
e04 – Minimizing or Maximizing a Function e04ucc

nag opt nlp (e04ucc)

1. Purpose

nag opt nlp (e04ucc) is designed to minimize an arbitrary smooth function subject to constraints
(which may include simple bounds on the variables, linear constraints and smooth nonlinear
constraints) using a sequential quadratic programming (SQP) method. As many first derivatives
as possible should be supplied by the user; any unspecified derivatives are approximated by finite
differences. It is not intended for large sparse problems.

nag opt nlp may also be used for unconstrained, bound-constrained and linearly constrained
optimization.

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_nlp(Integer n, Integer nclin, Integer ncnlin, double a[],
Integer tda, double bl[], double bu[],
void (*objfun)(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm),
void (*confun)(Integer n, Integer ncnlin, Integer needc[],

double x[], double conf[], double conjac[],
Nag_Comm *comm),

double x[], double *objf, double g[],
Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)

3. Description

nag opt nlp is designed to solve the nonlinear programming problem – the minimization of a smooth
nonlinear function subject to a set of constraints on the variables. The problem is assumed to be
stated in the following form:

minimize
x∈Rn

F (x) subject to l ≤

x
ALx
c(x)

 ≤ u, (1)

where F (x) (the objective function) is a nonlinear function, AL is an nL by n constant matrix, and
c(x) is an nN element vector of nonlinear constraint functions. (The matrix AL and the vector c(x)
may be empty.) The objective function and the constraint functions are assumed to be smooth,
i.e., at least twice-continuously differentiable. (The method of nag opt nlp will usually solve (1) if
there are only isolated discontinuities away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear
constraints, we prefer to distinguish between them for reasons of computational efficiency. For
the same reason, the linear constraints should not be included in the definition of the nonlinear
constraints. Upper and lower bounds are specified for all the variables and for all the constraints.
An equality constraint can be specified by setting li = ui. If certain bounds are not present, the
associated elements of l or u can be set to special values that will be treated as −∞ or +∞. (See
the description of the optional parameter inf bound in Section 8.2.)

If there are no nonlinear constraints in (1) and F is linear or quadratic, then one of nag opt lp
(e04mfc), nag opt lin lsq (e04ncc) or nag opt qp (e04nfc) will generally be more efficient.

The user must supply an initial estimate of the solution to (1), together with functions that define
F (x), c(x) and as many first partial derivatives as possible; unspecified derivatives are approximated
by finite differences.

The objective function is defined by function objfun, and the nonlinear constraints are defined by
function confun. On every call, these functions must return appropriate values of the objective
and nonlinear constraints. The user should also provide the available partial derivatives. Any
unspecified derivatives are approximated by finite differences; see Section 8.2 for a discussion of

[NP3491/6] 3.e04ucc.1

nag opt nlp NAG C Library Manual

the optional parameters obj deriv and con deriv. Just before either objfun or confun is called,
each element of the current gradient array g or conjac is initialized to a special value. On exit, any
element that retains the value is estimated by finite differences. Note that if there are any nonlinear
constraints, then the first call to confun will precede the first call to objfun.

For maximum reliability, it is preferable for the user to provide all partial derivatives (see Chapter
8 of Gill et al (1981), for a detailed discussion). If all gradients cannot be provided, it is similarly
advisable to provide as many as possible. While developing the functions objfun and confun, the
optional parameter verify grad (see Section 8.2) should be used to check the calculation of any
known gradients.

The method used by nag opt nlp is described in detail in Section 7 .

4. Parameters

n
Input: n, the number of variables.
Constraint: n > 0.

nclin
Input: nL, the number of general linear constraints.
Constraint: nclin ≥ 0.

ncnlin
Input: nN , the number of nonlinear constraints.
Constraint: ncnlin ≥ 0.

a[nclin][tda]
Input: the ith row of a must contain the coefficients of the ith general linear constraint (the
ith row of the matrix AL in (1)), for i = 1, 2, . . . , nL.

If nclin = 0 then the array a is not referenced.

tda
Input: the second dimension of the array a as declared in the function from which nag opt nlp
is called.
Constraint: tda ≥ n if nclin > 0.

bl[n+nclin+ncnlin]
bu[n+nclin+ncnlin]

Input: bl must contain the lower bounds and bu the upper bounds, for all the constraints
in the following order. The first n elements of each array must contain the bounds on the
variables, the next nL elements the bounds for the general linear constraints (if any), and the
next nN elements the bounds for the nonlinear constraints (if any). To specify a non-existent
lower bound (i.e., lj = −∞), set bl[j− 1] ≤ − inf bound, and to specify a non-existent upper
bound (i.e., uj = +∞), set bu[j − 1] ≥ inf bound, where inf bound is one of the optional
parameters (default value 1020, see Section 8.2). To specify the jth constraint as an equality,
set bl[j − 1] = bu[j − 1] = β, say, where |β| < inf bound.
Constraints:

bl[j] ≤ bu[j], for j = 0, 1, . . . ,n+nclin+ncnlin−1,
|β| < inf bound when bl[j] = bu[j] = β.

objfun
objfunmust calculate the objective function F (x) and (optionally) its gradient g(x) = ∂F/∂xj

for a specified n element vector x.

The specification for objfun is:

3.e04ucc.2 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

void objfun(Integer n, double x[], double *objf, double g[], Nag_Comm *comm)

n
Input: n, the number of variables.

x[n]
Input: x, the vector of variables at which the value of F and/or all available
elements of its gradient are to be evaluated.

objf
Output: if comm->flag = 0 or 2, objfunmust set objf to the value of the objective
function F at the current point x. If it is not possible to evaluate F then objfun
should assign a negative value to comm-> flag; nag opt nlp will then terminate.

g[n]
Output: if comm->flag = 2, g must contain all the elements of the vector g(x)
given by

g(x) =
(
∂F

∂x1

,
∂F

∂x2

. . .
∂F

∂xn

)T

,

where ∂F/∂xi is the partial derivative of the objective function with respect to
the ith variable evaluated at the point x, for i = 1, 2, . . . n.
If the optional parameter obj deriv = TRUE (the default), all elements of g must
be set; if obj deriv = FALSE, any available elements of the vector g(x) must be
assigned to the elements of g; the remaining elements must remain unchanged.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
objfun.

flag – Integer
Input: objfun is called with comm->flag set to 0 or 2.
If comm->flag = 0 then only objf is referenced.
If comm->flag = 2 then both objf and g are referenced.
Output: if objfun resets comm->flag to some negative number then
nag opt nlp will terminate immediately with the error indicator
NE USER STOP. If fail is supplied to nag opt nlp, fail.errnum will be set
to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to objfun and FALSE for all
subsequent calls.

nf – Integer
Input: the number of evaluations of the objective function; this value will
be equal to the number of calls made to objfun including the current one.

user – double ∗
iuser – Integer ∗
p – Pointer

The type Pointer is void *.
Before calling nag opt nlp these pointers may be allocated memory by the
user and initialized with various quantities for use by objfun when called
from nag opt nlp.

Note: objfun should be tested separately before being used in conjunction with nag opt nlp.
The optional parameters verify grad and max iter can be used to assist this process. The
array x must not be changed by objfun.
If the function objfun does not calculate all of the gradient elements then the optional
parameter obj deriv should be set to FALSE.

[NP3491/6] 3.e04ucc.3

nag opt nlp NAG C Library Manual

confun
confun must calculate the vector c(x) of nonlinear constraint functions and (optionally) its
Jacobian (= ∂c/∂x) for a specified n element vector x. If there are no nonlinear constraints
(i.e., ncnlin = 0), confun will never be called and the NAG defined null void function pointer,
NULLFN, can be supplied in the call to nag opt nlp. If there are nonlinear constraints the first
call to confun will occur before the first call to objfun.

The specification for confun is:

void confun(Integer n, Integer ncnlin, Integer needc[], double x[],
double conf[], double conjac[], Nag_Comm *comm)

n
Input: n, the number of variables.

ncnlin
Input: nN , the number of nonlinear constraints.

needc[ncnlin]
Input: the indices of the elements of conf and/or conjac that must be evaluated
by confun. If needc[i− 1] > 0 then the ith element of conf and/or the available
elements of the ith row of conjac (see parameter comm->flag below) must be
evaluated at x.

x[n]
Input: the vector of variables x at which the constraint functions and/or all
available elements of the constraint Jacobian are to be evaluated.

conf[ncnlin]
Output: if needc[i−1] > 0 and comm->flag = 0 or 2, conf[i−1] must contain the
value of the ith constraint at x. The remaining elements of conf, corresponding
to the non-positive elements of needc, are ignored.

conjac[ncnlin∗n]
Output: if needc[i − 1] > 0 and comm->flag = 2, the ith row of conjac (i.e.,
the elements conjac[(i− 1)∗n+j − 1], j = 1, 2, . . . , n) must contain the available
elements of the vector ∇ci given by

∇ci =
(
∂ci
∂x1

,
∂ci
∂x2

, . . . ,
∂ci
∂xn

)T

,

where ∂ci/∂xj is the partial derivative of the ith constraint with respect to the jth
variable, evaluated at the point x. The remaining rows of conjac, corresponding
to non-positive elements of needc, are ignored.
If the optional parameter con deriv = TRUE (the default), all elements of conjac
must be set; if con deriv = FALSE, then any available partial derivatives of ci(x)
must be assigned to the elements of conjac; the remaining elements must remain
unchanged.
If all elements of the constraint Jacobian are known (i.e., con deriv = TRUE;
see Section 8.2), any constant elements may be assigned to conjac one time only
at the start of the optimization. An element of conjac that is not subsequently
assigned in confun will retain its initial value throughout.
Constant elements may be loaded into conjac during the first call to confun.
The ability to preload constants is useful when many Jacobian elements are
identically zero, in which case conjac may be initialized to zero at the first call
when comm->first = TRUE.

3.e04ucc.4 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

It must be emphasized that, if con deriv = FALSE, unassigned elements of conjac
are not treated as constant; they are estimated by finite differences, at non-trivial
expense. If the user does not supply a value for the optional argument f diff int
(the default; see Section 8.2), an interval for each element of x is computed
automatically at the start of the optimization. The automatic procedure can
usually identify constant elements of conjac, which are then computed once only
by finite differences.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
confun.

flag – Integer
Input: confun is called with comm->flag set to 0 or 2.
If comm->flag = 0 then only conf is referenced.
If comm->flag = 2 then both conf and conjac are referenced.
Output: if confun resets comm->flag to some negative number then
nag opt nlp will terminate immediately with the error indicator
NE USER STOP. If fail is supplied to nag opt nlp fail.errnum will be set
to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to confun and FALSE for all
subsequent calls.

user – double ∗
iuser – Integer ∗
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt nlp these pointers may be allocated memory by the
user and initialized with various quantities for use by confun when called
from nag opt nlp.

Note: confun should be tested separately before being used in conjunction with nag opt nlp.
The optional parameters verify grad and max iter can be used to assist this process. The
array x must not be changed by confun.

If confun does not calculate all of the elements of the constraint gradients then the optional
parameter con deriv should be set to FALSE.

x[n]
Input: an initial estimate of the solution.
Output: the final estimate of the solution.

objf
Output: the value of the objective function at the final iterate.

g[n]
Output: the gradient of the objective function at the final iterate (or its finite difference
approximation).

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters for nag opt nlp. These structure members offer the means of adjusting some of
the parameter values of the algorithm and on output will supply further details of the results.
A description of the members of options is given below in Section 8. Some of the results
returned in options can be used by nag opt nlp to perform a ‘warm start’ (see the member
start in Section 8.2).

If any of these optional parameters are required then the structure options should be
declared and initialized by a call to nag opt init (e04xxc) and supplied as an argument to
nag opt nlp. However, if the optional parameters are not required the NAG defined null
pointer, E04 DEFAULT, can be used in the function call.

[NP3491/6] 3.e04ucc.5

nag opt nlp NAG C Library Manual

comm
Input/Output: structure containing pointers for communication to the user-supplied
functions objfun and confun, and the optional user-defined printing function; see the
description of objfun and confun and Section 8.3.1 for details. If the user does not need
to make use of this communication feature the null pointer NAGCOMM NULL may be used in the
call to nag opt nlp; comm will then be declared internally for use in calls to user-supplied
functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialize fail and set fail.print = TRUE for this
function.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be
controlled by the user with the structure members options.print level and options.minor print level
(see Section 8.2). The default setting of print level = Nag Soln Iter and minor print level =
Nag NoPrint provides a single line of output at each iteration and the final result. This section
describes the default printout produced by nag opt nlp.

The following line of summary output (< 80 characters) is produced at every major iteration. In
all cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 7).
Note that Mnr may be greater than the optional parameter minor max iter
(default value = max(50,3(n + nL + nN)); see Section 8.2) if some iterations
are required for the feasibility phase.

Step is the step taken along the computed search direction. On reasonably well-
behaved problems, the unit step will be taken as the solution is approached.

Merit function is the value of the augmented Lagrangian merit function (12) at the current
iterate. This function will decrease at each iteration unless it was necessary to
increase the penalty parameters (see Section 7.3). As the solution is approached,
Merit function will converge to the value of the objective function at the
solution.

If the QP subproblem does not have a feasible point (signified by I at the
end of the current output line), the merit function is a large multiple of the
constraint violations, weighted by the penalty parameters. During a sequence of
major iterations with infeasible subproblems, the sequence of Merit Function
values will decrease monotonically until either a feasible subproblem is obtained
or nag opt nlp terminates with fail.code = NW NONLIN NOT FEASIBLE (no
feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnlin = 0), this entry contains
Objective, the value of the objective function F (x). The objective function
will decrease monotonically to its optimal value when there are no nonlinear
constraints.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if ncnlin is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Norm Gz is ‖ZT gFR‖, the Euclidean norm of the projected gradient (see Section 7.1). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ = ZTHFRZ = RT

ZRZ ; see (6) in Section 7.1 and (11) in Section 7.2).
The larger this number, the more difficult the problem.

3.e04ucc.6 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

The line of output may be terminated by one of the following characters:

M is printed if the quasi-Newton update was modified to ensure that the Hessian
approximation is positive-definite (see Section 7.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective and
constraint gradients. If the value of Step is zero, the switch to central differences
was made because no lower point could be found in the line search. (In this
case, the QP subproblem is re-solved with the central difference gradient and
Jacobian.) If the value of Step is non-zero, central differences were computed
because Norm Gz and Violtn imply that x is close to a Kuhn–Tucker point (see
Section 7.1).

L is printed if the line search has produced a relative change in x greater than
the value defined by the optional parameter step limit (default value = 2.0; see
Section 8.2). If this output occurs frequently during later iterations of the run,
step limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly
conditioned, the approximate Hessian is refactorized using column interchanges.
If necessary, R is modified so that its diagonal condition estimator is bounded.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j = 1, 2, ..., n of the variable.

State gives the state of the variable (FR if neither bound is in the active set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound). If Value lies outside
the upper or lower bounds by more than the feasibility tolerances specified by
the optional parameters lin feas tol and nonlin feas tol (see Section 8.2), State
will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information
about the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange Multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound, there would be no change
to the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than lin feas tol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable j. (None indicates that
bl[j − 1] ≤ inf bound, where inf bound is the optional parameter.)

Upper bound is the upper bound specified for the variable j. (None indicates that
bu[j − 1] ≥ inf bound, where inf bound is the optional parameter.)

Lagr Mult is the value of the Lagrange multiplier for the associated bound constraint. This
will be zero if State is FR unless bl[j−1] ≤ −inf bound and bu[j−1] ≥ inf bound,
in which case the entry will be blank. If x is optimal, the multiplier should be
non-negative if State is LL, and non-positive if State is UL.

[NP3491/6] 3.e04ucc.7

nag opt nlp NAG C Library Manual

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl[j − 1] and bu[j − 1]. A blank entry indicates that the associated variable is
not bounded (i.e., bl[j − 1] ≤ −inf bound and bu[j − 1] ≥ inf bound).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, bl[j−1] and bu[j−1] are replaced by bl[n+j−1]
and bu[n+ j − 1] respectively, and with the following changes in the heading:
L Con gives the name (L) and index j, for j = 1, 2, ..., nL of the linear constraint.

N Con gives the name (N) and index (j − nL), for j = nL + 1, nL + 2, ..., nL + nN of the
nonlinear constraint.

The I key in the State column is printed for general linear constraints which currently violate one
of their bounds by more than lin feas tol and for nonlinear constraints which violate one of their
bounds by more than nonlin feas tol.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can
be interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate
to this precision.

5. Comments

A list of possible error exits and warnings from nag opt nlp is given in Section 9. The termination
criteria and accuracy of nag opt nlp are considered in Section 10.

6. Example 1

This is based on Problem 71 in Hock and Schittkowski (1981) and involves the minimization of the
nonlinear function

F (x) = x1x4(x1 + x2 + x3) + x3

subject to the bounds

1 ≤ x1 ≤ 5
1 ≤ x2 ≤ 5
1 ≤ x3 ≤ 5
1 ≤ x4 ≤ 5

to the general linear constraint

x1 + x2 + x3 + x4 ≤ 20,

and to the nonlinear constraints

x2
1 + x2

2 + x2
3 + x2

4 ≤ 40,
x1x2x3x4 ≥ 25.

The initial point, which is infeasible, is

x0 = (1, 5, 5, 1)
T ,

and F (x0) = 16.

The optimal solution (to five figures) is

x∗ = (1.0, 4.7430, 3.8211, 1.3794)T ,

3.e04ucc.8 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

and F (x∗) = 17.014. One bound constraint and both nonlinear constraints are active at the
solution.

This example shows the simple use of nag opt nlp where default values are used for all optional
parameters. An example showing the use of optional parameters is given in Section 13. There is
one example program file, the main program of which calls both examples. The main program and
Example 1 are given below.

6.1. Program Text

/* nag_opt_nlp (e04ucc) Example Program.
*
* Copyright 1996 Numerical Algorithms Group.
*
* Mark 4, 1996.
*
* Mark 5 revised, 1998.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage04.h>

static void objfun(Integer n, double x[], double *objf,
double objgrd[], Nag_Comm *comm)

{
/* Routine to evaluate objective function and its 1st derivatives. */

if (comm->flag == 0 || comm->flag == 2)
*objf = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];

if (comm->flag == 2)
{
objgrd[0] = x[3] * (2.0*x[0] + x[1] + x[2]);
objgrd[1] = x[0] * x[3];
objgrd[2] = x[0] * x[3] + 1.0;
objgrd[3] = x[0] * (x[0] + x[1] + x[2]);

}
} /* objfun */

static void confun(Integer n, Integer ncnlin, Integer needc[],
double x[], double conf[], double conjac[],
Nag_Comm *comm)

{
#define CONJAC(I,J) conjac[((I)-1)*n + (J) - 1]

Integer i, j;

/* Routine to evaluate the nonlinear constraints and
* their 1st derivatives.
*/

/* Function Body */
if (comm->first)
{
/* First call to confun. Set all Jacobian elements to zero.
* Note that this will only work when con_deriv = TRUE
* (the default; see Section 4 (confun) and 8.2 (con_deriv)).
*/
for (j = 1; j <= n; ++j)

for (i = 1; i <= ncnlin; ++i)
CONJAC(i,j) = 0.0;
}

if (needc[0] > 0)
{
if (comm->flag == 0 || comm->flag == 2)

conf[0] = x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3];

[NP3491/6] 3.e04ucc.9

nag opt nlp NAG C Library Manual

if (comm->flag == 2)
{

CONJAC(1,1) = x[0] * 2.0;
CONJAC(1,2) = x[1] * 2.0;
CONJAC(1,3) = x[2] * 2.0;
CONJAC(1,4) = x[3] * 2.0;

}
}

if (needc[1] > 0)
{
if (comm->flag == 0 || comm->flag == 2)

conf[1] = x[0] * x[1] * x[2] * x[3];

if (comm->flag == 2)
{

CONJAC(2,1) = x[1] * x[2] * x[3];
CONJAC(2,2) = x[0] * x[2] * x[3];
CONJAC(2,3) = x[0] * x[1] * x[3];
CONJAC(2,4) = x[0] * x[1] * x[2];

}
}

} /* confun */

static void objfun1(Integer n, double x[], double *objf,
double objgrd[], Nag_Comm *comm)

{
/* Routine to evaluate objective function and its 1st derivatives. */

if (comm->flag == 0 || comm->flag == 2)
*objf = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];

/* Note, elements of the objective gradient have not been
specified.
*/

} /* objfun1 */

static void confun1(Integer n, Integer ncnlin, Integer needc[],
double x[], double conf[], double conjac[],
Nag_Comm *comm)

{
#define CONJAC(I,J) conjac[((I)-1)*n + (J) - 1]

/* Routine to evaluate the nonlinear constraints and
* their 1st derivatives.
*/

/* Function Body */
if (needc[0] > 0)
{
if (comm->flag == 0 || comm->flag == 2)

conf[0] = x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3];

if (comm->flag == 2)
{

CONJAC(1,3) = x[2] * 2.0;
/* Note only one constraint gradient has been specified
* in the first row of the constraint Jacobian.
*/

}

}
if (needc[1] > 0)
{
if (comm->flag == 0 || comm->flag == 2)

conf[1] = x[0] * x[1] * x[2] * x[3];
if (comm->flag == 2)

{
CONJAC(2,2) = x[0] * x[2] * x[3];

3.e04ucc.10 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

CONJAC(2,3) = x[0] * x[1] * x[3];
/* Note only two constraint gradients have been specified
* in the second row of the constraint Jacobian.
*/

}
}

} /* confun */

static void ex1(void);
static void ex2(void);

main()
{

/* Two examples are called, ex1() uses the
* default settings to solve a problem while
* ex2() solves another problem with some
* of the optional parameters set by the user.
*/

Vprintf("e04ucc Example Program Results\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file */

ex1();
ex2();
exit(EXIT_SUCCESS);

}

static void ex1()
{
#define NMAX 10
#define NCLIN 10
#define NCNLIN 10
#define TOTALVARS NMAX+NCLIN+NCNLIN
#define TDA NMAX

/* Local variables */
Integer i, j, n, tda;
Integer nclin, ncnlin;

double objf;
double x[NMAX], a[NCLIN][NMAX], bl[TOTALVARS],
bu[TOTALVARS], objgrd[NMAX];

Vprintf("\ne04ucc example 1: no option setting.\n");
/* Skip heading in data file */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%ld%*[^\n]", &n, &nclin, &ncnlin);
if (n <= 10 && nclin <= 10 && ncnlin <= 10)
{
tda = NMAX;
/* Read a, bl, bu and x from data file */

/* Read the matrix of linear constraint coefficients */
if (nclin > 0)
{

for (i = 0; i < nclin; ++i)
for (j = 0; j < n; ++j)
Vscanf("%lf", &a[i][j]);
}

Vscanf("%*[^\n]"); /* Remove remainder of line */

/* Read lower bounds */
for (i = 0; i < n + nclin + ncnlin; ++i)

Vscanf("%lf", &bl[i]);
Vscanf("%*[^\n]");

/* Read upper bounds */
for (i = 0; i < n + nclin + ncnlin; ++i)

Vscanf("%lf", &bu[i]);

[NP3491/6] 3.e04ucc.11

nag opt nlp NAG C Library Manual

Vscanf("%*[^\n]");

/* Read the initial point x */
for (i = 0; i < n; ++i)

Vscanf("%lf", &x[i]);
Vscanf("%*[^\n]");

e04ucc(n, nclin, ncnlin, (double *)a, tda, bl, bu,
objfun, confun, x, &objf, objgrd,
E04_DEFAULT, NAGCOMM_NULL, NAGERR_DEFAULT);
}

}

6.2. Program Data

e04ucc Example Program Data

Example data for ex1: no option setting
4 1 2 :Values of N, NCLIN and NCNLN
1.0 1.0 1.0 1.0 :End of matrix A
1.0 1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 :End of BL
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25 :End of BU
1.0 5.0 5.0 1.0 :End of X

6.3. Program Results

e04ucc Example Program Results

e04ucc example 1: no option setting.

Parameters to e04ucc

Number of variables........... 4

Linear constraints............ 1 Nonlinear constraints......... 2
start................... Nag_Cold
step_limit.............. 2.00e+00 machine precision....... 1.11e-16
lin_feas_tol............ 1.05e-08 nonlin_feas_tol......... 1.05e-08
optim_tol............... 3.26e-12 linesearch_tol.......... 9.00e-01
crash_tol............... 1.00e-02 f_prec.................. 4.37e-15
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
max_iter................ 50 minor_max_iter.......... 50
hessian.................. FALSE
f_diff_int.............. Automatic c_diff_int.............. Automatic
obj_deriv............... TRUE con_deriv............... TRUE
verify_grad....... Nag_SimpleCheck print_deriv............ Nag_D_Full
print_level......... Nag_Soln_Iter minor_print_level..... Nag_NoPrint
outfile................. stdout

Verification of the objective gradients.
--

All objective gradient elements have been set.

Simple Check:

The objective gradient seems to be ok.

Directional derivative of the objective 8.15250000e-01
Difference approximation 8.15249734e-01

Verification of the constraint gradients.

All constraint gradient elements have been set.

Simple Check:

3.e04ucc.12 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

The Jacobian seems to be ok.

The largest relative error was 2.29e-07 in constraint 2

Maj Mnr Step Merit function Violtn Norm Gz Cond Hz
0 4 0.0e+00 1.738281e+01 1.2e+01 7.1e-01 1.0e+00
1 1 1.0e+00 1.703169e+01 1.9e+00 4.6e-02 1.0e+00
2 1 1.0e+00 1.701442e+01 8.8e-02 2.1e-02 1.0e+00
3 1 1.0e+00 1.701402e+01 5.4e-04 3.1e-04 1.0e+00
4 1 1.0e+00 1.701402e+01 9.9e-08 7.0e-06 1.0e+00
5 1 1.0e+00 1.701402e+01 4.6e-11 1.1e-08 1.0e+00

Exit from NP problem after 5 major iterations, 9 minor iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
V 1 LL 1.00000e+00 1.00000e+00 5.00000e+00 1.0879e+00 0.0000e+00
V 2 FR 4.74300e+00 1.00000e+00 5.00000e+00 0.0000e+00 2.5700e-01
V 3 FR 3.82115e+00 1.00000e+00 5.00000e+00 0.0000e+00 1.1789e+00
V 4 FR 1.37941e+00 1.00000e+00 5.00000e+00 0.0000e+00 3.7941e-01

L Con State Value Lower Bound Upper Bound Lagr Mult Residual
L 1 FR 1.09436e+01 None 2.00000e+01 0.0000e+00 9.0564e+00

N Con State Value Lower Bound Upper Bound Lagr Mult Residual
N 1 UL 4.00000e+01 None 4.00000e+01 -1.6147e-01 -3.5264e-11
N 2 LL 2.50000e+01 2.50000e+01 None 5.5229e-01 -2.8791e-11

Optimal solution found.

Final objective value = 1.7014017e+01

7. Further Description

This section gives a detailed description of the algorithm used in nag opt nlp. This, and possibly
the next section, Section 8, may be omitted if the more sophisticated features of the algorithm and
software are not currently of interest.

7.1. Overview

nag opt nlp is based on the same algorithm as used in subroutine NPSOL described in Gill et al
(1986c).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. An active simple
bound constraint implies that the corresponding variable is fixed at its bound, and hence the
variables are partitioned into fixed and free variables. Let C denote the m by n matrix of gradients
of the active general linear and nonlinear constraints. The number of fixed variables will be denoted
by nFX, with nFR (nFR = n − nFX) the number of free variables. The subscripts ‘FX’ and ‘FR’
on a vector or matrix will denote the vector or matrix composed of the elements corresponding to
fixed or free variables.

A point x is a first-order Kuhn–Tucker point for (1) (see, e.g., Powell (1974)) if the following
conditions hold:

(i) x is feasible;

(ii) there exist vectors ξ and λ (the Lagrange multiplier vectors for the bound and general
constraints) such that

g = CTλ+ ξ (2)

where g is the gradient of F evaluated at x, and ξj = 0 if the jth variable is free.

(iii) The Lagrange multiplier corresponding to an inequality constraint active at its lower bound
must be non-negative, and it must be non-positive for an inequality constraint active at its
upper bound.

[NP3491/6] 3.e04ucc.13

nag opt nlp NAG C Library Manual

Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to the rows of
CFR; i.e., CFRZ = 0. An equivalent statement of the condition (2) in terms of Z is

ZT gFR = 0.

The vector ZT gFR is termed the projected gradient of F at x. Certain additional conditions must
be satisfied in order for a first-order Kuhn–Tucker point to be a solution of (1) (see, e.g., Powell
(1974)).
nag opt nlp implements a sequential quadratic programming (SQP) method. For an overview of
SQP methods, see, for example, Fletcher (1987), Gill et al (1981) and Powell (1983).

The basic structure of nag opt nlp involves major and minor iterations. The major iterations
generate a sequence of iterates {xk} that converge to x∗, a first-order Kuhn–Tucker point of (1).
At a typical major iteration, the new iterate x̄ is defined by

x̄ = x+ αp (3)

where x is the current iterate, the non-negative scalar α is the step length, and p is the search
direction. (For simplicity, we shall always consider a typical iteration and avoid reference to the
index of the iteration.) Also associated with each major iteration are estimates of the Lagrange
multipliers and a prediction of the active set.

The search direction p in (3) is the solution of a quadratic programming subproblem of the form

Minimize
p

gT p+
1
2
pTHp subject to l̄ ≤

p
ALp
ANp

 ≤ ū, (4)

where g is the gradient of F at x, the matrix H is a positive-definite quasi-Newton approximation
to the Hessian of the Lagrangian function (see Section 7.4), and AN is the Jacobian matrix of c
evaluated at x. (Finite difference estimates may be used for g and AN ; see the optional parameters
obj deriv and con deriv in Section 8.2.) Let l in (1) be partitioned into three sections: lB , lL and
lN , corresponding to the bound, linear and nonlinear constraints. The vector l̄ in (4) is similarly
partitioned, and is defined as

l̄B = lB − x, l̄L = lL −ALx, and l̄N = lN − c,

where c is the vector of nonlinear constraints evaluated at x. The vector ū is defined in an analogous
fashion.

The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from the
subproblem (4) (and similarly for the predicted active set). (The numbers of bounds, general linear
and nonlinear constraints in the QP active set are the quantities Bnd, Lin and Nln in the output
of nag opt nlp; see Section 8.3.) In nag opt nlp, (4) is solved using the same algorithm as used in
function nag opt lin lsq (e04ncc). Since solving a quadratic program is an iterative procedure, the
minor iterations of nag opt nlp are the iterations of nag opt lin lsq (e04ncc). (More details about
solving the subproblem are given in Section 7.2.)

Certain matrices associated with the QP subproblem are relevant in the major iterations. Let the
subscripts ‘FX’ and ‘FR’ refer to the predicted fixed and free variables, and let C denote the m by
n matrix of gradients of the general linear and nonlinear constraints in the predicted active set.
First, we have available the TQ factorization of CFR:

CFRQFR = (0 T), (5)

where T is a non-singular m by m reverse-triangular matrix (i.e., tij = 0 if i + j < m), and the
non-singular nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al
(1984a)). Second, we have the upper triangular Cholesky factor R of the transformed and re-ordered
Hessian matrix

RTR = HQ ≡ QT H̃Q, (6)

3.e04ucc.14 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

where H̃ is the Hessian H with rows and columns permuted so that the free variables are first, and
Q is the n by n matrix

Q =
(
QFR

IFX

)
(7)

with IFX the identity matrix of order nFX. If the columns of QFR are partitioned so that

QFR = (Z Y),

the nZ (nZ ≡ nFR − m) columns of Z form a basis for the null space of CFR. The matrix Z is
used to compute the projected gradient ZT gFR at the current iterate. (The values Nz, Norm Gf and
Norm Gz printed by nag opt nlp give nZ and the norms of gFR and Z

T gFR; see Section 8.3.)

A theoretical characteristic of SQP methods is that the predicted active set from the QP subproblem
(4) is identical to the correct active set in a neighbourhood of x∗. In nag opt nlp, this feature is
exploited by using the QP active set from the previous iteration as a prediction of the active set
for the next QP subproblem, which leads in practice to optimality of the subproblems in only one
iteration as the solution is approached. Separate treatment of bound and linear constraints in
nag opt nlp also saves computation in factorizing CFR and HQ.

Once p has been computed, the major iteration proceeds by determining a step length α that
produces a ‘sufficient decrease’ in an augmented Lagrangian merit function (see Section 7.3).
Finally, the approximation to the transformed Hessian matrix HQ is updated using a modified
BFGS quasi-Newton update (see Section 7.4) to incorporate new curvature information obtained
in the move from x to x̄.

On entry to nag opt nlp, an iterative procedure from nag opt lin lsq (e04ncc) is executed, starting
with the user-provided initial point, to find a point that is feasible with respect to the bounds
and linear constraints (using the tolerance specified by lin feas tol; see Section 8.2). If no feasible
point exists for the bound and linear constraints, (1) has no solution and nag opt nlp terminates.
Otherwise, the problem functions will thereafter be evaluated only at points that are feasible with
respect to the bounds and linear constraints. The only exception involves variables whose bounds
differ by an amount comparable to the finite difference interval (see the discussion of f diff int in
Section 8.2). In contrast to the bounds and linear constraints, it must be emphasized that the
nonlinear constraints will not generally be satisfied until an optimal point is reached.

Facilities are provided to check whether the user-provided gradients appear to be correct (see the
optional parameter verify grad in Section 8.2). In general, the check is provided at the first point
that is feasible with respect to the linear constraints and bounds. However, the user may request
that the check be performed at the initial point.

In summary, the method of nag opt nlp first determines a point that satisfies the bound and linear
constraints. Thereafter, each iteration includes:

(a) the solution of a quadratic programming subproblem (see Section 7.2);

(b) a linesearch with an augmented Lagrangian merit function (see Section 7.3); and

(c) a quasi-Newton update of the approximate Hessian of the Lagrangian function (Section 7.4).

7.2. Solution of the Quadratic Programming Subproblem

The search direction p is obtained by solving (4) using the algorithm of nag opt lin lsq (e04ncc)
(see Gill et al (1986a)), which was specifically designed to be used within an SQP algorithm for
nonlinear programming.

The method of nag opt lin lsq (e04ncc) is a two-phase (primal) quadratic programming method.
The two phases of the method are: finding an initial feasible point by minimizing the sum of
infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the
feasible region (the optimality phase). The computations in both phases are performed by the same
segments of code. The two-phase nature of the algorithm is reflected by changing the function
being minimized from the sum of infeasibilities to the quadratic objective function.

In general, a quadratic program must be solved by iteration. Let p denote the current estimate of
the solution of (4); the new iterate p̄ is defined by

p̄ = p+ σd (8)

[NP3491/6] 3.e04ucc.15

nag opt nlp NAG C Library Manual

where, as in (3), σ is a non-negative step length and d is a search direction.

At the beginning of each iteration of nag opt lin lsq (e04ncc), a working set is defined of constraints
(general and bound) that are satisfied exactly. The vector d is then constructed so that the values
of constraints in the working set remain unaltered for any move along d. For a bound constraint in
the working set, this property is achieved by setting the corresponding element of d to zero, i.e.,
by fixing the variable at its bound. As before, the subscripts ‘FX’ and ‘FR’ denote selection of the
elements associated with the fixed and free variables.

Let C denote the sub-matrix of rows of
(
AL

AN

)

corresponding to general constraints in the working set. The general constraints in the working set
will remain unaltered if

CFRdFR = 0 (9)

which is equivalent to defining dFR as

dFR = ZdZ (10)

for some vector dZ , where Z is the matrix associated with the TQ factorization (5) of CFR.

The definition of dZ in (10) depends on whether the current p is feasible. If not, dZ is zero except
for a element γ in the jth position, where j and γ are chosen so that the sum of infeasibilities is
decreasing along d. (For further details, see Gill et al (1986a).) In the feasible case, dZ satisfies the
equations

RT
ZRZdZ = −ZT qFR (11)

where RZ is the Cholesky factor of ZTHFRZ and q is the gradient of the quadratic objective
function (q = g+Hp). (The vector ZT qFR is the projected gradient of the QP.) With (11), p+ d is
the minimizer of the quadratic objective function subject to treating the constraints in the working
set as equalities.

If the QP projected gradient is zero, the current point is a constrained stationary point in the
subspace defined by the working set. During the feasibility phase, the projected gradient will
usually be zero only at a vertex (although it may vanish at non-vertices in the presence of constraint
dependencies). During the optimality phase, a zero projected gradient implies that p minimizes
the quadratic objective function when the constraints in the working set are treated as equalities.
In either case, Lagrange multipliers are computed. Given a positive constant δ of the order of the
machine precision, the Lagrange multiplier µj corresponding to an inequality constraint in the
working set at its upper bound is said to be optimal if µj ≤ δ when the jth constraint is at its
upper bound, or if µj ≥ −δ when the associated constraint is at its lower bound. If any multiplier is
non-optimal, the current objective function (either the true objective or the sum of infeasibilities)
can be reduced by deleting the corresponding constraint from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is non-zero,
no feasible point exists. The QP algorithm will then continue iterating to determine the minimum
sum of infeasibilities. At this point, the Lagrange multiplier µj will satisfy −(1 + δ) ≤ µj ≤ δ for
an inequality constraint at its upper bound, and −δ ≤ µj ≤ (1 + δ) for an inequality at its lower
bound. The Lagrange multiplier for an equality constraint will satisfy |µj | ≤ 1 + δ.

The choice of step length σ in the QP iteration (8) is based on remaining feasible with respect to
the satisfied constraints. During the optimality phase, if p+ d is feasible, σ will be taken as unity.
(In this case, the projected gradient at p̄ will be zero.) Otherwise, σ is set to σM , the step to the
‘nearest’ constraint, which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to CFR: if the status of a general constraint
changes, a row of CFR is altered; if a bound constraint enters or leaves the working set, a column

3.e04ucc.16 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

of CFR changes. Explicit representations are recurred of the matrices T , QFR and R, and of the
vectors QT q and QT g.

7.3. The Merit Function

After computing the search direction as described in Section 7.2, each major iteration proceeds by
determining a step length α in (3) that produces a ‘sufficient decrease’ in the augmented Lagrangian
merit function

L(x, λ, s) = F (x)−
∑

i

λi(ci(x)− si) +
1
2

∑
i

ρi(ci(x)− si)
2, (12)

where x, λ and s vary during the linesearch. The summation terms in (12) involve only the
nonlinear constraints. The vector λ is an estimate of the Lagrange multipliers for the nonlinear
constraints of (1). The non-negative slack variables {si} allow nonlinear inequality constraints to
be treated without introducing discontinuities. The solution of the QP subproblem (4) provides a
vector triple that serves as a direction of search for the three sets of variables. The non-negative
vector ρ of penalty parameters is initialized to zero at the beginning of the first major iteration.
Thereafter, selected elements are increased whenever necessary to ensure descent for the merit
function. Thus, the sequence of norms of ρ (the printed quantity Penalty; see Section 8.3) is
generally non-decreasing, although each ρi may be reduced a limited number of times.

The merit function (12) and its global convergence properties are described in Gill et al (1986b).

7.4. The Quasi-Newton Update

The matrix H in (4) is a positive-definite quasi-Newton approximation to the Hessian of the
Lagrangian function. (For a review of quasi-Newton methods, see Dennis and Schnabel (1983).)
At the end of each major iteration, a new Hessian approximation H̄ is defined as a rank-two
modification of H. In nag opt nlp, the BFGS quasi-Newton update is used:

H̄ = H − 1
sTHs

HssTH +
1
yT s

yyT , (13)

where s = x̄− x (the change in x).

In nag opt nlp, H is required to be positive-definite. If H is positive-definite, H̄ defined by (13)
will be positive-definite if and only if yT s is positive (see, e.g., Dennis and Moré (1977)). Ideally, y
in (13) would be taken as yL, the change in gradient of the Lagrangian function

yL = ḡ − ĀT
NµN − g +AT

NµN (14)

where µN denotes the QP multipliers associated with the nonlinear constraints of the original
problem. If yT

L s is not sufficiently positive, an attempt is made to perform the update with a
vector y of the form

y = yL +
∑

i

ωi(ai(x̄)ci(x̄)− ai(x)ci(x)),

where ωi ≥ 0. If no such vector can be found, the update is perfomed with a scaled yL; in this case,
M is printed to indicate that the update was modified.

Rather than modifying H itself, the Cholesky factor of the transformed Hessian HQ (6) is updated,
where Q is the matrix from (5) associated with the active set of the QP subproblem. The update
(12) is equivalent to the following update to HQ:

H̄Q = HQ − 1
sT

QHQsQ

HQsQs
T
QHQ +

1
yT

QsQ

yQy
T
Q, (15)

where yQ = QT y, and sQ = QT s. This update may be expressed as a rank-one update to R (see
Dennis and Schnabel (1981)).

[NP3491/6] 3.e04ucc.17

nag opt nlp NAG C Library Manual

8. Optional Parameters

A number of optional input and output parameters to nag opt nlp are available through the
structure argument options, type Nag E04 Opt. A parameter may be selected by assigning an
appropriate value to the relevant structure member; those parameters not selected will be assigned
default values. If no use is to be made of any of the optional parameters the user should use the
NAG defined null pointer, E04 DEFAULT, in place of options when calling nag opt nlp; the default
settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function
nag opt init (e04xxc). Values may then be assigned to the structure members in the normal C
manner.

Option settings may also be read from a text file using the function nag opt read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, then this
must be done directly in the calling program; they cannot be assigned using using nag opt read
(e04xyc).

8.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag opt nlp
together with their default values where relevant. The number ε is a generic notation for machine
precision (see nag machine precision (X02AJC)).

Nag Start start Nag Cold
Boolean list TRUE
Nag PrintType print level Nag Soln Iter
Nag PrintType minor print level Nag NoPrint
char outfile[80] stdout
void (*print fun)() NULL
Boolean obj deriv TRUE
Boolean con deriv TRUE
Nag GradChk verify grad Nag SimpleCheck
Nag DPrintType print deriv Nag D Full
Integer obj check start 1
Integer obj check stop n
Integer con check start 1
Integer con check stop n
double f diff int Computed automatically
double c diff int Computed automatically
Integer max iter max(50,3(n+nclin)+10ncnlin)
Integer minor max iter max(50,3(n+nclin+ncnlin))
double f prec ε0.9

double optim tol f prec0.8

double lin feas tol
√
ε

double nonlin feas tol ε0.33 or
√
ε

double linesearch tol 0.9
double step limit 2.0
double crash tol 0.01
double inf bound 1020

double inf step max(inf bound,1020)
double *conf size ncnlin
double *conjac size ncnlin∗n
Integer *state size n+nclin+ncnlin
double *lambda size n+nclin+ncnlin
double *h size n∗n
Boolean hessian FALSE
Integer iter
Integer nf

3.e04ucc.18 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

8.2. Description of Optional Parameters

start – Nag Start Default = Nag Cold
Input: specifies how the initial working set is chosen in both the procedure for finding a
feasible point for the linear constraints and bounds, and in the first QP subproblem thereafter.
With start = Nag Cold, nag opt nlp chooses the initial working set based on the values of
the variables and constraints at the initial point. Broadly speaking, the initial working set
will include equality constraints and bounds or inequality constraints that violate or ‘nearly’
satisfy their bounds (to within the value of optional parameter crash tol; see below).
With start = Nag Warm, the user must provide a valid definition of every array element
of the optional parameters state, lambda and h (see below for their definitions). The state
values associated with bounds and linear constraints determine the initial working set of the
procedure to find a feasible point with respect to the bounds and linear constraints. The state
values associated with nonlinear constraints determine the initial working set of the first QP
subproblem after such a feasible point has been found. nag opt nlp will override the user’s
specification of state if necessary, so that a poor choice of the working set will not cause a
fatal error. For instance, any elements of state which are set to −2, −1 or 4 will be reset to
zero, as will any elements which are set to 3 when the corresponding elements of bl and bu
are not equal. A warm start will be advantageous if a good estimate of the initial working set
is available – for example, when nag opt nlp is called repeatedly to solve related problems.
Constraint: options.start = Nag Cold or Nag Warm.

list – Boolean Default = TRUE
Input: if options.list = TRUE the parameter settings in the call to nag opt nlp will be printed.

print level – Nag PrintType Default = Nag Soln Iter
Input: the level of results printout produced by nag opt nlp at each major iteration. The
following values are available.

Nag NoPrint No output.

Nag Soln The final solution only.

Nag Iter One line of output for each iteration.

Nag Iter Long A longer line of output for each iteration with more information
(line exceeds 80 characters).

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Long The final solution and one long line of output for each iteration
(line exceeds 80 characters).

Nag Soln Iter Const As Nag Soln Iter Long with the objective function, the values
of the variables, the Euclidean norm of the nonlinear constraint
violations, the nonlinear constraint values, c, and the linear
constraint values ALx also printed at each iteration.

Nag Soln Iter Full As Nag Soln Iter Const with the diagonal elements of the upper
triangular matrix T associated with the TQ factorization (5) of the
QP working set, and the diagonal elements of R, the triangular
factor of the transformed and re-ordered Hessian (6).

Details of each level of results printout are described in Section 8.3.
Constraint: options.print level = Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter,
Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full.

minor print level – Nag PrintType Default = Nag NoPrint

Input: the level of results printout produced by the minor iterations of nag opt nlp (i.e., the
iterations of the QP subproblem). The following values are available.

Nag NoPrint No output.

Nag Soln The final solution only.

[NP3491/6] 3.e04ucc.19

nag opt nlp NAG C Library Manual

Nag Iter One line of output for each iteration.

Nag Iter Long A longer line of output for each iteration with more information
(line exceeds 80 characters).

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Long The final solution and one long line of output for each iteration
(line exceeds 80 characters).

Nag Soln Iter Const As Nag Soln Iter Long with the Lagrange multipliers, the variables
x, the constraint values ALx and the constraint status also printed
at each iteration.

Nag Soln Iter Full As Nag Soln Iter Const with the diagonal elements of the upper
triangular matrix T associated with the TQ factorization (4) of
the working set, and the diagonal elements of the upper triangular
matrix R printed at each iteration.

Details of each level of results printout are described in Section 8.3 of the function
documentation for nag opt lin lsq (e04ncc). (options.minor print level in the present function
is equivalent to options.print level in nag opt lin lsq.)
Constraint: options.minor print level = Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter,
Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.

print fun – pointer to function Default = NULL
Input: printing function defined by the user; the prototype of print fun is
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 8.3.1 below for further details.

obj deriv – Boolean Default = TRUE
Input: this argument indicates whether all the derivatives of the objective function are
provided by the user in function objfun. If none or only some of the derivatives are being
supplied by objfun then obj deriv should be set to FALSE.
Whenever possible all derivatives should be supplied, since nag opt nlp is more reliable and
will usually be more efficient when all derivatives are exact.
If obj deriv = FALSE, nag opt nlp will approximate the unspecified components of
the objective gradient, using finite differences. The computation of finite-difference
approximations usually increases the total run-time, since a call to objfun is required for
each unspecified element. Furthermore, less accuracy can be attained in the solution (see
Chapter 8 of Gill et al. (1986c), for a discussion of limiting accuracy).
At times, central differences are used rather than forward differences, in which case twice as
many calls to objfun are needed. (The switch to central differences is not under the user’s
control.)

con deriv – Boolean Default = TRUE
Input: this argument indicates whether all derivatives for the constraint Jacobian are provided
by the user in function confun. If none or only some of the derivatives are being supplied by
confun then con deriv should be set to FALSE.
Whenever possible all derivatives should be supplied, since nag opt nlp is more reliable and
will usually be more efficient when all derivatives are exact.
If con deriv = FALSE, nag opt nlp will approximate unspecified elements of the Jacobian.
One call to confun is needed for each variable for which partial derivatives are not available.
For example, if the constraint Jacobian has the form

∗ ∗ ∗ ∗
∗ ? ? ∗
∗ ∗ ? ∗
∗ ∗ ∗ ∗

3.e04ucc.20 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

where ‘∗’ indicates an element provided by the user and ‘?’ indicates an unspecified element,
nag opt nlp will call confun twice: once to estimate the missing element in column 2, and
again to estimate the two missing elements in column 3. (Since columns 1 and 4 are known,
they require no calls to confun.)
At times, central differences are used rather than forward differences, in which case twice as
many calls to confun are needed. (The switch to central differences is not under the user’s
control.)

verify grad – Nag GradChk Default = Nag SimpleCheck
Input: specifies the level of derivative checking to be performed by nag opt nlp on the gradient
elements computed by the user supplied functions objfun and confun.
The following values are available:

Nag NoCheck No derivative checking is performed.

Nag SimpleCheck Perform a simple check of both the objective and constraint
gradients.

Nag CheckObj Perform a component check of the objective gradient elements.

Nag CheckCon Perform a component check of the constraint gradient elements.

Nag CheckObjCon Perform a component check of both the objective and constraint
gradient elements.

Nag XSimpleCheck Perform a simple check of both the objective and constraint
gradients at the initial value of x specified in x.

Nag XCheckObj Perform a component check of the objective gradient elements at
the initial value of x specified in x.

Nag XCheckCon Perform a component check of the constraint gradient elements at
the initial value of x specified in x.

Nag XCheckObjCon Perform a component check of both the objective and constraint
gradient elements at the initial value of x specified in x.

If verify grad = Nag SimpleCheck or Nag XSimpleCheck then a simple ‘cheap’ test is
performed, which requires only one call to objfun and one call to confun. If verify grad
= Nag CheckObj, Nag CheckCon or Nag CheckObjCon then a more reliable (but more
expensive) test will be made on individual gradient components. This component check will
be made in the range specified by the optional parameters obj check start and obj check stop
for the objective gradient, with default values being 1 and n respectively. For the constraint
gradient the range is specified by options.con check start and options.con check stop, with
default values being 1 and n.
The procedure for the derivative check is based on finding an interval that produces an
acceptable estimate of the second derivative, and then using that estimate to compute an
interval that should produce a reasonable forward-difference approximation. The gradient
element is then compared with the difference approximation. (The method of finite difference
interval estimation is based on Gill et al (1983).) The result of the test is printed out by
nag opt nlp if optional parameter print deriv �= Nag D NoPrint.
Constraint: options.verify grad = Nag NoCheck, Nag SimpleCheck, Nag CheckObj,
Nag CheckCon, Nag CheckObjCon, Nag XSimpleCheck, Nag XCheckObj, Nag XCheckCon
or Nag XCheckObjCon.

print deriv – Nag DPrintType Default = Nag D Full
Input: controls whether the results of any derivative checking are printed out (see optional
parameter verify grad).
If a component derivative check has been carried out, then full details will be printed if
print deriv = Nag D Full. For a printout summarising the results of a component derivative
check set print deriv = Nag D Sum. If only a simple derivative check is requested then
Nag D Sum and Nag D Full will give the same level of output. To prevent any printout from
a derivative check set print deriv = Nag D NoPrint.
Constraint: options.print deriv = Nag D NoPrint, Nag D Sum or Nag D Full.

[NP3491/6] 3.e04ucc.21

nag opt nlp NAG C Library Manual

obj check start – Integer Default = 1
obj check stop – Integer Default = n

These options take effect only when options.verify grad is equal to one of Nag CheckObj,
Nag CheckObjCon, Nag XCheckObj or Nag XCheckObjCon.

Input: they may be used to control the verification of gradient elements computed by
the function objfun. For example, if the first 30 elements appeared to be correct in
an earlier run, so that only element 31 remains questionable, it is reasonable to specify
options.obj check start = 31. If the first 30 variables appear linearly in the objective, so that
the corresponding gradient elements are constant, the above choice would also be appropriate.
Constraint: 1 ≤ options.obj check start ≤ options.obj check stop ≤ n.

con check start – Integer Default = 1
con check stop – Integer Default = n

These options take effect only when options.verify grad is equal to one of Nag CheckCon,
Nag CheckObjCon, Nag XCheckCon or Nag XCheckObjCon.

Input: these parameters may be used to control the verification of the Jacobian elements
computed by the function confun. For example, if the first 30 columns of the constraint
Jacobian appeared to be correct in an earlier run, so that only column 31 remains questionable,
it is reasonable to specify con check start = 31.
Constraint: 1 ≤ options.con check start ≤ options.con check stop ≤ n.

f diff int – double Default = computed automatically

Input: defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional
parameter verify grad).

(b) For estimating unspecified elements of the objective and/or constraint Jacobian matrix.

In general, using the notation r = options.f diff int, a derivative with respect to the jth
variable is approximated using the interval δj , where δj = r(1 + |x̂j |), with x̂ the first point
feasible with respect to the bounds and linear constraints. If the functions are well scaled,
the resulting derivative approximation should be accurate to O(r). See Gill et al (1981) for
a discussion of the accuracy in finite difference approximations.

If a difference interval is not specified by the user, a finite difference interval will be computed
automatically for each variable by a procedure that requires up to six calls of confun and
objfun for each element. This option is recommended if the function is badly scaled or the
user wishes to have nag opt nlp determine constant elements in the objective and constraint
gradients (see the descriptions of confun and objfun in Section 4).
Constraint: ε ≤ options.f diff int < 1.0.

c diff int – double Default = computed automatically

Input: if the algorithm switches to central differences because the forward-difference
approximation is not sufficiently accurate the value of c diff int is used as the difference
interval for every element of x. The switch to central differences is indicated by C at the end
of each line of intermediate printout produced by the major iterations (see Section 4.1). The
use of finite-differences is discussed under the option f diff int.
Constraint: ε ≤ options.c diff int < 1.0.

max iter – Integer Default = max(50,3(n+nclin)+10ncnlin)

Input: the maximum number of major iterations allowed before termination.
Constraint: options.max iter ≥ 0.

minor max iter – Integer Default = max(50,3(n+nclin+ncnlin))
Input: the maximum number of iterations for finding a feasible point with respect to the
bounds and linear constraints (if any). The value also specifies the maximum number of
minor iterations for the optimality phase of each QP subproblem.
Constraint: options.minor max iter ≥ 0.

3.e04ucc.22 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

f prec – double Default = ε0.9

Input: this parameter defines εr, which is intended to be a measure of the accuracy with
which the problem functions F (x) and c(x) can be computed.

The value of εr should reflect the relative precision of 1 + |F (x)|; i.e., εr acts as a relative
precision when |F | is large, and as an absolute precision when |F | is small. For example, if
F (x) is typically of order 1000 and the first six significant digits are known to be correct, an
appropriate value for εr would be 10

−6. In contrast, if F (x) is typically of order 10−4 and
the first six significant digits are known to be correct, an appropriate value for εr would be
10−10. The choice of εr can be quite complicated for badly scaled problems; see Chapter 8 of
Gill et al (1981), for a discussion of scaling techniques. The default value is appropriate for
most simple functions that are computed with full accuracy. However, when the accuracy of
the computed function values is known to be significantly worse than full precision, the value
of εr should be large enough so that nag opt nlp will not attempt to distinguish between
function values that differ by less than the error inherent in the calculation.
Constraint: ε ≤ options.f prec < 1.0.

optim tol – double Default = f prec0.8

Input: specifies the accuracy to which the user wishes the final iterate to approximate a
solution of the problem. Broadly speaking, optim tol indicates the number of correct figures
desired in the objective function at the solution. For example, if optim tol is 10−6 and
nag opt nlp terminates successfully, the final value of F should have approximately six correct
figures.

nag opt nlp will terminate successfully if the iterative sequence of x-values is judged to have
converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section
7.1). The sequence of iterates is considered to have converged at x if

α‖p‖ ≤ √
r(1 + ‖x‖), (16a)

where p is the search direction and α the step length from (3), and r is the value of optim tol.
An iterate is considered to satisfy the first-order conditions for a minimum if

‖ZT gFR‖ ≤ √
r(1 + max(1 + |F (x)|, ‖gFR‖)) (16b)

and

|resj | ≤ ftol for all j, (16c)

where ZT gFR is the projected gradient (see Section 7.1), gFR is the gradient of F (x) with
respect to the free variables, resj is the violation of the jth active nonlinear constraint, and
ftol the value of the optional parameter nonlin feas tol.
Constraint: options.f prec ≤ options.optim tol < 1.0.

lin feas tol – double Default =
√
ε

Input: defines the maximum acceptable absolute violations in the linear constraints at a
‘feasible’ point; i.e., a linear constraint is considered satisfied if its violation does not exceed
lin feas tol.

On entry to nag opt nlp, an iterative procedure is executed in order to find a point that
satisfies the linear constraints and bounds on the variables to within the tolerance specified
by lin feas tol. All subsequent iterates will satisfy the constraints to within the same tolerance
(unless lin feas tol is comparable to the finite difference interval).

This tolerance should reflect the precision of the linear constraints. For example, if the
variables and the coefficients in the linear constraints are of order unity, and the latter are
correct to about 6 decimal digits, it would be appropriate to specify lin feas tol as 10−6.
Constraint: ε ≤ options.lin feas tol < 1.0.

[NP3491/6] 3.e04ucc.23

nag opt nlp NAG C Library Manual

nonlin feas tol – double Default = ε0.33 or
√
ε

The default is ε0.33 if options.con deriv = FALSE, and
√
ε otherwise.

Input: defines the maximum acceptable absolute violations in the nonlinear constraints at
a ‘feasible’ point; i.e., a nonlinear constraint is considered satisfied if its violation does not
exceed nonlin feas tol.

The tolerance defines the largest constraint violation that is acceptable at an optimal point.
Since nonlinear constraints are generally not satisfied until the final iterate, the value of
nonlin feas tol acts as a partial termination criteria for the iterative sequence generated by
nag opt nlp (see the discussion of options.optim tol).

This tolerance should reflect the precision of the nonlinear constraint functions calculated by
confun.
Constraint: ε ≤ options.nonlin feas tol < 1.0.

linesearch tol – double Default = 0.9

Input: controls the accuracy with which the step α taken during each iteration approximates
a minimum of the merit function along the search direction (the smaller the value of
linesearch tol, the more accurate the line search). The default value requests an inaccurate
search, and is appropriate for most problems, particularly those with any nonlinear
constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is
desirable to reduce the number of major iterations – for example, if the objective function is
cheap to evaluate, or if a substantial number of derivatives are unspecified.
Constraint: 0.0 ≤ options.linesearch tol < 1.0.

step limit – double Default = 2.0

Input: specifies the maximum change in the variables at the first step of the line search. In
some cases, such as F (x) = aebx or F (x) = axb, even a moderate change in the elements of x
can lead to floating-point overflow. The parameter step limit is therefore used to encourage
evaluation of the problem functions at meaningful points. Given any major iterate x, the first
point x̃ at which F and c are evaluated during the line search is restricted so that

‖x̃− x‖2 ≤ r(1 + ‖x‖2),

where r is the value of step limit.

The line search may go on and evaluate F and c at points further from x if this will result in
a lower value of the merit function. In this case, the character L is printed at the end of each
line of output produced by the major iterations (see Section 4.1). If L is printed for most of
the iterations, step limit should be set to a larger value.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of
nonlinear functions at wild values. The default value of step limit = 2.0 should not affect
progress on well-behaved functions, but values such as 0.1 or 0.01 may be helpful when rapidly
varying functions are present. If a small value of step limit is selected, a good starting point
may be required. An important application is to the class of nonlinear least-squares problems.
Constraint: options.step limit > 0.0.

crash tol – double Default = 0.01

Input: crash tol is used during a ‘cold start’ when nag opt nlp selects an initial working set
(options.start = Nag Cold). The initial working set will include (if possible) bounds or general
inequality constraints that lie within crash tol of their bounds. In particular, a constraint of
the form aT

j x ≥ l will be included in the initial working set if |aT
j x− l| ≤ crash tol × (1+ |l|).

Constraint: 0.0 ≤ options.crash tol ≤ 1.0.

inf bound – double Default = 1020

Input: inf bound defines the ‘infinite’ bound in the definition of the problem constraints. Any
upper bound greater than or equal to inf bound will be regarded as plus infinity (and similarly
any lower bound less than or equal to −inf bound will be regarded as minus infinity).
Constraint: options.inf bound > 0.0.

3.e04ucc.24 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

inf step – double Default = max(inf bound,1020)
Input: inf step specifies the magnitude of the change in variables that will be considered a
step to an unbounded solution. If the change in x during an iteration would exceed the value
of inf step, the objective function is considered to be unbounded below in the feasible region.
Constraint: options.inf step > 0.0.

conf – double ∗ Default memory = ncnlin
Input: ncnlin values of memory will be automatically allocated by nag opt nlp and this is the
recommended method of use of options.conf. However a user may supply memory from the
calling program.
Output: if ncnlin > 0, conf[i− 1] contains the value of the ith nonlinear constraint function
ci at the final iterate.
If ncnlin = 0 then conf will not be referenced.

conjac – double ∗ Default memory = ncnlin∗n
Input: ncnlin∗n values of memory will be automatically allocated by nag opt nlp and this is
the recommended method of use of options.conjac. However a user may supply memory from
the calling program.
Output: if ncnlin > 0, conjac contains the Jacobian matrix of the nonlinear constraint
functions at the final iterate, i.e., conjac[(i−1)∗n+j−1] contains the partial derivative of the
ith constraint function with respect to the jth variable, for i = 1, 2, . . . ,ncnlin; j = 1, 2, . . . ,n.
(See the discussion of the parameter conjac under confun.)
If ncnlin = 0 then conjac will not be referenced.

state – Integer ∗ Default memory = n+nclin+ncnlin
Input: state need not be set if the default option of start = Nag Cold is used as
n+nclin+ncnlin values of memory will be automatically allocated by nag opt nlp.
If the option start = Nag Warm has been chosen, state must point to a minimum of n+nclin+
ncnlin elements of memory. This memory will already be available if the options structure has
been used in a previous call to nag opt nlp from the calling program, with start = Nag Cold
and the same values of n, nclin and ncnlin. If a previous call has not been made, sufficient
memory must be allocated to by the user.
When a ‘warm start’ is chosen state should specify the status of the bounds and linear
constraints at the start of the feasibility phase. More precisely, the first n elements of state
refer to the upper and lower bounds on the variables, the next nclin elements refer to the
general linear constraints and the following ncnlin elements refer to the nonlinear constraints.
Possible values for state[j] are as follows:

state[j] Meaning

0 The corresponding constraint is not in the initial QP working set.

1 This inequality constraint should be in the initial working set at its lower bound.

2 This inequality constraint should be in the initial working set at its upper bound.

3 This equality constraint should be in the initial working set. This value must
only be specified if bl[j] = bu[j].

The values −2, −1 and 4 are also acceptable but will be reset to zero by the function, as will
any elements which are set to 3 when the corresponding elements of bl and bu are not equal. If
nag opt nlp has been called previously with the same values of n, nclin and ncnlin, then state
already contains satisfactory information. (See also the description of the optional parameter
start.) The function also adjusts (if necessary) the values supplied in x to be consistent with
the values supplied in state.
Constraint: −2 ≤ options.state[j] ≤ 4, for j = 0, 1, 2, . . . ,n+nclin+ncnlin−1.
Output: the status of the constraints in the QP working set at the point returned in x. The
significance of each possible value of state[j] is as follows:

[NP3491/6] 3.e04ucc.25

nag opt nlp NAG C Library Manual

state[j] Meaning

−2 The constraint violates its lower bound by more than the appropriate feasibility
tolerance (see the options lin feas tol and nonlin feas tol). This value can occur
only when no feasible point can be found for a QP subproblem.

−1 The constraint violates its upper bound by more than the appropriate feasibility
tolerance (see the options lin feas tol and nonlin feas tol). This value can occur
only when no feasible point can be found for a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the
QP working set.

1 This inequality constraint is included in the QP working set at its lower bound.

2 This inequality constraint is included in the QP working set at its upper bound.

3 This constraint is included in the working set as an equality. This value of state
can occur only when bl[j] = bu[j].

lambda – double ∗ Default memory = n+nclin+ncnlin
Input: lambda need not be set if the default option of start = Nag Cold is used as
n+nclin+ncnlin values of memory will be automatically allocated by nag opt nlp.
If the option start = Nag Warm has been chosen, lambda must point to a minimum of
n+nclin+ ncnlin elements of memory. This memory will already be available if the options
structure has been used in a previous call to nag opt nlp from the calling program, with start
= Nag Cold and the same values of n, nclin and ncnlin. If a previous call has not been made
with sufficient memory must be allocated by the user.
When a ‘warm start’ is chosen lambda[j − 1] must contain a multiplier estimate for each
nonlinear constraint with a sign that matches the status of the constraint specified by state,
for j = n+nclin+1,n+nclin+2,. . ., n+nclin+ncnlin. The remaining elements need not be set.
Note that if the jth constraint is defined as ‘inactive’ by the initial value of the state array
(i.e., state[j − 1] = 1), lambda[j − 1] should be zero; if the jth constraint is an inequality
active at its lower bound (i.e., state[j − 1] = 0), lambda[j − 1] should be non-negative; if the
jth constraint is an inequality active at its upper bound (i.e., state[j− 1] = 2), lambda[j− 1]
should be non-positive. If necessary, the function will modify lambda to match these rules.
Output: the values of the Lagrange multipliers from the last QP subproblem. lambda[j − 1]
should be non-negative if state[j − 1] = 1 and non-positive if state[j − 1] = 2.

h – double ∗ Default memory = n∗n
Input: h need not be set if the default option of start = Nag Cold is used as n∗n values of
memory will be automatically allocated by nag opt nlp.
If the option start = Nag Warm has been chosen, h must point to a minimum of n∗n elements
of memory. This memory will already be available if the calling program has used the options
structure in a previous call to nag opt nlp with start = Nag Cold and the same value of n.
If a previous call has not been made sufficient memory must be allocated to by the user.
When start = Nag Warm is chosen the memory pointed to by h must contain the upper
triangular Cholesky factor R of the initial approximation of the Hessian of the Lagrangian
function, with the variables in the natural order. Elements not in the upper triangular part
of R are assumed to be zero and need not be assigned. If a previous call has been made, with
hessian = TRUE, then h will already have been set correctly.
Output: if hessian = FALSE, h contains the upper triangular Cholesky factor R of QT H̃Q,
an estimate of the transformed and re-ordered Hessian of the Lagrangian at x (see (6) in
Section 7.1).
If hessian = TRUE, h contains the upper triangular Cholesky factor R of H, the approximate
(untransformed) Hessian of the Lagrangian, with the variables in the natural order.

hessian – Boolean Default = FALSE
Input: controls the contents of the optional parameter h on return from nag opt nlp.
nag opt nlp works exclusively with the transformed and re-ordered Hessian HQ, and hence
extra computation is required to form the Hessian itself. If hessian = FALSE, h contains the

3.e04ucc.26 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

Cholesky factor of the transformed and re-ordered Hessian. If hessian = TRUE, the Cholesky
factor of the approximate Hessian itself is formed and stored in h. This information is required
by nag opt nlp if the next call to nag opt nlp will be made with optional parameter start =
Nag Warm.

iter – Integer
Output: the number of major iterations which have been performed in nag opt nlp.

nf – Integer
Output: the number of times the objective function has been evaluated (i.e., number of calls
of objfun). The total excludes any calls made to objfun for purposes of derivative checking.

8.3. Description of Printed Output

The level of printed output can be controlled by the user with the structure members options.list,
options.print deriv, options.print level and options.minor print level (see Section 8.2). If list =
TRUE then the parameter values to nag opt nlp are listed, followed by the result of any derivative
check if print deriv=Nag D Sum orNag D Full. The printout of results is governed by the values of
print level and minor print level. The default of print level = Nag Soln Iter and minor print level
= Nag NoPrint provides a single line of output at each iteration and the final result. This section
describes all of the possible levels of results printout available from nag opt nlp.

If a simple derivative check, verify grad = Nag SimpleCheck, is requested then a statement
indicating success or failure is given. The largest error found in the constraint Jacobian is output
together with the directional derivative, gT p, of the objective gradient and its finite difference
approximation, where p is a random vector of unit length.
When a component derivative check (see verify grad in Section 8.2) is selected the element with
the largest relative error is identified for the objective gradient and the constraint Jacobian.
If the value of options.print deriv = Nag D Full then the following results are printed for each
component:

x[i] the element of x.

dx[i] the optimal finite difference interval.

g[i] or Jacobian value the gradient/Jacobian element.

Difference approxn. the finite difference approximation.

Itns the number of trials performed to find a suitable difference interval.

The indicator, OK or BAD?, states whether the gradient/Jacobian element and finite difference
approximation are in agreement. If the derivatives are believed to be in error nag opt nlp will exit
with fail.code set to NE DERIV ERRORS.

When print level = Nag Iter or Nag Soln Iter the following line of output is produced at every
iteration. In all cases, the values of the quantities printed are those in effect on completion of the
given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 7).
Note that Mnr may be greater than the optional parameter minor max iter
(default value = max(50,3(n + nL + nN)); see Section 8.2) if some iterations
are required for the feasibility phase.

Step is the step taken along the computed search direction. On reasonably well-
behaved problems, the unit step will be taken as the solution is approached.

Merit function is the value of the augmented Lagrangian merit function (12) at the current
iterate. This function will decrease at each iteration unless it was necessary to

[NP3491/6] 3.e04ucc.27

nag opt nlp NAG C Library Manual

increase the penalty parameters (see Section 7.3). As the solution is approached,
Merit function will converge to the value of the objective function at the
solution.

If the QP subproblem does not have a feasible point (signified by I at the
end of the current output line), the merit function is a large multiple of the
constraint violations, weighted by the penalty parameters. During a sequence of
major iterations with infeasible subproblems, the sequence of Merit Function
values will decrease monotonically until either a feasible subproblem is obtained
or nag opt nlp terminates with fail.code = NW NONLIN NOT FEASIBLE (no
feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnlin = 0), this entry contains
Objective, the value of the objective function F (x). The objective function
will decrease monotonically to its optimal value when there are no nonlinear
constraints.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if ncnlin is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Norm Gz is ‖ZT gFR‖, the Euclidean norm of the projected gradient (see Section 7.1). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ = ZTHFRZ = RT

ZRZ ; see (6) in Section 7.1 and (11) in Section 7.2).
The larger this number, the more difficult the problem.

The line of output may be terminated by one of the following characters:

M is printed if the quasi-Newton update was modified to ensure that the Hessian
approximation is positive-definite (see Section 7.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective and
constraint gradients. If the value of Step is zero, the switch to central differences
was made because no lower point could be found in the line search. (In this
case, the QP subproblem is re-solved with the central difference gradient and
Jacobian.) If the value of Step is non-zero, central differences were computed
because Norm Gz and Violtn imply that x is close to a Kuhn–Tucker point (see
Section 7.1).

L is printed if the line search has produced a relative change in x greater than
the value defined by the optional parameter step limit (default value = 2.0; see
Section 8.2). If this output occurs frequently during later iterations of the run,
step limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly
conditioned, the approximate Hessian is refactorized using column interchanges.
If necessary, R is modified so that its diagonal condition estimator is bounded.

If print level = Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full the
line of printout at every iteration is extended to give the following additional information. (Note
this longer line extends over more than 80 characters.)

Nfun is the cumulative number of evaluations of the objective function needed for
the line search. Evaluations needed for the estimation of the gradients by finite
differences are not included. Nfun is printed as a guide to the amount of work
required for the linesearch.

Nz is the number of columns of Z (see Section 7.1). The value of Nz is the number
of variables minus the number of constraints in the predicted active set; i.e.,
Nz = n− (Bnd+ Lin+ Nln).

3.e04ucc.28 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

Bnd is the number of simple bound constraints in the predicted active set.

Lin is the number of general linear constraints in the predicted active set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if
ncnlin is zero).

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if ncnlin is zero).

Norm Gf is the Euclidean norm of gFR, the gradient of the objective function with respect
to the free variables.

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond T is a lower bound on the condition number of the matrix of predicted active
constraints.

Conv is a three-letter indication of the status of the three convergence tests (16a)−(16c)
defined in the description of the optional parameter optim tol in Section 8.2.
Each letter is T if the test is satisfied, and F otherwise. The three tests indicate
whether:

(a) the sequence of iterates has converged;

(b) the projected gradient (Norm Gz) is sufficiently small; and

(c) the norm of the residuals of constraints in the predicted active set (Violtn)
is small enough.

If any of these indicators is F when nag opt nlp terminates with the error indicator
NE NOERROR, the user should check the solution carefully.

When print level = Nag Soln Iter Const or Nag Soln Iter Full more detailed results are given at
each iteration. If print level = Nag Soln Iter Const these additional values are: the value of x
currently held in x; the current value of the objective function; the Euclidean norm of nonlinear
constraint violations; the values of the nonlinear constraints (the vector c); and the values of the
linear constraints, (the vector ALx).

If print level = Nag Soln Iter Full then the diagonal elements of the matrix T associated with the
TQ factorization (5) of the QP working set and the diagonal elements of R, the triangular factor
of the transformed and re-ordered Hessian (6) (see Section 7.1) are also output at each iteration.

When print level = Nag Soln, Nag Soln Iter, Nag Soln Iter Long, Nag Soln Iter Const or
Nag Soln Iter Full the final printout from nag opt nlp includes a listing of the status of every
variable and constraint. The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j=1, 2, ..., n of the variable.

State gives the state of the variable (FR if neither bound is in the active set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound). If Value lies outside
the upper or lower bounds by more than the feasibility tolerances specified by
the optional parameters lin feas tol and nonlin feas tol (see Section 8.2), State
will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information
about the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange Multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound, there would be no change
to the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

[NP3491/6] 3.e04ucc.29

nag opt nlp NAG C Library Manual

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than lin feas tol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable j. (None indicates that
bl[j − 1] ≤ inf bound, where inf bound is the optional parameter.)

Upper bound is the upper bound specified for the variable j. (None indicates that
bu[j − 1] ≥ inf bound, where inf bound is the optional parameter.)

Lagr Mult is the value of the Lagrange multiplier for the associated bound constraint. This
will be zero if State is FR unless bl[j−1] ≤ −inf bound and bu[j−1] ≥ inf bound,
in which case the entry will be blank. If x is optimal, the multiplier should be
non-negative if State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl[j − 1] and bu[j − 1]. A blank entry indicates that the associated variable is
not bounded (i.e., bl[j − 1] ≤ −inf bound and bu[j − 1] ≥ inf bound).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, bl[j−1] and bu[j−1] are replaced by bl[n+j−1]
and bu[n+ j − 1] respectively, and with the following changes in the heading:
L Con gives the name (L) and index j, for j = 1, 2, ..., nL of the linear constraint.

N Con gives the name (N) and index (j − nL), for j = nL + 1, nL + 2, ..., nL + nN of the
nonlinear constraint.

The I key in the State column is printed for general linear constraints which currently violate one
of their bounds by more than lin feas tol and for nonlinear constraints which violate one of their
bounds by more than nonlin feas tol.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can
be interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate
to this precision.

For the output governed by minor print level, the user is referred to the documentation for
nag opt lin lsq (e04ncc). The option minor print level in the current document is equivalent to
options.print level in the documentation for nag opt lin lsq (e04ncc).

If options.print level = Nag NoPrint then printout will be suppressed; the user can print the final
solution when nag opt nlp returns to the calling program.

8.3.1. Output of Results via a User-defined Printing Function

The user may also specify their own print function for output of iteration results and the final
solution by use of the options.print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

This section may be skipped by a user who only wishes to use the default printing facilities.

When a user-defined function is assigned to options.print fun this will be called in preference to
the internal print function of nag opt nlp. Calls to the user-defined function are again controlled
by means of the options.print level, options.minor print level and options.print deriv members.
Information is provided through st and comm, the two structure arguments to print fun.

If comm->it maj prt = TRUE then results from the last major iteration of nag opt nlp are provided
through st. Note that print fun will be called with comm->it maj prt = TRUE only if print level
= Nag Iter, Nag Soln Iter, Nag Soln Iter Long Nag Soln Iter Const or Nag Soln Iter Full. The
following members of st are set:

n – Integer
the number of variables.

3.e04ucc.30 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

nclin – Integer
the number of linear constraints.

ncnlin – Integer
the number of nonlinear constraints.

nactiv – Integer
the total number of active elements in the current set.

iter – Integer
the major iteration count.

minor iter – Integer
the minor iteration count for the feasibility and the optimality phases of the QP subproblem.

step – double
the step taken along the computed search direction.

nfun – Integer
the cumulative number of objective function evaluations needed for the line search.

merit – double
the value of the augmented Lagrangian merit function at the current iterate.

objf – double
the current value of the objective function.

norm nlnviol – double
the Euclidean norm of nonlinear constraint violations (only available if st->ncnlin > 0).

violtn – double
the Euclidean norm of the residuals of constraints that are violated or in the predicted active
set (only available if st-> ncnlin > 0).

norm gz – double
‖ZT gFR‖, the Euclidean norm of the projected gradient.

nz – Integer
the number of columns of Z (see Section 7.1).

bnd – Integer
the number of simple bound constraints in the predicted active set.

lin – Integer
the number of general linear constraints in the predicted active set.

nln – Integer
the number of nonlinear constraints in the predicted active set (only available if
st->ncnlin > 0).

penalty – double
the Euclidean norm of the vector of penalty parameters used in the augmented Lagrangian
merit function (only available if st->ncnlin > 0).

norm gf – double
the Euclidean norm of gFR, the gradient of the objective function with respect to the free
variables.

cond h – double
a lower bound on the condition number of the Hessian approximation H.

cond hz – double
a lower bound on the condition number of the projected Hessian approximation HZ .

cond t – double
a lower bound on the condition number of the matrix of predicted active constraints.

iter conv – Boolean
TRUE if the sequence of iterates has converged, i.e., convergence condition (16a) (see
description of options.optim tol Section 8.2) is satisfied.

[NP3491/6] 3.e04ucc.31

nag opt nlp NAG C Library Manual

norm gz small – Boolean
TRUE if the projected gradient is sufficiently small, i.e., convergence condition (16b) (see
description of options.optim tol Section 8.2) is satisfied.

violtn small – Boolean
TRUE if the violations of the nonlinear constraints are sufficiently small, i.e., convergence
condition (16c) (see description of options.optim tol Section 8.2) is satisfied.

update modified – Boolean
TRUE if the quasi-Newton update was modified to ensure that the Hessian is positive-definite.

qp not feasible – Boolean
TRUE if the QP subproblem has no feasible point.

c diff – Boolean
TRUE if central differences were used to compute the unspecified objective and constraint
gradients.

step limit exceeded – Boolean
TRUE if the line search produced a relative change in x greater than the value defined by
the optional parameter step limit.

refactor – Boolean
TRUE if the approximate Hessian has been refactorized.

x – double ∗
contains the components x[j − 1] of the current point x, for j = 1, 2, . . . ,st->n.

state – Integer ∗
contains the status of the st->n variables, st->nclin linear, and st ->ncnlin nonlinear
constraints (if any). See Section 8.2 for a description of the possible status values.

ax – double ∗
if st->nclin > 0, ax[j − 1] contains the current value of the jth linear constraint, for
j = 1, 2, . . . ,st->nclin.

cx – double ∗
if st->ncnlin > 0, cx[j − 1] contains the current value of nonlinear constraint cj , for
j = 1, 2, . . . ,st->ncnlin.

diagt – double ∗
if st->nactiv > 0, the st-> nactiv elements of the diagonal of the matrix T .

diagr – double ∗
contains the st->n elements of the diagonal of the upper triangular matrix R.

If comm->sol sqp prt = TRUE then the final result from nag opt nlp is provided through st. Note
that print fun will be called with comm->sol sqp prt = TRUE only if print level = Nag Soln,
Nag Soln Iter Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full. The following
members of st are set:

iter – Integer
the number of iterations performed.

n – Integer
the number of variables.

nclin – Integer
the number of linear constraints.

ncnlin – Integer
the number of nonlinear constraints.

x – double ∗
contains the components x[j − 1] of the final point x, for j = 1, 2, . . . ,st->n.

state – Integer ∗
contains the status of the st->n variables, st->nclin linear, and st->ncnlin nonlinear
constraints (if any). See Section 8.2 for a description of the possible status values.

3.e04ucc.32 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

ax – double ∗
if st->nclin > 0, ax[j − 1] contains the final value of the jth linear constraint, for j =
1, 2, . . . ,st->nclin.

cx – double ∗
if st->ncnlin > 0, cx[j − 1] contains the final value of nonlinear constraint cj , for j =
1, 2, . . . ,st->ncnlin.

bl – double ∗
contains the st->n+st-> nclin+st->ncnlin lower bounds on the variables.

bu – double ∗
contains the st->n+st->nclin+st->ncnlin upper bounds on the variables.

lambda – double ∗
contains the st->n+st->nclin+st->ncnlin final values of the Lagrange multipliers.

If comm->g prt = TRUE then the results from derivative checking are provided through st. Note
that print fun will be called with comm->g prt only if print deriv = Nag D Sum or Nag D Full.
The following members of st are set:

n – Integer
the number of variables.

ncnlin – Integer
the number of nonlinear constraints.

x – double ∗
contains the components x[j − 1] of the initial point x0, for j = 1, 2, . . . ,st->n.

g – double ∗
contains the components g[j−1] of the gradient vector g(x) = (∂F/∂x1, ∂F/∂x2, . . . , ∂F/∂xn)

T

at the initial point x0, for j = 1, 2, . . . ,st->n.

conjac – double ∗
contains the elements of the Jacobian matrix of nonlinear constraints at the initial point x0

(∂fi/∂xj is held at location conjac[(i− 1)∗st->n+j − 1], i = 1, 2, . . . ,st->ncnlin,
j = 1, 2, . . . ,st->n).

In this case details of the derivative check performed by nag opt nlp are held in the following
substructure of st:

gprint – Nag GPrintSt ∗
which in turn contains three substructures g chk, f sim, c sim and two pointers to arrays of
substructures, f comp and c comp.

g chk – Nag Grad Chk St
the substructure g chk contains the members:

type – Nag GradChk
the type of derivative check performed by nag opt nlp. This will be the same
value as in options.verify grad.

g error – int
this member will be equal to one of the error codes NE NOERROR or
NE DERIV ERRORS according to whether the derivatives were found to be
correct or not.

obj start – Integer
specifies the gradient element at which any component check started. This value
will be equal to options.obj check start.

obj stop – Integer
specifies the gradient element at which any component check ended. This value
will be equal to options.obj check stop.

[NP3491/6] 3.e04ucc.33

nag opt nlp NAG C Library Manual

con start – Integer
specifies the element at which any component check of the constraint gradient
started. This value will be equal to options.con check start.

con stop – Integer
specifies the element at which any component check of the constraint gradient
ended. This value will be equal to options.con check stop.

f sim – Nag SimSt
The result of a simple derivative check of the objective gradient, gprint->g chk.type =
Nag SimpleCheck, will be held in this substructure in members:

correct – Boolean
if TRUE then the objective gradient is consistent with the finite difference
approximation according to a simple check.

dir deriv – double
the directional derivative gT p where p is a random vector of unit length with
elements of approximately equal magnitude.

fd approx – double
the finite difference approximation, (F (x + hp) − F (x))/h, to the directional
derivative.

c sim – Nag SimSt
The result of a simple derivative check of the constraint Jacobian, gprint->g chk.type
= Nag SimpleCheck, will be held in this substructure in members:

n elements – Integer
the number of columns of the constraint Jacobian for which a simple check has
been carried out, i.e., those columns which do not contain unknown elements.

correct – Boolean
if TRUE then the Jacobian is consistent with the finite difference approximation
according to a simple check.

max error – double
the maximum error found between the norm of a constraint gradient and its finite
difference approximation.

max constraint – Integer
the constraint gradient which has the maximum error between its norm and its
finite difference approximation.

f comp – Nag CompSt ∗
The results of a requested component derivative check of the objective gradient,
st->gprint.g chk.type = Nag CheckObj or Nag CheckObjCon, will be held in the array
of st->n substructures of type Nag CompSt pointed to by f comp. The procedure for the
derivative check is based on finding an interval that produces an acceptable estimate of
the second derivative, and then using that estimate to compute an interval that should
produce a reasonable forward-difference approximation. The gradient element is then
compared with the difference approximation. (The method of finite difference interval
estimation is based on Gill et al (1983).)

correct – Boolean
if TRUE then this gradient element is consistent with its finite difference
approximation.

hopt – double
the optimal finite difference interval.

gdiff – double
the finite difference approximation for this gradient component.

iter – Integer
the number of trials performed to find a suitable difference interval.

3.e04ucc.34 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

comment – char ∗
a character string which describes the possible nature of the reason for which an
estimation of the finite difference interval failed to produce a satisfactory relative
condition error of the second-order difference. Possible strings are: "Constant?",
"Linear or odd?", "Too nonlinear?" and "Small derivative?".

c comp – Nag CompSt ∗
The results of a requested component derivative check of the Jacobian of nonlinear
constraint functions, st->gprint.g chk.type = Nag CheckCon or Nag CheckObjCon,
will be held in the array of st->ncnlin∗st->n substructures of type Nag CompSt pointed
to by c comp. The element st->gprint.f comp[(i− 1)∗st->n+j− 1] will hold the details
of the component derivative check for Jacobian element i, j, for i = 1, 2, . . . ,st->ncnlin;
j = 1, 2, . . . ,st->n. The procedure for the derivative check is based on finding an
interval that produces an acceptable estimate of the second derivative, and then
using that estimate to compute an interval that should produce a reasonable forward-
difference approximation. The Jacobian element is then compared with the difference
approximation. (The method of finite difference interval estimation is based on Gill et
al (1983).)
The members of c comp are as for f comp where gdiff gives the difference approximation
for the Jacobian element.

The relevant members of the structure comm are:

g prt – Boolean
will be TRUE only when the print function is called with the result of the derivative check
of objfun and confun.

it maj prt – Boolean
will be TRUE when the print function is called with information about the current major
iteration.

sol sqp prt – Boolean
will be TRUE when the print function is called with the details of the final solution.

it prt – Boolean
will be TRUE when the print function is called with information about the current minor
iteration (i.e., an iteration of the current QP subproblem). See the documentation for
nag opt lin lsq (e04ncc) for details of which members of st are set.

new lm – Boolean
will be TRUE when the Lagrange multipliers have been updated in a QP subproblem. See
the documentation for nag opt lin lsq (e04ncc) for details of which members of st are set.

sol prt – Boolean
will be TRUE when the print function is called with the details of the solution of a QP
subproblem, i.e., the solution at the end of a major iteration. See the documentation for
nag opt lin lsq (e04ncc) for details of which members of st are set.

user – double ∗
iuser – Integer ∗
p – Pointer

pointers for communication of user information. If used they must be allocated memory by
the user either before entry to nag opt nlp or during a call to objfun, confun or print fun. The
type Pointer will be void * with a C compiler that defines void * and char * otherwise.

9. Error Indications and Warnings

NE USER STOP
User requested termination, user flag value = 〈value〉.
This exit occurs if the user sets comm->flag to a negative value in objfun or confun. If fail is
supplied the value of fail.errnum will be the same as the user’s setting of comm->flag.

[NP3491/6] 3.e04ucc.35

nag opt nlp NAG C Library Manual

NE INT OPT ARG LT
On entry, options.obj check start = 〈value〉.
Constraint: options.obj check start ≥ 1.
On entry, options.obj check stop = 〈value〉.
Constraint: options.obj check stop ≥ 1.
On entry, options.con check start = 〈value〉.
Constraint: options.con check start ≥ 1.
On entry, options.con check stop = 〈value〉.
Constraint: options.con check stop ≥ 1.

NE INT OPT ARG GT
On entry, options.obj check start = 〈value〉.
Constraint: options.obj check start ≤ n.
On entry, options.obj check stop = 〈value〉.
Constraint: options.obj check stop ≤ n.
On entry, options.con check start = 〈value〉.
Constraint: options.con check start ≤ n.
On entry, options.con check stop = 〈value〉.
Constraint: options.con check stop ≤ n.

NE 2 INT OPT ARG CONS
On entry, options.con check start = 〈value〉 while options.con check stop = 〈value〉.
Constraint: options.con check start ≤ options.con check stop.
On entry, options.obj check start = 〈value〉 while options.obj check stop = 〈value〉.
Constraint: options.obj check start ≤ options.obj check stop.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.
On entry, nclin must not be less than 0: nclin = 〈value〉.
On entry, ncnlin must not be less than 0: ncnlin = 〈value〉.

NE 2 INT ARG LT
On entry, tda = 〈value〉 while n = 〈value〉. These parameters must satisfy tda ≥ n.

NE OPT NOT INIT
Options structure not initialized.

NE BAD PARAM
On entry, parameter options.print level had an illegal value.
On entry, parameter options.minor print level had an illegal value.
On entry, parameter options.start had an illegal value.
On entry, parameter options.verify grad had an illegal value.
On entry, parameter options.print deriv had an illegal value.

NE INVALID INT RANGE 1
Value 〈value〉 given to options.max iter not valid. Correct range is max iter ≥ 0.
Value 〈value〉 given to options.minor max iter not valid. Correct range is
minor max iter ≥ 0.

NE INVALID REAL RANGE F
Value 〈value〉 given to options.step limit not valid. Correct range is step limit > 0.0.
Value 〈value〉 given to options.inf bound not valid. Correct range is inf bound > 0.0.
Value 〈value〉 given to options.inf step not valid. Correct range is inf step > 0.0.

NE INVALID REAL RANGE EF
Value 〈value〉 given to options.f prec not valid. Correct range is ε ≤ f prec < 1.0.
Value 〈value〉 given to options.optim tol not valid. Correct range is f prec ≤ optim tol < 1.0.
Value 〈value〉 given to options.c diff int not valid. Correct range is ε ≤ c diff int < 1.0.
Value 〈value〉 given to options.f diff int not valid. Correct range is ε ≤ f diff int < 1.0.
Value 〈value〉 given to options.lin feas tol not valid. Correct range is ε ≤ lin feas tol < 1.0.
Value 〈value〉 given to options.nonlin feas tol not valid. Correct range is
ε ≤ nonlin feas tol < 1.0.

3.e04ucc.36 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

NE INVALID REAL RANGE FF
Value 〈value〉 given to options.linesearch tol not valid. Correct range is
0.0 ≤ linesearch tol < 1.0.
Value 〈value〉 given to options.crash tol not valid. Correct range is 0.0 ≤ crash tol ≤ 1.0.

NE BOUND
The lower bound for variable 〈value〉 (array element bl[〈value〉]) is greater than the upper
bound.

NE BOUND LCON
The lower bound for linear constraint 〈value〉 (array element bl[〈value〉]) is greater than the
upper bound.

NE BOUND NLCON
The lower bound for nonlinear constraint 〈value〉 (array element bl[〈value〉]) is greater than
the upper bound.

NE BOUND EQ
The lower bound and upper bound for variable 〈value〉 (array elements bl[〈value〉] and
bu[〈value〉]) are equal but they are greater than or equal to options.inf bound.

NE BOUND EQ LCON
The lower bound and upper bound for linear constraint 〈value〉 (array elements bl[〈value〉]
and bu[〈value〉]) are equal but they are greater than or equal to options.inf bound.

NE BOUND EQ NLCON
The lower bound and upper bound for nonlinear constraint 〈value〉 (array elements bl[〈value〉]
and bu[〈value〉]) are equal but they are greater than or equal to options.inf bound.

NE STATE VAL
options.state[〈value〉] is out of range. state[〈value〉] = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

NW NOT CONVERGED
Optimal solution found, but the sequence of iterates has not converged with the requested
accuracy.

The final iterate x satisfies the first-order Kuhn–Tucker conditions (see Section 7.1) to the
accuracy requested, but the sequence of iterates has not yet converged. nag opt nlp was
terminated because no further improvement could be made in the merit function (see Section
8.3).
This value of fail.code may occur in several circumstances. The most common situation is
that the user asks for a solution with accuracy that is not attainable with the given precision
of the problem (as specified by the optional parameter f prec (default value = ε0.9, where ε
is the machine precision; see Section 8.2)). This condition will also occur if, by chance,
an iterate is an ‘exact’ Kuhn–Tucker point, but the change in the variables was significant at
the previous iteration. (This situation often happens when minimizing very simple functions,
such as quadratics.)
If the four conditions listed in Section 10.1 are satisfied then x is likely to be a solution of (1)
even if fail.code = NW NOT CONVERGED.

NW LIN NOT FEASIBLE
No feasible point was found for the linear constraints and bounds.

nag opt nlp has terminated without finding a feasible point for the linear constraints and
bounds, which means that either no feasible point exists for the given value of the optional
parameter lin feas tol (default value =

√
ε, where ε is the machine precision; see Section

8.2), or no feasible point could be found in the number of iterations specified by the optional
parameter minor max iter (default value = max(50, 3(n + nL + nN)); see Section 8.2). The
user should check that there are no constraint redundancies. If the data for the constraints
are accurate only to an absolute precision σ, the user should ensure that the value of the
optional parameter lin feas tol is greater than σ. For example, if all elements of AL are of
order unity and are accurate to only three decimal places, lin feas tol should be at least 10−3.

[NP3491/6] 3.e04ucc.37

nag opt nlp NAG C Library Manual

NW NONLIN NOT FEASIBLE
No feasible point could be found for the nonlinear constraints.

The problem may have no feasible solution. This means that there has been a sequence of QP
subproblems for which no feasible point could be found (indicated by I at the end of each terse
line of output; see Section 4.1). This behaviour will occur if there is no feasible point for the
nonlinear constraints. (However, there is no general test that can determine whether a feasible
point exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the
very first major iteration, it is highly likely that no feasible point exists. If infeasibilities
occur when earlier subproblems have been feasible, small constraint inconsistencies may be
present. The user should check the validity of constraints with negative values of the optional
parameter state. If the user is convinced that a feasible point does exist, nag opt nlp should
be restarted at a different starting point.

NW TOO MANY ITER
The maximum number of iterations, 〈value〉, have been performed.
The value of the optional parameter max iter may be too small. If the method appears
to be making progress (e.g., the objective function is being satisfactorily reduced), increase
the value of the optional parameter max iter and rerun nag opt nlp; alternatively, rerun
nag opt nlp, setting the optional parameter start = Nag Warm to specify the initial working
set. If the algorithm seems to be making little or no progress, however, then the user
should check for incorrect gradients or ill conditioning as described below under fail.code
= NW KT CONDITIONS.
Note that ill conditioning in the working set is sometimes resolved automatically by the
algorithm, in which case performing additional iterations may be helpful. However, ill
conditioning in the Hessian approximation tends to persist once it has begun, so that allowing
additional iterations without altering R is usually inadvisable. If the quasi-Newton update
of the Hessian approximation was reset during the latter iterations (i.e., an R occurs at the
end of each line of output; see Section 4.1), it may be worthwhile setting start = Nag Warm
and calling nag opt nlp from the final point.

NW KT CONDITIONS
The current point cannot be improved upon. The final point does not satisfy the first-order
Kuhn–Tucker conditions and no improved point for the merit function could be found during
the final line search.

The Kuhn–Tucker conditions are specified in Section 7.1, and the merit function is described
in Sections 7.3 and 8.3.
This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value
of the optional parameter optim tol (default value = ε0.8

r , where εr is the relative precision of
F (x); see Section 8.2) is too small. In this case the user should apply the four tests described
in Section 10.1 to determine whether or not the final solution is acceptable (see Gill et al
(1981) for a discussion of the attainable accuracy).
If many iterations have occurred in which essentially no progress has been made and
nag opt nlp has failed completely to move from the initial point then functions objfun
and/or confun may be incorrect. The user should refer to comments below under fail.code
= NE DERIV ERRORS and check the gradients using the optional parameter verify grad
(default value = Nag Simple Check; see Section 8.2). Unfortunately, there may be small
errors in the objective and constraint gradients that cannot be detected by the verification
process. Finite difference approximations to first derivatives are catastrophically affected by
even small inaccuracies. An indication of this situation is a dramatic alteration in the iterates
if the finite difference interval is altered. One might also suspect this type of error if a switch
is made to central differences even when Norm Gz and Violtn (see Section 4.1) are large.
Another possibility is that the search direction has become inaccurate because of ill
conditioning in the Hessian approximation or the matrix of constraints in the working set;
either form of ill conditioning tends to be reflected in large values of Mnr (the number of
iterations required to solve each QP subproblem; see Section 4.1).
If the condition estimate of the projected Hessian (Cond Hz; see Section 4.1) is extremely
large, it may be worthwhile rerunning nag opt nlp from the final point with the optional

3.e04ucc.38 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

parameter start = Nag Warm (see Section 8.2). In this situation, the optional parameters
state and lambda should be left unaltered and R (in optional parameter h) should be reset
to the identity matrix.
If the matrix of constraints in the working set is ill conditioned (i.e., Cond T is extremely large;
see Section 8.3), it may be helpful to run nag opt nlp with a relaxed value of the optional
parameters lin feas tol and nonlin feas tol (default values

√
ε, and ε0.33 or

√
ε, respectively,

where ε is the machine precision; see Section 8.2). (Constraint dependencies are often
indicated by wide variations in size in the diagonal elements of the matrix T , whose diagonals
will be printed if print level = Nag Soln Iter Full (default value = Nag Soln Iter; see Section
8.2).)

NE DERIV ERRORS
Large errors were found in the derivatives of the objective function and/or nonlinear
constraints.

This failure will occur if the verification process indicated that at least one gradient or
Jacobian element had no correct figures. The user should refer to the printed output to
determine which elements are suspected to be in error.
As a first-step, the user should check that the code for the objective and constraint values is
correct – for example, by computing the function at a point where the correct value is known.
However, care should be taken that the chosen point fully tests the evaluation of the function.
It is remarkable how often the values x = 0 or x = 1 are used to test function evaluation
procedures, and how often the special properties of these numbers make the test meaningless.
Gradient checking will be ineffective if the objective function uses information computed by
the constraints, since they are not necessarily computed prior to each function evaluation.
Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the
inaccurate calculation of a subsidiary quantity, or the limited accuracy of data upon which
the function depends. A common error on machines where numerical calculations are usually
performed in double precision is to include even one single precision constant in the calculation
of the function; since some compilers do not convert such constants to double precision, half
the correct figures may be lost by such a seemingly trivial error.

NW OVERFLOW WARN
Serious ill conditioning in the working set after adding constraint 〈value〉. Overflow may
occur in subsequent iterations.

If overflow occurs preceded by this warning then serious ill conditioning has probably occurred
in the working set when adding a constraint. It may be possible to avoid the difficulty by
increasing the magnitude of the optional parameter lin feas tol (default value =

√
ε, where

ε is the machine precision; see Section 8.2) and/or the optional parameter nonlin feas tol
(default value ε0.33 or

√
ε; see Section 8.2), and rerunning the program. If the message recurs

even after this change, the offending linearly dependent constraint j must be removed from
the problem. If overflow occurs in one of the user-supplied functions (e.g., if the nonlinear
functions involve exponentials or singularities), it may help to specify tighter bounds for some
of the variables (i.e., reduce the gap between the appropriate lj and uj).

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE WRITE ERROR
Error occurred when writing to file 〈string〉.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

10. Further Comments

10.1 Termination Criteria

The function exits with fail.code = NE NOERROR if iterates have converged to a point x that
satisfies the Kuhn–Tucker conditions (see Section 7.1) to the accuracy requested by the optional
parameter optim tol (default value = ε0.8

r , see Section 8.2).

[NP3491/6] 3.e04ucc.39

nag opt nlp NAG C Library Manual

The user should also examine the printout from nag opt nlp (see Section 4.1 or Section 8.3) to
check whether the following four conditions are satisfied:

(i) the final value of Norm Gz is significantly less than at the starting point;

(ii) during the final major iterations, the values of Step and Mnr are both one;

(iii) the last few values of both Violtn and Norm Gz become small at a fast linear rate;

and

(iv) Cond Hz is small.
If all these conditions hold, x is almost certainly a local minimum.

10.2. Accuracy

If fail.code = NE NOERROR on exit, then the vector returned in the array x is an estimate of the
solution to an accuracy of approximately options.optim tol (default value = ε0.8

r , where εr is the
relative precision of F (x); see Section 8.2).

11. References

Dennis J E Jr and Moré J J (1977) Quasi-Newton Methods, Motivation and Theory SIAM Review.
19 46–89.

Dennis J E Jr and Schnabel R B (1981) A New Derivation of Symmetric Positive-Definite Secant
Updates Nonlinear Programming 4. (eds. O L Mangasarian R R Meyer and S M Robinson)
Academic Press 167–199.

Dennis J E Jr and Schnabel R B (1983) Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall.

Fletcher R (1987) Practical Methods of Optimization. Wiley (2nd Edition).
Gill P E, Murray W, Saunders M A and Wright M H (1983) Documentation of FDCORE and
FDCALC Report SOL 83–6. Department of Operations Research, Stanford University.

Gill P E, Murray W, Saunders M A and Wright M H (1984a) User’s Guide for SOL/QPSOL version
3.2 Report SOL 84–5. Department of Operations Research, Stanford University.

Gill P E, Murray W, Saunders M A and Wright M H (1984b) Procedures for Optimization Problems
with a Mixture of Bounds and General Linear Constraints ACM Trans. Math. Softw. 10 282–
298.

Gill P E, Hammarling S, MurrayW, Saunders M A andWright M H (1986a) User’s Guide for LSSOL
(Version 1.0) Report SOL 86–1. Department of Operations Research, Stanford University.

Gill P E, Murray W, Saunders M A and Wright M H (1986b) Some Theoretical Properties of an
Augmented Lagrangian Merit Function Report SOL 86–6R. Department of Operations Research,
Stanford University.

Gill P E, Hammarling S J, Murray M H, Saunders M A and Wright M H (1986c) User’s Guide
for NPSOL (Version 4.0) Report SOL 86–2. Department of Operations Research, Stanford
University.

Gill P E, Murray W and Wright M H (1981) Practical Optimization. Academic Press.
Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture

Notes in Economics and Mathematical Systems. 187 Springer-Verlag.
Murtagh B A and Saunders M A (1983) MINOS 5.0 User’s Guide Report SOL 83–20. Department
of Operations Research, Stanford University.

Powell M J D (1974) Introduction to Constrained Optimization Numerical Methods for Constrained
Optimization. (ed P E Gill and W Murray) Academic Press 1–28.

Powell M J D (1983) Variable Metric Methods in Constrained Optimization Mathematical
Programming: The State of the Art. (ed A Bachem, M Groetschel and B Korte) Springer-Verlag
288–311.

12. See Also

nag opt lp (e04mfc)
nag opt lin lsq (e04ncc)
nag opt qp (e04nfc)
nag opt init (e04xxc)

3.e04ucc.40 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

nag opt read (e04xyc)
nag opt free (e04xzc)

13. Example 2

This example shows the use of certain optional parameters. Option values are assigned directly
within the program text and by reading values from a data file. The options structure is declared and
initialized by nag opt init (e04xxc). Two options are read from the data file by use of nag opt read
(e04xyc). nag opt nlp is then called to solve the problem using the function objfun1 and confun1
with elements of the objective gradient not being set at all and only some of the elements of the
constraint Jacobian being provided. The memory freeing function nag opt free (e04xzc) is used
to free the memory assigned to the pointers in the options structure. Users should not use the
standard C function free() for this purpose.

13.1. Program Text

static void ex2()
{
#define NMAX 10
#define NCLIN 10
#define NCNLIN 10
#define TOTALVARS NMAX+NCLIN+NCNLIN
#define TDA NMAX

/* Local variables */
Integer i, j, n, tda;
Integer nclin, ncnlin;

double objf;
double x[NMAX], a[NCLIN][NMAX], bl[TOTALVARS],
bu[TOTALVARS], objgrd[NMAX];

Nag_E04_Opt options;
static NagError fail;

Vprintf("\ne04ucc example 2: using option setting.\n");
/* Skip heading in data file */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%ld%*[^\n]", &n, &nclin, &ncnlin);
if (n <= 10 && nclin <= 10 && ncnlin <= 10)
{
tda = NMAX;
/* Read a, bl, bu and x from data file */

/* Read the matrix of linear constraint coefficients */
if (nclin > 0)
{

for (i = 0; i < nclin; ++i)
for (j = 0; j < n; ++j)
Vscanf("%lf", &a[i][j]);
}

Vscanf("%*[^\n]"); /* Remove remainder of line */

/* Read lower bounds */
for (i = 0; i < n + nclin + ncnlin; ++i)

Vscanf("%lf", &bl[i]);
Vscanf("%*[^\n]");

/* Read upper bounds */
for (i = 0; i < n + nclin + ncnlin; ++i)

Vscanf("%lf", &bu[i]);
Vscanf("%*[^\n]");

/* Read the initial point x */
for (i = 0; i < n; ++i)

Vscanf("%lf", &x[i]);
Vscanf("%*[^\n]");

[NP3491/6] 3.e04ucc.41

nag opt nlp NAG C Library Manual

e04xxc(&options);
e04xyc("e04ucc", "stdin", &options, (Boolean)TRUE, "stdout", NAGERR_DEFAULT);

e04ucc(n, nclin, ncnlin, (double *)a, tda, bl, bu,
objfun1, confun1, x, &objf, objgrd,
&options, NAGCOMM_NULL, NAGERR_DEFAULT /* &fail */);
e04xzc(&options, "all", NAGERR_DEFAULT);

}
}

13.2. Program Data

Example data for ex2: using option setting
4 1 2 :Values of N, NCLIN and NCNLN
1.0 1.0 1.0 1.0 :End of matrix A
1.0 1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 :End of BL
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25 :End of BU
1.0 5.0 5.0 1.0 :End of X

Begin e04ucc
con_deriv = FALSE
obj_deriv = FALSE
End

13.3. Program Results

e04ucc example 2: using option setting.

Optional parameter setting for e04ucc.

Option file: stdin

con_deriv set to FALSE
obj_deriv set to FALSE

Parameters to e04ucc

Number of variables........... 4

Linear constraints............ 1 Nonlinear constraints......... 2
start................... Nag_Cold
step_limit.............. 2.00e+00 machine precision....... 1.11e-16
lin_feas_tol............ 1.05e-08 nonlin_feas_tol......... 1.05e-08
optim_tol............... 3.26e-12 linesearch_tol.......... 9.00e-01
crash_tol............... 1.00e-02 f_prec.................. 4.37e-15
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
max_iter................ 50 minor_max_iter.......... 50
hessian.................. FALSE
f_diff_int.............. Automatic c_diff_int.............. Automatic
obj_deriv............... FALSE con_deriv............... FALSE
verify_grad....... Nag_SimpleCheck print_deriv............ Nag_D_Full
print_level......... Nag_Soln_Iter minor_print_level..... Nag_NoPrint
outfile................. stdout

Verification of the objective gradients.
--

The user sets 0 out of 4 objective gradient elements.
Each iteration 4 gradient elements will be estimated numerically.

Verification of the constraint gradients.

The user sets 3 out of 8 constraint gradient elements.
Each iteration, 5 gradient elements will be estimated numerically.

Simple Check:

3.e04ucc.42 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04ucc

The Jacobian seems to be ok.

The largest relative error was 5.22e-09 in constraint 1

Finite difference intervals.

j x[j] Forward dx[j] Central dx[j] Error Est.
1 1.00e+00 6.479651e-07 2.645420e-06 2.592083e-06
2 5.00e+00 7.825142e-07 7.936259e-06 1.565074e-06
3 5.00e+00 7.936259e-06 7.936259e-05 1.873839e-08
4 1.00e+00 9.163610e-07 2.645420e-06 1.832879e-06

Maj Mnr Step Merit function Violtn Norm Gz Cond Hz
0 5 0.0e+00 1.738281e+01 1.2e+01 7.1e-01 1.0e+00
1 1 1.0e+00 1.703169e+01 1.9e+00 4.6e-02 1.0e+00
2 1 1.0e+00 1.701442e+01 8.8e-02 2.1e-02 1.0e+00
3 1 1.0e+00 1.701402e+01 5.4e-04 3.1e-04 1.0e+00
4 1 1.0e+00 1.701402e+01 9.9e-08 7.0e-06 1.0e+00

Minor itn 1 -- Re-solve QP subproblem.
5 2 1.0e+00 1.701402e+01 4.7e-11 6.3e-08 1.0e+00 C

Exit from NP problem after 5 major iterations, 11 minor iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
V 1 LL 1.00000e+00 1.00000e+00 5.00000e+00 1.0879e+00 0.0000e+00
V 2 FR 4.74300e+00 1.00000e+00 5.00000e+00 0.0000e+00 2.5700e-01
V 3 FR 3.82115e+00 1.00000e+00 5.00000e+00 0.0000e+00 1.1789e+00
V 4 FR 1.37941e+00 1.00000e+00 5.00000e+00 0.0000e+00 3.7941e-01

L Con State Value Lower Bound Upper Bound Lagr Mult Residual
L 1 FR 1.09436e+01 None 2.00000e+01 0.0000e+00 9.0564e+00

N Con State Value Lower Bound Upper Bound Lagr Mult Residual
N 1 UL 4.00000e+01 None 4.00000e+01 -1.6147e-01 -3.7168e-11
N 2 LL 2.50000e+01 2.50000e+01 None 5.5229e-01 -2.8759e-11

Optimal solution found.

Final objective value = 1.7014017e+01

[NP3491/6] 3.e04ucc.43

