnd name[9] ’\0’
char **crnames NULL
Boolean minimize TRUE
Integer max iter max(50,5(n+m))
Nag CrashType crash Nag CrashTwice
double crash tol 0.1
Nag ScaleType scale Nag ExtraScale
double scale tol 0.9
double optim tol max(10−6,

√
ε)

double ftol max(10−6,
√
ε)
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Integer reset ftol 10000
Integer fcheck 60
Integer factor freq 100
Integer partial price 10
double pivot tol ε0.67

double lu factor tol 100.0
double lu update tol 10.0
double lu sing tol ε0.67

Integer max sb min(ncolh+1,n)
double inf bound 1020

double inf step max(inf bound,1020)
Integer *state size n+m
double *lambda size n+m
Integer nsb
Integer iter
Integer nf

8.2. Description of Optional Parameters

start – Nag Start Default = Nag Cold

Input: specifies how the initial working set is to be chosen.
If start = Nag Cold, an internal Crash procedure will be used to choose an initial basis matrix,
B.
If start = Nag Warm, the user must provide a valid definition of every array element
of the optional parameter state (see below), probably obtained from a previous call of
nag opt sparse convex qp, while, for QP problems, the optional parameter nsb (see below)
must retain its value from a previous call.
Constraint: options.start = Nag Cold or Nag Warm.

list – Boolean Default = TRUE

Input: if options.list = TRUE the parameter settings in the call to nag opt sparse convex qp
will be printed.

print level – Nag PrintType Default = Nag Soln Iter

Input: the level of results printout produced by nag opt sparse convex qp. The following
values are available.

Nag NoPrint No output.

Nag Soln The final solution.

Nag Iter One line of output for each iteration.

Nag Iter Long A longer line of output for each iteration with more information
(line exceeds 80 characters).

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Long The final solution and one long line of output for each iteration
(line exceeds 80 characters).

Nag Soln Iter Full As Nag Soln Iter Long with the matrix statistics (initial status
of rows and columns, number of elements, density, biggest and
smallest elements, etc.), factors resulting from the scaling procedure
(if options.scale = Nag RowColScale or Nag ExtraScale; see
below), basis factorization statistics and details of the initial basis
resulting from the Crash procedure (if options.start = Nag Cold).

Details of each level of results printout are described in Section 8.3.
Constraint: options.print level = Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter,
Nag Iter Long, Nag Soln Iter Long or Nag Soln Iter Full.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.
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print fun – pointer to function Default = NULL

Input: printing function defined by the user; the prototype of print fun is

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 8.3.1 below for further details.

prob name – char[9] Default: prob name[0] = ’\0’
obj name – char[9] Default: obj name[0] = ’\0’
rhs name – char[9] Default: rhs name[0] = ’\0’
range name – char[9] Default: range name[0] = ’\0’
bnd name – char[9] Default: bnd name[0] = ’\0’

Input: these options contain the names associated with the so-called MPSX form of the
problem. MPSX files may be read by calling nag opt sparse mps read (e04mzc) prior to
calling nag opt sparse convex qp. The parameters contain, respectively, the names of: the
problem; the objective (or free) row; the constraint right hand side; the ranges, and the
bounds. They are used in the detailed output when optional parameter print level =
Nag Soln Iter Full.

crnames – char ∗∗ Default = NULL

Input: if crnames is not NULL then it must point to an array of n+m character strings with
maximum string length 8, containing the names of the columns and rows (i.e., variables and
constraints) of the problem. Thus, crnames[j − 1] contains the name of the the jth column
(variable), j = 1, 2, . . . ,n, and crnames[n+i−1] contains the names of the ith row (constraint),
i = 1, 2, . . . ,m. If supplied, the names are used in the solution output (see Section 4.1 and
Section 8.3).

If a problem is defined by an MPSX file, it may be read by calling nag opt sparse mps read
(e04mzc) prior to calling nag opt sparse convex qp. In this case, nag opt sparse mps read
(e04mzc) may optionally be used to allocate memory to crnames and to read the column and
row names defined in the MPSX file into crnames. In this case, the memory freeing function
nag opt free (e04xzc) should be used to free the memory pointed to by crnames on return
from nag opt sparse convex qp. Users should not use the standard C function free() for this
purpose.

minimize – Boolean Default = TRUE

Input: minimize specifies the required direction of optimization. It applies to both linear and
nonlinear terms (if any) in the objective function. Note that if two problems are the same
except that one minimizes f(x) and the other maximizes −f(x), their solutions will be the
same but the signs of the dual variables πi and the reduced gradients dj (see Section 7.3) will
be reversed.

max iter – Integer Default = max(50,5(n+m))

Input: max iter specifies the maximum number of iterations allowed before termination.

If the user wishes to check that a call to nag opt sparse convex qp is correct before attempting
to solve the problem in full then max iter may be set to 0. No iterations will then be performed
but all initialization prior to the first iteration will be done and a listing of parameter settings
will be output, if optional parameter list = TRUE (the default setting).
Constraint: options.max iter ≥ 0.

crash – Nag Crash Type Default = Nag CrashTwice

This option does not apply when optional parameter start = Nag Warm.

Input: if start = Nag Cold, and internal Crash procedure is used to select an initial basis from
various rows and columns of the constraint matrix (A − I). The value of crash determines
which rows and columns are initially eligible for the basis, and how many times the Crash
procedure is called. If crash = Nag NoCrash, the all-slack basis B = −I is chosen. If crash
= Nag CrashOnce, the Crash procedure is called once (looking for a triangular basis in all
rows and columns of the linear constraint matrix A). If crash = Nag CrashTwice, the Crash
procedure is called twice (looking at any equality constraints first followed by any inequality
constraints).
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If crash = Nag CrashOnce or Nag CrashTwice, certain slacks on inequality rows are selected
for the basis first. (If crash = Nag CrashTwice, numerical values are used to exclude slacks
that are close to a bound.) The Crash procedure then makes several passes through the
columns of A, searching for a basis matrix that is essentially triangular. A column is assigned
to ‘pivot’ on a particular row if the column contains a suitably large element in a row that has
not yet been assigned. (The pivot elements ultimately form the diagonals of the triangular
basis.) For remaining unassigned rows, slack variables are inserted to complete the basis.
Constraint: crash = Nag NoCrash, Nag CrashOnce or Nag CrashTwice.

crash tol – double Default = 0.1
Input: crash tol allows the Crash procedure to ignore certain ‘small’ non-zero elements in the
constraint matrix A while searching for a triangular basis. For each column of A, if amax is
the largest element in the column, other non-zeros in that column are ignored if they are less
than (or equal to) amax × crash tol.
When crash tol > 0, the basis obtained by the Crash procedure may not be strictly triangular,
but it is likely to be non-singular and almost triangular. The intention is to obtain a starting
basis with more column variables and fewer (arbitrary) slacks. A feasible solution may be
reached earlier for some problems.
Constraint: 0.0 ≤ options.crash tol < 1.0.

scale – Nag ScaleType Default = Nag ExtraScale

Input: this option enables the scaling of the variables and constraints using an iterative
procedure due to Fourer (1982), which attempts to compute row scales ri and column scales
cj such that the scaled matrix coefficients āij = aij × (cj/ri) are as close as possible to unity.
This may improve the overall efficiency of the function on some problems. (The lower and
upper bounds on the variables and slacks for the scaled problem are redefined as l̄j = lj/cj
and ūj = uj/cj respectively, where cj ≡ rj−n if j > n.)
If scale = Nag NoScale, no scaling is performed. If scale = Nag RowColScale, all rows and
columns of the constraint matrix A are scaled. If scale = Nag ExtraScale, an additional
scaling is performed that may be helpful when the solution x is large; it takes into account
columns of (A − I) that are fixed or have positive lower bounds or negative upper bounds.
Constraint: options.scale = Nag NoScale, Nag RowColScale or Nag ExtraScale.

scale tol – double Default = 0.9
This option does not apply when optional parameter scale = Nag NoScale.
Input: scale tol is used to control the number of scaling passes to be made through the
constraint matrix A. At least 3 (and at most 10) passes will be made. More precisely, let
ap denote the largest column ratio (i.e.,

′biggest′ element
′smallest′ element in some sense) after the pth scaling

pass through A. The scaling procedure is terminated if ap ≥ ap−1 × scale tol for some p ≥
3. Thus, increasing the value of scale tol from 0.9 to 0.99 (say) will probably increase the
number of passes through A.
Constraint: 0.0 < options.scale tol < 1.0.

optim tol – double Default = max(10−6,
√
ε)

Input: optim tol is used to judge the size of the reduced gradients dj = gj − πTaj . By
definition, the reduced gradients for basic variables are always zero. Optimality is declared
if the reduced gradients for any nonbasic variables at their lower or upper bounds satisfy
−optim tol × max(1,|π|) ≤ dj ≤ optim tol × max(1,|π|), and if |dj | ≤ optim tol × max(1,|π|)
for any superbasic variables.
Constraint: options.optim tol ≥ ε.

ftol – double Default = max(10−6,
√
ε)

Input: ftol defines the maximum acceptable absolute violation in each constraint at a ‘feasible’
point (including slack variables). For example, if the variables and the coefficients in the linear
constraints are of order unity, and the latter are correct to about 6 decimal digits, it would
be appropriate to specify ftol as 10−6.
nag opt sparse convex qp attempts to find a feasible solution before optimizing the objective
function. If the sum of infeasibilities cannot be reduced to zero, the problem is assumed to
be infeasible. Let Sinf be the corresponding sum of infeasibilities. If Sinf is quite small,
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it may be appropriate to raise ftol by a factor of 10 or 100. Otherwise, some error in the
data should be suspected. Note that nag opt sparse convex qp does not attempt to find the
minimum value of Sinf.
If the constraints and variables have been scaled (see optional parameter scale above), then
feasibility is defined in terms if the scaled problem (since it is more likely to be meaningful).
Constraint: options.ftol ≥ ε.

reset ftol – Integer Default = 5
Input: this option is part of an anti-cycling procedure designed to guarantee progress even
on highly degenerate problems (see Section 7.4).
For LP problems, the strategy is to force a positive step at every iteration, at the expense
of violating the constraints by a small amount. Suppose that the value of the optional
parameter ftol is δ. Over a period of reset ftol iterations, the feasibility tolerance actually
used by nag opt sparse convex qp (i.e., the working feasibility tolerance) increases from 0.5δ
to δ (in steps of 0.5δ/reset ftol).
For QP problems, the same procedure is used for iterations in which there is only one
superbasic variable. (Cycling can only occur when the current solution is at a vertex of the
feasible region.) Thus, zero steps are allowed if there is more than one superbasic variable,
but otherwise positive steps are enforced.
Increasing the value of reset ftol helps reduce the number of slightly infeasible nonbasic basic
variables (most of which are eliminated during the resetting procedure). However, it also
diminishes the freedom to choose a large pivot element (see pivot tol below).
Constraint: 0 < options.reset ftol < 10000000.

fcheck – Integer Default = 60
Input: every fcheck-th iteration after the most recent basis factorization, a numerical test is
made to see if the current solution (x, s) satisfies the linear constraints Ax − s = 0. If the
largest element of the residual vector r = Ax− s is judged to be too large, the current basis
is refactorized and the basic variables recomputed to satisfy the constraints more accurately.
Constraint: options.fcheck ≥ 1.

factor freq – Integer Default = 100
Input: at most factor freq basis changes will occur between factorizations of the basis matrix.
For LP problems, the basis factors are usually updated at every iteration. For QP problems,
fewer basis updates will occur as the solution is apporached. The number of iterations between
basis factorizations will therefore increase. During these iterations a test is made regularly
according to the value of optional parameter fcheck to ensure that the linear constraints Ax−s
= 0 are satisfied. If necessary, the basis will be refactorized before the limit of factor freq
updates is reached.
Constraint: options.factor freq ≥ 1.

partial price – Integer Default = 10
This option does not apply to QP problems.
Input: this option is recommended for large FP or LP problems that have significantly more
variables than constraints (i.e., n � m). It reduces the work required for each pricing
operation (i.e., when a nonbasic variable is selected to enter the basis). If partial price = 1,
all columns of the constraint matrix (A − I) are searched. If partial price > 1, A and −I are
partitioned to give partial price roughly equal segments Aj ,Kj , for j = 1, 2, . . . , p (modulo
p). If the previous pricing search was successful on Aj−1,Kj−1, the next search begins on the
segments Aj ,Kj . If a reduced gradient is found that is larger than some dynamic tolerance,
the variable with the largest such reduced gradient (of appropriate sign) is selected to enter
the basis. If nothing is found, the search continues on the next segments Aj+1,Kj+1, and so
on.
Constraint: options.partial price ≥ 1.

pivot tol – double Default = ε0.67

Input: pivot tol is used to prevent columns entering the basis if they would cause the basis
to become almost singular.
Constraint: options.pivot tol > 0.0.
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lu factor tol – double Default = 100.0
lu update tol – double Default = 10.0

Input: lu factor tol and lu update tol affect the stability and sparsity of the basis factorization
B = LU , during refactorization and updates respectively. The lower triangular matrix L is a
product of matrices of the form

(
1
µ 1

)

where the multipliers µ will satisfy |µ| < lu factor tol during refactorization or |µ| <
lu update tol during update. The default values of lu factor tol and lu update tol usually
strike a good compromise between stability and sparsity. For large and relatively dense
problems, setting lu factor tol and lu update tol to 25 (say) may give a marked improvement
in sparsity without impairing stability to a serious degree. Note that for band matrices it
may be necessary to set lu factor tol in the range 1 ≤ lu factor tol < 2 in order to achieve
stability.
Constraints:

options.lu factor tol ≥ 1.0,

options.lu update tol ≥ 1.0.

lu sing tol – double Default = ε0.67

Input: lu sing tol defines the singularity tolerance used to guard against ill conditioned basis
matrices. Whenever the basis is refactorized, the diagonal elements of U are tested as follows.
If |ujj | ≤ lu sing tol or |ujj | < lu sing tol × max

i
|uij |, the jth column of the basis is replaced

by the corresponding slack variable.
Constraint: options.lu sing tol > 0.0.

max sb – Integer Default = min(ncolh+1,n)
This option does not apply to FP or LP problems.
Input: max sb places an upper bound on the number of variables which may enter the set
of superbasic variables (see Section 7.2). If the number of superbasics exceeds this bound
then nag opt sparse convex qp will terminate with fail.code = NE HESS TOO BIG. In effect,
max sb specifies ‘how nonlinear’ the QP problem is expected to be.
Constraint: options.max sb > 0.

inf bound – double Default = 1020

Input: inf bound defines the ‘infinite’ bound in the definition of the problem constraints. Any
upper bound greater than or equal to inf bound will be regarded as plus infinity (and similarly
any lower bound less than or equal to −inf bound will be regarded as minus infinity).
Constraint: options.inf bound > 0.0.

inf step – double Default = max(inf bound,1020)
Input: inf step specifies the magnitude of the change in variables that will be considered a
step to an unbounded solution. (Note that an unbounded solution can occur only when the
Hessian is not positive-definite.) If the change in x during an iteration would exceed the value
of inf step, the objective function is considered to be unbounded below in the feasible region.
Constraint: options.inf step > 0.0.

state – Integer ∗ Default memory = n+m

Input: state need not be set if the default option of start = Nag Cold is used as n+m values
of memory will be automatically allocated by nag opt sparse convex qp.
If the option start = Nag Warm has been chosen, state must point to a minimum of n+m
elements of memory. This memory will already be available if the options structure has been
used in a previous call to nag opt sparse convex qp from the calling program, with start =
Nag Cold and the same values of n and m. If a previous call has not been made sufficient
memory must be allocated by the user.
If the user does supply a state vector and start = Nag Cold, then the first n elements of state
must specify the initial states of the problem variables. (The slacks s need not be initialized.)
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An internal Crash procedure is then used to select an initial basis matrix B. The initial basis
matrix will be triangular (neglecting certain small elements in each column). It is chosen
from various rows and columns of (A − I). Possible values for state[j − 1] (j = 1, 2, . . . ,n)
are:

state[j] State of xs[j] during Crash procedure

0 or 1 Eligible for the basis

2 Ignored

3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored
If nothing special is known about the problem, or there is no wish to provide special
information, the user may set state[j] = 0 (and xs[j] = 0.0), for j = 0, 1, . . . ,n−1. All
variables will then be eligible for the initial basis. Less trivially, to say that the jth variable
will probably be equal to one of its bounds, the user should set state[j] = 4 and xs[j] = bl[j]
or state[j] = 5 and xs[j] = bu[j] as appropriate.
Following the Crash procedure, variables for which state[j] = 2 are made superbasic. Other
variables not selected for the basis are then made nonbasic at the value xs[j] if bl[j] ≤ xs[j]
≤ bu[j], or at the value bl[j] or bu[j] closest to xs[j].
When start = Nag Warm, state and xs must specify the initial states and values, respectively,
of the variables and slacks (x, s). If nag opt sparse convex qp has been called previously with
the same values of n and m, state already contains satisfactory information.
Constraints:

If start = Nag Cold, 0 ≤ state[j] ≤ 5, for j = 0, 1, . . . ,n−1.
If start = Nag Warm, 0 ≤ state[j] ≤ 3, for j = 0, 1, . . . ,n+m−1.

Output: the final states of the variables and slacks (x, s). The significance of each possible
value of state is as follows:

state[j] State of variable j Normal value of xs[j]
0 Nonbasic bl[j]
1 Nonbasic bu[j]
2 Superbasic Between bl[j] and bu[j]
3 Basic Between bl[j] and bu[j]

If the problem is feasible (i.e., ninf = 0), basic and superbasic variables may be outside their
bounds by as much as optional parameter ftol. Note that unless the optional parameter scale
= Nag NoScale, ftol applies to the variables of the scaled problem. In this case, the variables
of the original problem may be as much as 0.1 outside their bounds, but this is unlikely unless
the problem is very badly scaled.
Very occasionally some nonbasic variables may be outside their bounds by as much as ftol,
and there may be some nonbasic variables for which xs[j] lies strictly between its bounds.
If the problem is infeasible (i.e., ninf > 0), some basic and superbasic variables may be outside
their bounds by an arbitrary amount (bounded by sinf if scale = Nag NoScale).

lambda – double ∗ Default memory = n+m

Input: n+m values of memory will be automatically allocated by nag opt sparse convex qp
and this is the recommended method of use of options.lambda. However a user may supply
memory from the calling program.
Output: the values of the multipliers for each constraint with respect to the current working
set. The first n elements contain the multipliers (reduced costs) for the bound constraints on
the variables, and the next m elements contain the Lagrange multipliers (shadow prices) for
the general linear constraints.

nsb – Integer
Input: nS , the number of superbasics. For QP problems, nsb need not be specified if optional
parameter start = Nag Cold, but must retain its value from a previous call when
start = Nag Warm. For FP and LP problems, nsb is not referenced.
Constraint: options.nsb ≥ 0.
Output: the final number of superbasics. This will be zero for FP and LP problems.
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iter – Integer
Output: the total number of iterations performed.

nf – Integer
Output: the number of times the product Hx has been calculated (i.e., number of calls of
qphx).

8.3. Description of Printed Output

The level of printed output can be controlled by the user with the structure members options.list
and options.print level (see Section 8.2). If list = TRUE then the parameter values to
nag opt sparse convex qp are listed, whereas the printout of results is governed by the value of
print level. The default of print level = Nag Soln Iter provides a single short line of output at each
iteration and the final result. This section describes all of the possible levels of results printout
available from nag opt sparse convex qp.
When print level = Nag Iter or Nag Soln Iter the output produced at each iteration is as described
in Section 4.1. If print level = Nag Iter Long, Nag Soln Iter Long or Nag Soln Iter Full the
following, more detailed, line of output produced at every iteration. In all cases, the values of
the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

pp is the partial price indicator. The variable selected by the last pricing operation
came from the pp-th partition of A and −I. Note that pp is reset to zero whenever
the basis is refactorized.

dj is the value of the reduced gradient (or reduced cost) for the variable selected by
the pricing operation at the start of the current iteration.

+S is the variable selected by the pricing operation to be added to the superbasic
set.

-S is the variable chosen to leave the superbasic set.

-B is the variable removed from the basis (if any) to become nonbasic.

-B is the variable chosen to leave the set of basics (if any) in a special basic ↔
superbasic swap. The entry under -S has become basic if this entry is non-zero,
and nonbasic otherwise. The swap is done to ensure that there are no superbasic
slacks.

Step is the value of the steplength α taken allong the computed search direction p.
The variables x have been changed to x + αp. If a variable is made superbasic
during the current iteration (i.e., +S is positive), Step will be the step to the
nearest bound. During the optimality phase, the step can be greater than unity
only if the reduced Hessian is not positive-definite.

Pivot is the rth element of a vector y satisfying By = aq whenever aq (the qth column
of the constraint matrix (A − I)) replaces the rth column of the basis matrix B.
Wherever possible, Step is chosen so as to avoid extremely small values of Pivot
(since they may cause the basis to be nearly singular). In extreme cases, it may
be necessary to increase the value of the optional parameter pivot tol (default
value = ε0.67, where ε is the machine precision; see Section 8.2) to exclude
very small elements of y from consideration during the computation of Step.

Ninf is the number of violated constraints (infeasibilities). This will be zero during
the optimality phase.

Sinf/Objective is the current value of the objective function. If x is not feasible, Sinf gives
the sum of magnitudes of constraint violations. If x is feasible, Objective is
the value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value
of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities
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will not increase until either a feasible point is found, or the optimality of the
multipliers implies that no feasible point exists.

L is the number of non-zeros in the basis factor L. Immediately after a basis
factorization B = LU , this is lenL, the number of subdiagonal elements in the
columns of a lower triangular matrix. Further non-zeros are added to L when
various columns of B are later replaced. (Thus, L increases monotonically.)

U is the number of non-zeros in the basis factor U . Immediately after a basis
factorization, this is lenU, the number of diagonal and superdiagonal elements
in the rows of an upper triangular matrix. As columns of B are replaced, the
matrix U is maintained explicitly (in sparse form). The value of U may fluctuate
up or down; in general, it will tend to increase.

Ncp is the number of compressions required to recover workspace in the data structure
for U . This includes the number of compressions needed during the previous
basis factorization. Normally, Ncp should increase very slowly. If it does
not, nag opt sparse convex qp will attempt to expand the internal workspace
allocated for the basis factors.

Norm rg is ‖dS‖, the Euclidean norm of the reduced gradient (see Section 7.3). During
the optimality phase, this norm will be approximately zero after a unit step. For
FP and LP problems, Norm rg is not printed.

Ns is the current number of superbasic variables. For FP and LP problems, Ns is
not printed.

Cond Hz is a lower bound on the condition number of the reduced Hessian (see Section
7.2). The larger this number, the more difficult the problem. For FP and LP
problems, Cond Hz is not printed.

When print level = Nag Soln Iter Full the following intermediate printout (< 120 characters) is
produced whenever the matrix B or BS = (B S)T is factorized. Gaussian elimination is used to
compute an LU factorization of B or BS , where PLP

T is a lower triangular matrix and PUQ is an
upper triangular matrix for some permutation matrices P and Q. The factorization is stabilized in
the manner described under the optional parameter lu factor tol (see Section 8.2).

Factorize is the factorization count.

Demand is a code giving the reason for the present factorization as follows:

Code Meaning

0 First LU factorization.

1 Number of updates reached the value of the optional parameter
factor freq (see Section 8.2).

2 Excessive non-zeros in updated factors.

7 Not enough storage to update factors.

10 Row residuals too large (see the description for the optional parameter
fcheck in Section 8.2).

11 Ill conditioning has caused inconsistent results.

Iteration is the iteration count.

Nonlinear is the number of nonlinear variables in B (not printed if BS is factorized).

Linear is the number of linear variables in B (not printed if BS is factorized).

Slacks is the number of slack variables in B (not printed if BS is factorized).

Elems is the number of non-zeros in B (not printed if BS is factorized).

Density is the percentage non-zero density of B (not printed if BS is factorized). More
precisely, Density = 100×Elems/(Nonlinear+Linear+Slacks)2.
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Compressns is the number of times the data structure holding the partially factorized matrix
needed to be compressed, in order to recover unused workspace.

Merit is the average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be (c− 1)(r − 1), where c and r are the
number of non-zeros in the column and row containing the element at the time
it is selected to be the next diagonal. Merit is the average of m such quantities.
It gives an indication of how much work was required to preserve sparsity during
the factorization.

lenL is the number of non-zeros in L.

lenU is the number of non-zeros in U .

Increase is the percentage increase in the number of non-zeros in L and U relative
to the number of non-zeros in B. More precisely, Increase = 100 ×
(lenL+lenU−Elems)/Elems.

m is the number of rows in the problem. Note that m = Ut + Lt + bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax is the maximum subdiagonal element in the columns of L (not printed if BS is
factorized). This will not exceed the value of the optional parameter lu factor tol.

Bmax is the maximum non-zero element in B (not printed if BS is factorized).

BSmax is the maximum non-zero element in BS (not printed if B is factorized).

Umax is the maximum non-zero element in U , excluding elements of B that remain in
U unchanged. (For example, if a slack variable is in the basis, the corresponding
row of B will become a row of U without modification. Elements in such rows will
not contribute to Umax. If the basis is strictly triangular, none of the elements of
B will contribute, and Umax will be zero.)

Ideally, Umax should not be significantly larger than Bmax. If it is several
orders of magnitude larger, it may be advisable to reset the optional parameter
lu factor tol to a value near 1.0. Umax is not printed if BS is factorized.

Umin is the magnitude of the smallest diagonal element of PUQ (not printed if BS is
factorized).

Growth is the value of the ratio Umax/Bmax, which should not be too large.

Providing Lmax is not large (say < 10.0), the ratio max(Bmax, Umax)/Umin is an
estimate of the condition number of B. If this number is extremely large, the
basis is nearly singular and some numerical difficulties could occur in subsequent
computations. (However, an effort is made to avoid near singularity by using
slacks to replace columns of B that would have made Umin extremely small, and
the modified basis is refactorized.)

Growth is not printed if BS is factorized.

Lt is the number of triangular columns of B at the beginning of L.

bp is the size of the ‘bump’ or block to be factorized nontrivially after the triangular
rows and columns have been removed.

d2 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.6.

When print level = Nag Soln Iter Full the following lines of intermediate printout (< 80 characters)
are produced whenever start = Nag Cold (see Section 8.2). They refer to the number of columns
selected by the Crash procedure during each of several passes through A, whilst searching for a
triangular basis matrix.
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Slacks is the number of slacks selected initially.

Free Cols is the number of free columns in the basis.

Preferred is the number of ‘preferred’ columns in the basis (i.e., state[j] = 3 for some j < n).

Unit is the number of unit columns in the basis.

Double is the number of double columns in the basis.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis.

When print level = Nag Soln Iter Full the following lines of intermediate printout (< 80 characters)
are produced, following the final iteration. They refer to the ‘MPSX names’ stored in the optional
parameters prob name, obj name, rhs name, range name and bnd name (see Section 8.2).

Name gives the name for the problem (blank if none).

Status gives the exit status for the problem (i.e., Optimal soln, Weak soln, Unbounded,
Infeasible, Excess itns, Error condn or Feasble soln) followed by details
of the direction of the optimization (i.e., (Min) or (Max)).

Objective gives the name of the free row for the problem (blank if none).

RHS gives the name of the constraint right-hand side for the problem (blank if none).

Ranges gives the name of the ranges for the problem (blank if none).

Bounds gives the name of the bounds for the problem (blank if none).

When print level = Nag Soln or Nag Soln Iter the final solution printout for each column and row
is as described in Section 4.1. When print level = Nag Soln Iter Long or Nag Soln Iter Full, the
following longer lines of final printout (< 120 characters) are produced.

Let aj denote the jth column of A, for j = 1, 2, . . . , n. The following describes the printout for
each column (or variable).

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj .

State gives the state of xj (LL if nonbasic on its lower bound, UL if nonbasic on its
upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between its
bounds, BS if basic and SBS if superbasic).

A key is sometimes printed before State to give some additional information
about the state of xj . Note that unless the optional parameter scale =
Nag No Scale (default value is Nag ExtraScale; see Section 8.2) is specified, the
tests for assigning a key are applied to the variables of the scaled problem.

A Alternative optimum possible. xj is nonbasic, but its reduced gradient is
essentially zero. This means that if xj were allowed to start moving away
from its bound, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one
of them could encounter a bound immediately. In either case, the values of
the Lagrange multipliers might also change.

D Degenerate. xj is basic or superbasic, but it is equal to (or very close to)
one of its bounds.

I Infeasible. xj is basic or superbasic and is currently violating one of its
bounds by more than the value of the optional parameter ftol (default value
= max(10−6,

√
ε), where ε is the machine precision; see Section 8.2).
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N Not precisely optimal. xj is nonbasic or superbasic. If the value of
the reduced gradient for xj exceeds the value of the optional parameter
optim tol (default value = max(10−6,

√
ε); see Section 8.2), the solution

would not be declared optimal because the reduced gradient for xj would
not be considered negligible.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.

Lower Bound is the lower bound specified for xj . (None indicates that
bl[j − 1] ≤ −inf bound, where inf bound is the optional parameter.)

Upper Bound is the upper bound specified for xj . (None indicates that
bu[j − 1] ≥ inf bound.)

Reduced Gradnt is the value of dj at the final iterate (see Section 7.3). For FP problems, dj is set
to zero.

m + j is the value of m+ j.

Let vi denote the ith row of A, for i = 1, 2, . . . ,m. The following describes the printout for each
row (or constraint).

Number is the value of n + i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of vi.

State gives the state of vi (LL if active on its lower bound, UL if active on its upper
bound, EQ if active and fixed, BS if inactive when si is basic and SBS if inactive
when si is superbasic).

A key is sometimes printed before State to give some additional information
about the state of si. Note that unless the optional parameter scale =
Nag No Scale (default value is Nag ExtraScale; see Section 8.2) is specified, the
tests for assigning a key are applied to the variables of the scaled problem.

A Alternative optimum possible. si is nonbasic, but its reduced gradient is
essentially zero. This means that if si were allowed to start moving away
from its bound, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one
of them could encounter a bound immediately. In either case, the values of
the dual variables (or Lagrange multipliers) might also change.

D Degenerate. si is basic or superbasic, but it is equal to (or very close to)
one of its bounds.

I Infeasible. si is basic or superbasic and is currently violating one of its
bounds by more than the value of the optional parameter ftol (default value
= max(10−6,

√
ε), where ε is the machine precision; see Section 8.2).

N Not precisely optimal. si is nonbasic or superbasic. If the value of the
reduced gradient for si exceeds the value of the optional parameter optim tol
(default value = max(10−6,

√
ε); see Section 8.2), the solution would not

be declared optimal because the reduced gradient for si would not be
considered negligible.

Activity is the value of vi at the final iterate.

Slack Activity is the value by which vi differs from its nearest bound. (For the free row (if any),
it is set to Activity.)

Lower Bound is the lower bound specified for vj . None indicates that
bl[n+ j − 1] ≤ −inf bound, where inf bound is the optional parameter.
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Upper Bound is the upper bound specified for vj . None indicates that
bu[n+ j − 1] ≥ inf bound.

Dual Activity is the value of the dual variable πi (the Lagrange multiplier for vi; see Section
7.3). For FP problems, πi is set to zero.

i gives the index i of vi.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate
to this precision.

If options.print level = Nag NoPrint then printout will be suppressed; the user can print the final
solution when nag opt sparse convex qp returns to the calling program.

8.3.1. Output of Results via a User-defined Printing Function

The user may also specify their own print function for output of iteration results and the final
solution by use of the options.print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

The rest of this section can be skipped by a user who only wishes to use the default printing
facilities.

When a user-defined function is assigned to options.print fun this will be called in preference to the
internal print function of nag opt sparse convex qp. Calls to the user-defined function are again
controlled by means of the options.print level member. Information is provided through st and
comm, the two structure arguments to print fun.

If comm->it prt = TRUE then the results from the last iteration of nag opt sparse convex qp
are provided through st. Note that print fun will be called with comm->it prt = TRUE only if
print level = Nag Iter, Nag Iter Long, Nag Soln Iter, Nag Soln Iter Long or Nag Soln Iter Full.
The following members of st are set:

iter – Integer
the iteration count.

qp – Boolean
TRUE if a QP problem is being solved; FALSE otherwise.

pprice – Integer
the partial price indicator.

rgval – double
the value of the reduced gradient (or reduced cost) for the variable selected by the pricing
operation at the start of the current iteration.

sb add – Integer
the variable selected to enter the superbasic set.

sb leave – double
the variable chosen to leave the superbasic set.

b leave – Integer
the variable chosen to leave the basis (if any) to become nonbasic.

bswap leave – Integer
the variable chosen to leave the basis (if any) in a special basic ↔ superbasic swap.

step – double
the step length taken along the computed search direction.

pivot – Integer
the rth element of a vector y satisfying By = aq whenever aq (the qth column of the constraint
matrix (A − I)) replaces the rth column of the basis matrix B.

ninf – Integer
the number of violated constraints or infeasibilities.
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f – double
the current value of the objective function if st->ninf is zero; otherwise, the sum of the
magnitudes of constraint violations.

nnz l – Integer
the number of non-zeros in the basis factor L.

nnz u – Integer
the number of non-zeros in the basis factor U .

ncp – Integer
the number of compressions of the basis factorization workspace carried out so far.

norm rg – double
the Euclidean norm of the reduced gradient at the start of the current iteration. This value
is meaningful only if st->qp = TRUE.

nsb – Integer
the number of superbasic variables. This value is meaningful only if st->qp = TRUE.

cond hz – double
a lower bound on the condition number of the reduced Hessian. This value is meaningful only
if st->qp = TRUE.

If comm->sol prt = TRUE then the final results for one row or column are provided through st.
Note that print fun will be called with comm->sol print = TRUE only if print level = Nag Soln,
Nag Soln Iter, Nag Soln Iter Long or Nag Soln Iter Full. The following members of st are set (note
that print fun is called repeatedly, for each row and column):

m – Integer
the number of rows (or general constraints) in the problem.

n – Integer
the number of columns (or variables) in the problem.

col – Boolean
TRUE if column information is being provided; FALSE if row information is being provided.

index – Integer
if col = TRUE then index is the index j (in the range 1 ≤ j ≤ n) of the current column
(variable) for which the remaining members of st, as described below, are set.
If col = FALSE then index is the index i (in the range 1 ≤ i ≤ m) of the current row
(constraint) for which the remaining members of st, as described below, are set.

name – char ∗
the name of row i or column j.

sstate – char ∗
sstate is a character string describing the state of row i or column j. This may be "LL", "UL",
"EQ", "FR", "BS" or "SBS". The meaning of each of these is described in Section 8.3 (State).

key – char ∗
key is a character string which gives additional information about the current row or column.
The possible values of key are: " ", "A", "D", "I" or "N". The meaning of each of these is
described in Section 8.3 (State).

val – double
the activity of row i or column j at the final iterate.

blo – double
the lower bound on row i or column j.

bup – double
the upper bound on row i or column j.

lmult – double
the value of the Lagrange multiplier associated with the current row or column (i.e., the dual
activity πi for a row, or the reduced gradient dj for a column) at the final iterate.
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objg – double
the value of the objective gradient gj at the final iterate. objg is meaningful only when st->col
= TRUE and should not be accessed otherwise. It is set to zero for FP problems.

The relevant members of the structure comm are:

it prt – Boolean
will be TRUE when the print function is called with the result of the current iteration.

sol prt – Boolean
will be TRUE when the print function is called with the final result.

user – double ∗
iuser – Integer ∗
p – Pointer

pointers for communication of user information. If used they must be allocated memory
by the user either before entry to nag opt sparse convex qp or during a call to qphess or
print fun. The type Pointer will be void * with a C compiler that defines void * and
char * otherwise.

9. Error Indications and Warnings

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.
On entry, m must not be less than 1: m = 〈value〉.

NE INVALID INT RANGE 1
Value 〈value〉 given to nnz is not valid. Correct range is 1 ≤ nnz ≤ n × m.
Value 〈value〉 given to iobj is not valid. Correct range is 0 ≤ iobj ≤ m.
Value 〈value〉 given to ncolh is not valid. Correct range is 0 ≤ ncolh ≤ n.

NE NULL QPHX
Since argument ncolh is non-zero, the problem is assumed to be of type QP. However, the
argument qphx is a null function. qphx must be non-null for QP problems.

NE INT ARRAY 2
Value 〈value〉 given to ha[〈value〉] not valid. Correct range for elements of ha is 1 to m.

NE ARRAY CONS
The contents of array ka are not valid. Constraint: ka[0] = 0.
The contents of array ka are not valid. Constraint: ka[n] = nnz.
The contents of array ka are not valid. Constraint: 0 ≤ ka[i+ 1] − ka[i] ≤ m, for 0 ≤ i < n.

NE INT ARRAY 1
Value 〈value〉 given to ka[〈value〉] not valid. Correct range for elements of ka is ≥ 0.

NE DUPLICATE ELEMENT
Duplicate sparse matrix element found in row 〈value〉, column 〈value〉.

NE OBJ BOUND
Invalid lower bound for objective row. Bound should be ≤ 〈value〉.
Invalid upper bound for objective row. Bound should be ≥ 〈value〉.

NE BOUND
The lower bound for variable 〈value〉 (array element bl[〈value〉]) is greater than the upper
bound.

NE BOUND EQ
The lower bound and upper bound for variable 〈value〉 (array elements bl[〈value〉] and
bu[〈value〉]) are equal but they are greater than or equal to options.inf bound.

NE BOUND LCON
The lower bound for linear constraint 〈value〉 (array element bl[〈value〉]) is greater than the
upper bound.
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NE BOUND EQ LCON
The lower bound and upper bound for linear constraint 〈value〉 (array elements bl[〈value〉]
and bu[〈value〉]) are equal but they are greater than or equal to options.inf bound.

NE OPT NOT INIT
Options structure not initialized.

NE INT OPT ARG LT
On entry, options.fcheck = 〈value〉. Constraint: fcheck ≥ 1
On entry, options.factor freq = 〈value〉. Constraint: factor freq ≥ 1
On entry, options.max iter = 〈value〉. Constraint: max iter ≥ 0
On entry, options.max sb = 〈value〉. Constraint: max sb ≥ 1
On entry, options.nsb = 〈value〉. Constraint: nsb ≥ 0
On entry, options.partial price = 〈value〉. Constraint: partial price ≥ 1.

NE BAD PARAM
On entry parameter options.crash had an illegal value.
On entry parameter options.print level had an illegal value.
On entry parameter options.scale had an illegal value.
On entry parameter options.start had an illegal value.

NE INVALID REAL RANGE FF
Value 〈value〉 given to options.crash tol is not valid. Correct range is 0.0 ≤ crash tol < 1.0.
Value 〈value〉 given to options.scale tol is not valid. Correct range is 0.0 < scale tol < 1.0.

NE INVALID INT RANGE 2
Value 〈value〉 given to options.reset ftol is not valid. Correct range is
0 < reset ftol < 10000000.

NE INVALID REAL RANGE F
Value 〈value〉 given to options.ftol is not valid. Correct range is ftol ≥ ε.
Value 〈value〉 given to options.inf bound is not valid. Correct range is inf bound > 0.0.
Value 〈value〉 given to options.inf step is not valid. Correct range is inf step > 0.0.
Value 〈value〉 given to options.lu factor tol is not valid. Correct range is lu factor tol ≥ 1.0.
Value 〈value〉 given to options.lu sing tol is not valid. Correct range is lu sing tol > 0.0.
Value 〈value〉 given to options.lu update tol is not valid. Correct range is lu update tol ≥
1.0.
Value 〈value〉 given to options.lu optim tol is not valid. Correct range is optim tol ≥ ε.
Value 〈value〉 given to options.pivot tol is not valid. Correct range is pivot tol > 0.0.

NE NAME TOO LONG
The string pointed to by options.crnames[〈value〉] is too long. It should be no longer than 8
characters.

NE STATE VAL
options.state[〈value〉] is out of range. state[〈value〉] = 〈value〉.

NW SOLN NOT UNIQUE
Optimal solution is not unique.

Weak solution found. The final x is not unique, although x gives the global minimum value
of the objective function.

NE UNBOUNDED
Solution appears to be unbounded.

The problem is unbounded (or badly scaled). The objective function is not bounded below
in the feasible region.

NW NOT FEASIBLE
No feasible point was found for the linear constraints.

The problem is infeasible. The general constraints cannot all be satisfied simultaneously to
within the value of the optional parameter ftol; see Section 8.2.
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NW TOO MANY ITER
The maximum number of iterations, 〈value〉, have been performed.

Too many iterations. The value of the optional parameter max iter is too small; see Section
8.2.

NE HESS TOO BIG
Reduced Hessian exceeds assigned dimension. options.max sb = 〈value〉.
The reduced Hessian matrix ZTHZ (see Section 7.2) exceeds its assigned dimension. The
value of the optional parameter max sb is too small; see Section 8.2.

NE HESS INDEF
The Hessian matrix H appears to be indefinite.

The reduced Hessian matrix ZTHZ (see Section 7.2) appears to be indefinite – normally
because H is indefinite. Check that function qphx has been coded correctly. If qphx is coded
correctly with H symmetric positive (semi-)definite, then the problem may be due to a loss
of accuracy in the internal computation of the reduced Hessian. Try to reduce the values of
the optional parameters lu factor tol and lu update tol (see Section 8.2).

NE BASIS ILL COND
Numerical error in trying to satisfy the general constraints. The basis is very ill conditioned.

NE BASIS SINGULAR
The basis is singular after 15 attempts to factorize it.

The basis is singular after 15 attempts to factorize it (adding slacks where necessary). Either
the problem is badly scaled or the value of the optional parameter lu factor tol is too large;
see Section 8.2.

NE ALLOC FAIL
Memory allocation failed.

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE WRITE ERROR
Error occurred when writing to file 〈string〉.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

10. Further Comments

10.1. Accuracy

nag opt sparse convex qp implements a numerically stable active set strategy and returns solutions
that are as accurate as the condition of the problem warrants on the machine.
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12. See Also

nag opt lp (e04mfc)
nag opt sparse mps free (e04myc)
nag opt sparse mps read (e04mzc)
nag opt lin lsq (e04ncc)
nag opt qp (e04nfc)
nag opt init (e04xxc)
nag opt read (e04xyc)
nag opt free (e04xzc)

13. Example 2

This example solves the same problem as Example 1 but illustrates the use of the options and comm
structures. In addition to the data as read in Example 1, the data for this example also includes
a set of user-defined column and row names, and data for the Hessian in a sparse storage format
(see below for more details). The options structure is initialized by nag opt init (e04xxc) and the
crnames member is assigned to the array of character strings into which the column and row names
were read. The p member of comm is used to pass the Hessian into nag opt sparse convex qp for
use by the function qphess2.

On return from nag opt sparse convex qp, the Hessian data is perturbed slightly and two further
options set, selecting a warm start and a reduced level of printout. nag opt sparse convex qp is
then called for a second time. Finally, the memory freeing function nag opt free (e04xzc) is used
to free the memory assigned by nag opt sparse convex qp to the pointers in the options structure.
Users should not use the standard C function free() for this purpose.

The sparse storage scheme used for the Hessian in this example is similar to that which
nag opt sparse convex qp uses for the constraint matrix a, but since the Hessian is symmetric
we need only store the lower triangle (including the diagonal) of the matrix. Thus, an array hess
contains the nonzero elements of the lower triangle arranged in order of increasing column index.
The array khess contains the indices in hess of the first element in each column, and the array
hhess contains the row index associated with each element in hess. To allow the data to be passed
via the p member of comm, a struct HessianData is declared, containing pointer members which
are assigned to the three arrays defining the Hessian. Alternative approaches would have been to
use the user and iuser members of comm to pass suitably partitioned arrays to qphess2, or to avoid
the use of comm altogether and declare the Hessian data as global. The storage scheme suggested
here is for illustrative purposes only.

13.1. Program Text

/* Example 2 */

/* Declare a data structure for passing sparse Hessian data to qphess2 */

typedef struct
{

double *hess;
Integer *khess;
Integer *hhess;

} HessianData;
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static void ex2(void)
{
#define MAXHESSNNZ MAXNNZ

char names[MAXBND][9];
char *crnames[MAXBND];
double a[MAXNNZ], bl[MAXBND], bu[MAXBND];
double hess[MAXHESSNNZ];
double x[MAXBND];
double sinf, obj;
Integer i, icol, j, jcol;
Integer iobj, ncolh;
Integer m, n, nbnd, nnz, nnz_hess;
Integer ninf;
Integer ha[MAXNNZ], ka[MAXN+1];
Integer hhess[MAXHESSNNZ], khess[MAXN+1];
HessianData hess_data;
Nag_Comm comm;
Nag_E04_Opt options;
static NagError fail;

Vprintf("\nExample 2: some optional parameters are set.\n");
Vscanf(" %*[^\n]");

fail.print = TRUE;

/* Read the problem dimensions */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld", &n, &m);

/* Read nnz, iobj, ncolh */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%ld", &nnz, &iobj, &ncolh);

/* Read the matrix and set up ka */
jcol = 1;
ka[jcol-1] = 0;
Vscanf(" %*[^\n]");
for (i = 0; i < nnz; ++i)
{
/* a[i] stores the (ha[i], icol) element of matrix */
Vscanf("%lf%ld%ld", &a[i], &ha[i], &icol);

/* Check whether we have started a new column */
if (icol == jcol+1)
{

ka[icol-1] = i; /* Start of icol-th column in a */
jcol = icol;

}
else if (icol > jcol+1)
{

/* Index in a of the start of the icol-th column
* equals i, but columns jcol+1, jcol+2, ...,
* icol-1 are empty. Set the corresponding elements
* of ka to i.
*/
for (j = jcol+1; j < icol; ++j)
ka[j-1] = i;

ka[icol-1] = i;
jcol = icol;

}
}

ka[n] = nnz;

/* If the last columns are empty, set ka accordingly */
if (n>icol)
{
for (j = icol; j<=n - 1; ++j)
ka[j]=nnz;

}
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/* Read the bounds */
nbnd = n+m;
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < nbnd; ++i)
Vscanf("%lf", &bl[i]);

Vscanf(" %*[^\n]");
for (i = 0; i < nbnd; ++i)
Vscanf("%lf", &bu[i]);

/* Read the column and row names */
Vscanf(" %*[^\n]"); /* Skip heading in data file */
Vscanf(" %*[^’]");
for (i = 0; i < nbnd; ++i)
{
Vscanf(" ’%8c’", names[i]);
names[i][8] = ’\0’;
crnames[i] = names[i];

}

/* Read the initial estimate of x */
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < n; ++i)
Vscanf("%lf", &x[i]);

/* Read nnz_hess */
Vscanf(" %*[^\n]");
Vscanf("%ld", &nnz_hess);

/* Read the hessian matrix and set up khess */
jcol = 1;
khess[jcol-1] = 0;
Vscanf(" %*[^\n]");
for (i = 0; i < nnz_hess; ++i)
{
/* hess[i] stores the (hhess[i], icol) element of matrix */
Vscanf("%lf%ld%ld", &hess[i], &hhess[i], &icol);

/* Check whether we have started a new column */
if (icol == jcol+1)
{

khess[icol-1] = i; /* Start of icol-th column in hess */
jcol = icol;

}
else if (icol > jcol+1)
{

/* Index in hess of the start of the icol-th column
* equals i, but columns jcol+1, jcol+2, ...,
* icol-1 are empty. Set the corresponding elements
* of khess to i.
*/
for (j = jcol+1; j < icol; ++j)
khess[j-1] = i;

khess[icol-1] = i;
}

}
khess[ncolh] = nnz_hess;

/* Initialize options structure */
e04xxc(&options);
options.crnames = crnames;

/* Package up Hessian data for communication via comm */
hess_data.hess = hess;
hess_data.khess = khess;
hess_data.hhess = hhess;

comm.p = (Pointer)&hess_data;
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/* Solve the problem */
e04nkc(n, m, nnz, iobj, ncolh, qphess2, a, ha, ka, bl, bu,

x, &ninf, &sinf, &obj, &options, &comm, &fail);

if (fail.code == NE_NOERROR)
{
Vprintf("\nPerturb the problem and re-solve with warm start.\n");
for (i = 0; i < nnz_hess; ++i)
hess[i] *= 1.001;

options.start = Nag_Warm;
options.print_level = Nag_Soln;
e04nkc(n, m, nnz, iobj, ncolh, qphess2, a, ha, ka, bl, bu,

x, &ninf, &sinf, &obj, &options, &comm, &fail);
}

/* Free memory NAG-allocated to members of options */
e04xzc(&options, "", NAGERR_DEFAULT);

if (fail.code != NE_NOERROR)
exit(EXIT_FAILURE);

} /* ex2 */

static void qphess2(Integer ncolh, double x[], double hx[], Nag_Comm *comm)
{

Integer i, j, jrow;
HessianData *hd = (HessianData *)(comm->p);
double *hess = hd->hess;
Integer *hhess = hd->hhess;
Integer *khess = hd->khess;

for (i = 0; i < ncolh; ++i)
hx[i] = 0.0;

for (i = 0; i < ncolh; ++i)
{
/* For each column of Hessian */
for (j = khess[i]; j < khess[i+1]; ++j)
{

/* For each non-zero in column */

jrow = hhess[j] - 1;

/* Using symmetry of hessian, add contribution
* to hx of hess[j] as a diagonal or upper
* triangular element of hessian.
*/
hx[i] += hess[j]*x[jrow];

/* If hess[j] not a diagonal element add its
* contribution to hx as a lower triangular
* element of hessian.
*/
if (jrow != i)
hx[jrow] += hess[j]*x[i];

}
}

} /* qphess2 */
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13.2. Program Data

Data for example 2.

Values of n and m
7 8

Values of nnz, iobj and ncolh
48 8 7

Matrix nonzeros: value, row index, column index
0.02 7 1
0.02 5 1
0.03 3 1
1.00 1 1
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
0.04 2 4

-2000.00 8 4
0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7

Lower bounds
0.0 0.0 4.0e+02 1.0e+02 0.0 0.0 0.0 2.0e+03
-1.0e+25 -1.0e+25 -1.0e+25 -1.0e+25 1.5e+03 2.5e+02 -1.0e+25

Upper bounds
2.0e+02 2.5e+03 8.0e+02 7.0e+02 1.5e+03 1.0e+25 1.0e+25 2.0e+03
6.0e+01 1.0e+02 4.0e+01 3.0e+01 1.0e+25 3.0e+02 1.0e+25

Column and row names
’COLUMN 1’ ’COLUMN 2’ ’COLUMN 3’ ’COLUMN 4’ ’COLUMN 5’ ’COLUMN 6’ ’COLUMN 7’
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’OBJECTIV’ ’ROW 1’ ’ROW 2’ ’ROW 3’ ’ROW 4’ ’ROW 5’ ’ROW 6’
’ROW 7’

Initial estimate of x
0.0 0.0 0.0 0.0 0.0 0.0 0.0

Number of hessian nonzeros
9

Hessian nonzeros: value, row index, col index (diagonal/lower triangle elements)
2.0 1 1
2.0 2 2
2.0 3 3
2.0 4 3
2.0 4 4
2.0 5 5
2.0 6 6
2.0 7 6
2.0 7 7

Data for example 2.

Values of n and m
5 4

Values of nnz, iobj and ncolh
11 1 5

Matrix nonzeros: value, row index, column index
1.0 2 1
-4.0 1 2
3.0 2 2
1.0 4 2
-4.0 1 3
1.0 3 3
-2.0 1 4
1.0 3 4
-2.0 1 5
-2.0 3 5
-1.0 4 5

Lower bounds
-1.0e+01 -1.0e+01 -1.0e+01 -1.0e+01 -1.0e+01
-1.0e+25 0.0 0.0 0.0

Upper bounds
1.0e+01 1.0e+01 1.0e+01 1.0e+01 1.0e+01
1.0e+25 0.0 0.0 0.0

Column and row names
’COLUMN 1’ ’COLUMN 2’ ’COLUMN 3’ ’COLUMN 4’ ’COLUMN 5’
’OBJECTIV’ ’ROW 1’ ’ROW 2’ ’ROW 3’

Initial estimate of x
2.0 2.0 2.0 2.0 2.0

Number of hessian nonzeros
7

Hessian nonzeros: value, row index, col index (diagonal/lower triangle elements)
2.0 1 1
-2.0 2 1
4.0 2 2
2.0 3 2
2.0 3 3
2.0 4 4
2.0 5 5
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13.3. Program Results

Example 2: some optional parameters are set.

Parameters to e04nkc
--------------------

Problem type............ sparse QP Number of variables..... 7
Linear constraints...... 8 Hessian columns......... 7

prob_name...............
obj_name................ rhs_name................
range_name.............. bnd_name................
crnames................. supplied

minimize................ TRUE start................... Nag_Cold
ftol.................... 1.00e-06 reset_ftol.............. 10000
fcheck.................. 60 factor_freq............. 100
scale.............. Nag_ExtraScale scale_tol............... 9.00e-01
optim_tol............... 1.00e-06 max_iter................ 75
crash.............. Nag_CrashTwice crash_tol............... 1.00e-01
partial_price........... 10 pivot_tol............... 2.04e-11
max_sb.................. 7
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
lu_factor_tol........... 1.00e+02 lu_update_tol........... 1.00e+01
lu_sing_tol............. 2.04e-11 machine precision....... 1.11e-16
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag lambda.................. Nag

Itn Step Ninf Sinf/Objective Norm rg
Itn 0 -- Infeasible

0 0.0e+00 1 1.152891e+03 0.0e+00
1 4.3e+02 0 0.000000e+00 0.0e+00

Itn 1 -- Feasible point found (for 1 equality constraints).
1 0.0e+00 0 0.000000e+00 0.0e+00
1 0.0e+00 0 1.460000e+06 0.0e+00

Itn 1 -- Feasible QP solution.
2 8.7e-02 0 9.409959e+05 0.0e+00
3 5.3e-01 0 -1.056552e+06 0.0e+00
4 1.0e+00 0 -1.462190e+06 2.3e-12
5 1.0e+00 0 -1.698092e+06 2.2e-12
6 4.6e-02 0 -1.764906e+06 7.0e+02
7 1.0e+00 0 -1.811946e+06 2.8e-12
8 1.7e-02 0 -1.847325e+06 1.7e+02
9 1.0e+00 0 -1.847785e+06 7.0e-12

Variable State Value Lower Bound Upper Bound Lagr Mult Residual
COLUMN 1 LL 0.00000e+00 0.0000e+00 2.0000e+02 2.361e+03 0.000e+00
COLUMN 2 BS 3.49399e+02 0.0000e+00 2.5000e+03 -3.657e-12 3.494e+02
COLUMN 3 SBS 6.48853e+02 4.0000e+02 8.0000e+02 -5.924e-12 1.511e+02
COLUMN 4 SBS 1.72847e+02 1.0000e+02 7.0000e+02 1.949e-12 7.285e+01
COLUMN 5 BS 4.07521e+02 0.0000e+00 1.5000e+03 0.000e+00 4.075e+02
COLUMN 6 BS 2.71356e+02 0.0000e+00 None -3.280e-12 2.714e+02
COLUMN 7 BS 1.50023e+02 0.0000e+00 None -1.413e-12 1.500e+02

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual
OBJECTIV EQ 2.00000e+03 2.0000e+03 2.0000e+03 -1.290e+04 0.000e+00
ROW 1 BS 4.92316e+01 None 6.0000e+01 0.000e+00 -1.077e+01
ROW 2 UL 1.00000e+02 None 1.0000e+02 -2.325e+03 0.000e+00
ROW 3 BS 3.20719e+01 None 4.0000e+01 0.000e+00 -7.928e+00
ROW 4 BS 1.45572e+01 None 3.0000e+01 0.000e+00 -1.544e+01
ROW 5 LL 1.50000e+03 1.5000e+03 None 1.445e+04 0.000e+00
ROW 6 LL 2.50000e+02 2.5000e+02 3.0000e+02 1.458e+04 0.000e+00
ROW 7 BS -2.98869e+06 None None -1.000e+00 -2.989e+06

Exit after 9 iterations.
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Optimal QP solution found.

Final QP objective value = -1.8477847e+06

Perturb the problem and re-solve with warm start.

Parameters to e04nkc
--------------------

Problem type............ sparse QP Number of variables..... 7
Linear constraints...... 8 Hessian columns......... 7

prob_name...............
obj_name................ rhs_name................
range_name.............. bnd_name................
crnames................. supplied

minimize................ TRUE start................... Nag_Warm
ftol.................... 1.00e-06 reset_ftol.............. 10000
fcheck.................. 60 factor_freq............. 100
scale.............. Nag_ExtraScale scale_tol............... 9.00e-01
optim_tol............... 1.00e-06 max_iter................ 75
crash.............. Nag_CrashTwice crash_tol............... 1.00e-01
partial_price........... 10 pivot_tol............... 2.04e-11
max_sb.................. 7
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
lu_factor_tol........... 1.00e+02 lu_update_tol........... 1.00e+01
lu_sing_tol............. 2.04e-11 machine precision....... 1.11e-16
print_level............. Nag_Soln
outfile................. stdout

Memory allocation:
state................... Nag lambda.................. Nag

Variable State Value Lower Bound Upper Bound Lagr Mult Residual
COLUMN 1 LL 0.00000e+00 0.0000e+00 2.0000e+02 2.360e+03 0.000e+00
COLUMN 2 SBS 3.49529e+02 0.0000e+00 2.5000e+03 -7.077e-13 3.495e+02
COLUMN 3 BS 6.48762e+02 4.0000e+02 8.0000e+02 -1.338e-12 1.512e+02
COLUMN 4 SBS 1.72618e+02 1.0000e+02 7.0000e+02 0.000e+00 7.262e+01
COLUMN 5 BS 4.07596e+02 0.0000e+00 1.5000e+03 6.891e-13 4.076e+02
COLUMN 6 BS 2.71446e+02 0.0000e+00 None 2.087e-12 2.714e+02
COLUMN 7 BS 1.50048e+02 0.0000e+00 None 7.850e-13 1.500e+02

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual
OBJECTIV EQ 2.00000e+03 2.0000e+03 2.0000e+03 -1.290e+04 0.000e+00
ROW 1 BS 4.92290e+01 None 6.0000e+01 0.000e+00 -1.077e+01
ROW 2 UL 1.00000e+02 None 1.0000e+02 -2.325e+03 0.000e+00
ROW 3 BS 3.20731e+01 None 4.0000e+01 0.000e+00 -7.927e+00
ROW 4 BS 1.45618e+01 None 3.0000e+01 0.000e+00 -1.544e+01
ROW 5 LL 1.50000e+03 1.5000e+03 None 1.446e+04 0.000e+00
ROW 6 LL 2.50000e+02 2.5000e+02 3.0000e+02 1.458e+04 0.000e+00
ROW 7 BS -2.98841e+06 None None -1.000e+00 -2.988e+06

Exit after 1 iterations.

Optimal QP solution found.

Final QP objective value = -1.8466439e+06
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