
e04 – Minimizing or Maximizing a Function e04xac

nag opt estimate deriv (e04xac)

1. Purpose

nag opt estimate deriv (e04xac) computes an approximation to the gradient vector and/or the
Hessian matrix for use in conjunction with, or following the use of an optimization function (such
as nag opt nlp (e04ucc)).

2. Specification

#include <nag.h>
#include <nage04.h>

void e04xac(Integer n, double x[],
void (*objfun)(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm),
double *objf, double g[], double h_forward[],
double h_central[], double h[], Integer tdh,
Nag_DerivInfo deriv_info[], Nag_E04_Opt *options,
Nag_Comm *comm, NagError *fail)

3. Description

nag opt estimate deriv is based on the routine FDCALC described in Gill et al (1983a). It computes
finite-difference approximations to the gradient vector and the Hessian matrix for a given function,
and aims to provide sufficiently accurate estimates for use with an optimization algorithm.

The simplest approximation of the gradients involves the forward-difference formula, in which the
derivative of f ′(x) of a univariate function f(x) is approximated by the quantity

ρF (f, h) =
f(x+ h)− f(x)

h

for some interval h > 0, where the subscript ‘F’ denotes ‘forward-difference’ (see Gill et al (1983b)).

The choice of which gradients are returned by nag opt estimate deriv is controlled by the
optional parameter deriv want (see Section 7.2 for a description of this parameter). To
summarize the procedure used by nag opt estimate deriv when deriv want has its default value
of Nag Grad HessFull (i.e., for the case when the objective function is available and the user
requires estimates of gradient values and the full Hessian matrix) consider a univariate function
f at the point x. (In order to obtain the gradient of a multivariate function F (x), where x is an
n-vector, the procedure is applied to each component of x, keeping the other components fixed.)
Roughly speaking, the method is based on the fact that the bound on the relative truncation error
in the forward-difference approximation tends to be an increasing function of h, while the relative
condition error bound is generally a decreasing function of h, hence changes in h will tend to have
opposite effects on these errors (see Gill et al (1983b)).

The ‘best’ interval h is given by

hF = 2

√
(1 + |f(x)|)eR

|Φ| (1)

where Φ is an estimate of f ′′(x), and eR is an estimate of the relative error associated with computing
the function (see Gill et al (1981), Chapter 8). Given an interval h, Φ is defined by the second-order
approximation

Φ =
f(x+ h)− 2f(x) + f(x − h)

h2
.

The decision as to whether a given value of Φ is acceptable involves ĉ(Φ), the following bound on
the relative condition error in Φ:

ĉ(Φ) =
4eR(1 + |f |)

h2|Φ|

[NP3275/5/pdf] 3.e04xac.1

nag opt estimate deriv NAG C Library Manual

(When Φ is zero, ĉ(Φ) is taken as an arbitrary large number.)

The procedure selects the interval hφ (to be used in computing Φ) from a sequence of trial intervals
(hk). The initial trial interval is taken as

h̄ = 2(1 + |x|) 4
√

eR.

unless the user specifies the initial value to be used.

The value of ĉ(Φ) for a trial value hk is defined as ‘acceptable’ if it lies in the interval [0.0001, 0.01].
In this case hφ is taken as hk, and the current value of Φ is used to compute hF from (1). If ĉ(Φ) is
unacceptable, the next trial interval is chosen so that the relative condition error bound will either
decrease or increase, as required. If the bound on the relative condition error is too large, a larger
interval is used as the next trial value in an attempt to reduce the condition error bound. On the
other hand, if the relative condition error bound is too small, hk is reduced.

The procedure will fail to produce an acceptable value of ĉ(Φ) in two situations. Firstly, if f ′′(x)
is extremely small, then ĉ(Φ) may never become small, even for a very large value of the interval.
Alternatively, ĉ(Φ) may never exceed 0.0001, even for a very small value of the interval. This
usually implies that f ′′(x) is extremely large, and occurs most often near a singularity.

As a check on the validity of the estimated first derivative, the procedure provides a comparison
of the forward-difference approximation computed with hF (as above) and the central-difference
approximation computed with hφ. Using the central-difference formula the first derivative can be
approximated by

ρc(f, h) =
f(x+ h)− f(x − h)

2h

where h > 0. If the values hF and hφ do not display some agreement, neither can be considered
reliable.

The approximate Hessian matrix G is defined as in Chapter 2 of Gill et al (1981) by

Gij(x) =
1

hihj

(f(x+ hiei + hjej)− f(x+ hiei)− f(x+ hjej) + f(x)).

where hj is the best forward-difference interval associated with the jth component of f and ej is
the vector with unity in the jth position and zeros elsewhere.

If the user requires the gradients and only the diagonal of the Hessian matrix (i.e., deriv want
= Nag Grad HessDiag; see Section 7.2), nag opt estimate deriv follows a similar procedure to the
default case, except that the inital trial interval is taken as 10h̄, where

h̄ = 2(1 + |x|)√eR

and the value of ĉ(Φ) for a trial value hk is defined as acceptable if it lies in the interval
[0.001, 0.1]. The elements of the Hessian diagonal which are returned in this case are the values of
Φ corresponding to the ‘best’ intervals.

When both function and gradients are available and the user requires the Hessian matrix (i.e.,
deriv want = Nag HessFull; see Section 7.2), nag opt estimate deriv follows a similar procedure to
the case above with the exception that the gradient function g(x) is substituted for the objective
function and so the forward-difference interval for the first derivative of g(x) with respect to variable
xj is computed. The jth column of the approximate Hessian matrix is then defined as in Chapter
2 of Gill et al (1981) by

g(x+ hjej)− g(x)
hj

where hj is the best forward-difference interval associated with the jth component of g.

3.e04xac.2 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04xac

4. Parameters
n

Input: the number n of variables.
Constraint: n ≥ 1.

x[n]
Input: the point x at which derivatives are required.

objfun
objfunmust evaluate the objective function F (x) and (optionally) its gradient g(x) = ∂F/∂xj

for a specified n element vector x.

The specification for objfun is:

void objfun(Integer n, double x[], double *objf, double g[], Nag_Comm *comm)

n
Input: the number n of variables.

x[n]
Input: the point x at which the value of F and, if comm->flag = 2, the ∂F/∂xj ,
are required.

objf
Output: objfun must set objf to the value of the objective function F at the
current point x. If it is not possible to evaluate F then objfun should assign a
negative value to comm->flag; nag opt estimate deriv will then terminate.

g[n]
Output: if comm->flag = 2 on entry, then objfun must set g[j − 1] to the value
of the first derivative ∂F/∂xj at the current point x for j = 1, 2, . . . , n. If it is
not possible to evaluate the first derivatives then objfun should assign a negative
value to comm->flag; nag opt estimate deriv will then terminate.

If comm->flag = 0 on entry, then g is not referenced.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
objfun.

flag – Integer
Input: comm->flag will be set to 0 or 2. The value 0 indicates that only
F itself needs to be evaluated. The value 2 indicates that both F and its
first derivatives must be calculated.
Output: if objfun resets comm->flag to a negative number then
nag opt estimate deriv will terminate immediately with the error indicator
NE USER STOP. If fail is supplied to nag opt estimate deriv, fail.errnum
will be set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to objfun and FALSE for all
subsequent calls.

nf – Integer
Input: the number of evaluations of the objective function; this value will
be equal to the number of calls made to objfun (including the current one).

[NP3275/5/pdf] 3.e04xac.3

nag opt estimate deriv NAG C Library Manual

user – double ∗
iuser – Integer ∗
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt estimate deriv these pointers may be allocated
memory by the user and initialized with various quantities for use by objfun
when called from nag opt estimate deriv.

Note: objfun should be thoroughly tested before being used in conjunction with
nag opt estimate deriv. The array x must not be changed by objfun.

objf
Output: the value of the objective function evaluated at the input vector in x.

g[n]
Output: if options.deriv want = Nag Grad HessFull (the default; see Section 7.2) or
Nag Grad HessDiag, g[j − 1] contains the best estimate of the first partial derivative for
the jth variable, j = 1, 2, . . . , n. If options.deriv want = Nag HessFull, g[j − 1] contains the
first partial derivative for the jth variable as evaluated by objfun.

h forward[n]
Input: if the optional parameter use hfwd init = FALSE (the default; see Section 7.2), the
values contained in h forward on entry to nag opt estimate deriv are ignored. If use hfwd init
= TRUE, h forward is assumed to contain meaningful values on entry: if h forward[j − 1]
> 0 then it is used as the initial trial interval for computing the appropriate partial derivative
to the jth variable, j = 1, 2, . . . , n; if h forward[j − 1] ≤ 0.0, then the initial trial interval for
the jth variable is computed by nag opt estimate deriv (see Section 3).
Output: h forward[j − 1] is the best interval found for computing a forward-difference
approximation to the appropriate partial derivative for the jth variable. If the user does
not require this information, a NULL pointer may be provided, and nag opt estimate deriv
will allocate memory internally to calculate the difference intervals.
Constraint: h forward must not be NULL if options.use hfwd init = TRUE.

h central[n]
Output: h central[j − 1] is the best interval found for computing a central-difference
approximation to the appropriate partial derivative for the jth variable. If the user does
not require this information, a NULL pointer may be provided, and nag opt estimate deriv
will allocate memory internally to calculate the difference intervals.

h[n][tdh]
Output: if the optional parameter deriv want = Nag Grad HessFull (the default; see Section
7.2) or Nag HessFull, the estimated Hessian matrix is contained in the leading n by n part
of this array. If deriv want = Nag Grad HessDiag, the n elements of the estimated Hessian
diagonal are contained in the first row of this array.

tdh
Input: the second dimension of the array h as declared in the function from which
nag opt estimate deriv is called.
Constraint: tdh ≥ n.

deriv info[n]
Output: deriv info[j − 1] contains diagnostic information on the jth variable, j = 1, 2, . . . , n.
The possible values for deriv info[j − 1] are:

Nag Deriv OK No unusual behaviour observed in estimating the appropriate
derivative.

Nag Fun Constant The appropriate function appears to be constant.

Nag Fun LinearOdd The appropriate function appears to be linear or odd.

Nag 2ndDeriv Large The second derivative of the appropriate function appears to be so
large that it cannot be reliably estimated (e.g., near a singularity).

3.e04xac.4 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04xac

Nag 1stDeriv Small The forward-difference and central-difference estimates of the
appropriate first derivatives do not agree to half a decimal place;
this usually occurs because the first derivative is small.

A more detailed explanation of these warnings is given in Section 9.2.

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters for nag opt estimate deriv. These structure members offer the means of adjusting
some of the parameter values of the computation and on output will supply further details of
the results. A description of the members of options is given below in Section 7.

If any of these optional parameters are required then the structure options should be
declared and initialized by a call to nag opt init (e04xxc) and supplied as an argument to
nag opt estimate deriv. However, if the optional parameters are not required the NAG defined
null pointer, E04 DEFAULT, can be used in the function call.

comm
Input/Output: structure containing pointers for communication with user-supplied functions;
see the above description of objfun for details. If the user does not need to make use
of this communication feature, the null pointer NAGCOMM NULL may be used in the call to
nag opt estimate deriv; comm will then be declared internally for use in calls to user-supplied
functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialize fail and set fail.print = TRUE for this
function.

4.1. Description of Printed Output

Results from nag opt estimate deriv are printed out by default. The level of printed output can be
controlled by the user with the structure members options.list and options.print deriv (see Section
7.2). If list = TRUE then the parameter values to nag opt estimate deriv are listed, whereas
printout of results is goverend by the value of print deriv.

The default of Nag D Print provides the following line of output for each variable.

j the index of the variable for which the difference interval has been computed.

X(j) the value of xj as provided by the user in x[j − 1].

Fwd diff int the best interval found for computing a forward-difference approximation to the
appropriate partial derivative with respect to xj .

Cent diff int the best interval found for computing a central-difference approximation to the
appropriate partial derivative with respect to xj .

Error est a bound on the estimated error in the final forward-difference approximation.
When deriv info[j − 1] = Nag Fun Constant, Error est is set to zero.

Grad est best estimate of the first partial derivative with respect to xj .

Hess diag est best estimate of the second partial derivative with respect to xj .

Nfun the number of function evaluations used to compute the final difference intervals
for xj .

Info gives diagnostic information for xj . Info will be one of OK, Constant?,
Linear or odd?, Large 2nd deriv?, or Small 1st deriv?, corresponding to
deriv info[j − 1] = Nag Deriv OK, Nag Fun Constant, Nag Fun LinearOdd,
Nag 2ndDeriv Large or Nag 1stDeriv Small, respectively.

[NP3275/5/pdf] 3.e04xac.5

nag opt estimate deriv NAG C Library Manual

5. Comments

A list of possible error exits and warnings from nag opt estimate deriv is given in Section 8. Details
of timing, accuracy, and diagnostic information returned in deriv info, are given in Section 9.

6. Example 1

Compute the gradient vector and Hessian matrix of the following function:

F (x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4

at the point (3,−1, 0, 1)T .
This example shows the simple use of nag opt estimate deriv where default values are used for all
optional parameters. An example showing the use of optional parameters is given in Section 12.
There is one example program file, the main program of which calls both examples. The main
program and Example 1 are given below.

6.1. Program Text

/* nag_opt_estimate_deriv(e04xac) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*/

#include <nag.h>
#include <nag_stdlib.h>
#include <stdio.h>
#include <nage04.h>

#ifdef NAG_PROTO
static void ex1(void);
static void ex2(void);
static void objfun(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm);
#else
static void ex1();
static void ex2();
static void objfun();
#endif

#ifdef NAG_PROTO
static void objfun(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm)
#else
static void objfun(n, x, objf, g, comm)

Integer n;
double x[], double *objf, g[];
Nag_Comm *comm;

#endif
{
double a, asq, b, bsq, c, csq, d, dsq;

a = x[0] + 10.0*x[1];
b = x[2] - x[3];
c = x[1] - 2.0*x[2];
d = x[0] - x[3];
asq = a*a;
bsq = b*b;
csq = c*c;
dsq = d*d;
*objf = asq + 5.0*bsq + csq*csq + 10.0*dsq*dsq;
if (comm->flag == 2)

{
g[0] = 2.0*a + 40.0*d*dsq;
g[1] = 20.0*a + 4.0*c*csq;
g[2] = 10.0*b - 8.0*c*csq;

3.e04xac.6 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04xac

g[3] = -10.0*b - 40.0*d*dsq;

}
}
/* objfun */

main()
{
Vprintf("e04xac Example Program Results\n");
ex1();
ex2();
exit(EXIT_SUCCESS);

}

#ifdef NAG_PROTO
static void ex1(void)
#else
static void ex1()
#endif
{
#define MAXN 4

/* Local variables */
Integer n, tdh;

double objf;
double x[MAXN];
double g[MAXN], h[MAXN][MAXN];

Nag_DerivInfo deriv_info[MAXN];
static NagError fail;

n = MAXN;
tdh = MAXN;
Vprintf("\nExample 1: default options\n");

x[0] = 3.0;
x[1] = -1.0;
x[2] = 0.0;
x[3] = 1.0;
fail.print = TRUE;

/* Pass null pointers for the h_central and h_forward parameters
* as we do not need these values.
*/

e04xac(n, x, objfun, &objf, g, (double*)0, (double*)0,
(double*)h, tdh, deriv_info, E04_DEFAULT, NAGCOMM_NULL, &fail);

} /* ex1 */

6.2. Program Data

None.

6.3. Program Results

e04xac Example Program Results

Example 1: default options

Parameters to e04xac

deriv_want......Nag_Grad_HessFull use_hfwd_init........... FALSE
f_prec.................. 4.37e-15 machine precision....... 1.11e-16
print_deriv...........Nag_D_Print
outfile................. stdout

j X(j) Fwd diff int Cent diff int Error est Grad est Hess diag est
Nfun Info

[NP3275/5/pdf] 3.e04xac.7

nag opt estimate deriv NAG C Library Manual

1 3.00e+00 8.854496e-08 4.148646e-06 4.267948e-05 3.060000e+02 4.820091e+02
6 OK
2 -1.00e+00 1.335090e-07 2.074323e-06 2.198914e-04 -1.440000e+02 2.120127e+02

4 OK
3 0.00e+00 2.553256e-07 1.037161e-06 3.006149e-05 -2.000000e+00 5.796877e+01

4 OK
4 1.00e+00 8.782060e-08 2.074323e-06 5.082022e-04 -3.100000e+02 4.899933e+02

4 OK

7. Optional Parameters

A number of optional input and output parameters to nag opt estimate deriv are available through
the structure argument options, type Nag E04 Opt. A parameter may be selected by assigning an
appropriate value to the relevant structure member; those parameters not selected will be assigned
default values. If no use is to be made of any of the optional parameters the user should use the
NAG defined null pointer, E04 DEFAULT, in place of options when calling nag opt estimate deriv;
the default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function
nag opt init (e04xxc). Values may then be assigned to the structure members in the normal C
manner.

Option settings may also be read from a text file using the function nag opt read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

7.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag opt estimate deriv together with their default values where relevant. The number ε is a generic
notation for machine precision (see nag machine precision (X02AJC)).

Boolean list TRUE
Nag DPrintType print deriv Nag D Print
char outfile[80] stdout
Nag DWantType deriv want Nag Grad HessFull
Boolean use hfwd init FALSE
double f prec ε0.9

double f prec used
Integer nf

7.2. Description of Optional Parameters

list – Boolean Default = TRUE

Input: if options.list = TRUE the parameter settings in the call to nag opt estimate deriv
will be printed.

print deriv – Nag DPrintType Default = Nag D Print

Input: controls whether printout is produced by nag opt estimate deriv. The following values
are available.

Nag D NoPrint No output.

Nag D Print Printout for each variable as described in Section 4.1.

Constraint: options.print deriv = Nag D NoPrint or Nag D Print.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.

3.e04xac.8 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04xac

deriv want – Nag DWantType Default = Nag Grad HessFull

Input: specifies which derivatives nag opt estimate deriv should estimate. The following
values are available.

Nag Grad HessFull Estimate the gradient and full Hessian, with the user supplying the
objective function via objfun.

Nag Grad HessDiag Estimate the gradient and the Hessian diagonal values, with the
user supplying the objective function via objfun.

Nag HessFull Estimate the full Hessian, with the user supplying the objective
function and gradients via objfun.

Constraint: options.deriv want = Nag Grad HessFull, Nag Grad HessDiag or Nag HessFull.

use hfwd init – Boolean Default = FALSE

Input: if use hfwd init = FALSE, then nag opt estimate deriv ignores any values supplied
on entry in h forward, and computes the initial trial intervals itself. If use hfwd init =
TRUE, then nag opt estimate deriv uses the foward difference interval provided by the user
in h forward[j−1] as the initial trial interval for computing the appropriate partial derivative
to the jth variable, j = 1, 2, . . . , n; however, if h forward[j − 1] ≤ 0.0 for some j, the initial
trial interval for the jth variable is computed by nag opt estimate deriv.

f prec – double ε0.9

Input: specifies eR, which is intended to measure the accuracy with which the problem
function F can be computed. The value of f prec should reflect the relative precision of
1 + |F (x)|, i.e., acts as a relative precision when |F | is large, and as an absolute precision
when |F | is small. For example, if |F (x)| is typically of order 1000 and the first six significant
figures are known to be correct, an appropriate value of f prec would be 10−6. The default
value of ε0.9 will be appropriate for most simple functions that are computed with full accuracy

A discussion of eR is given in Gill et al (1981), Chapter 8. If the user provides a value of
f prec which nag opt estimate deriv determines to be either too small or too large , the default
value will be used instead and a warning will be output if optional parameter print deriv =
Nag D Print. The value actually used is returned in options.f prec used.
Constraint: options.f prec > 0.

f prec used – double

Output: if fail.code = NE NOERROR or NW DERIV INFO, or if options.nf > 1
and fail.code = NE USER STOP, then f prec used contains the value of eR used
by nag opt estimate deriv. If the user supplies a value for options.f prec and
nag opt estimate deriv considers that the value supplied is neither too large nor too small,
then this value will be returned in f prec used; otherwise f prec used will contain the default
value, ε0.9.

nf – double

Output: the number of times the objective function has been evaluated (i.e., number of calls
of objfun).

8. Error Indications and Warnings

NE USER STOP
User requested termination, user flag value = 〈value〉.

This exit occurs if the user sets comm->flag to a negative value in objfun. If fail is supplied,
the value of fail.errnum will be the same as the user’s setting of comm->flag.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE 2 INT ARG LT
On entry, tdh = 〈value〉 while n = 〈value〉. These parameters must satisfy tdh ≥ n.

[NP3275/5/pdf] 3.e04xac.9

nag opt estimate deriv NAG C Library Manual

NE OPT NOT INIT
Options structure not initialized.

NE BAD PARAM
On entry, parameter options.print deriv had an illegal value.
On entry, parameter options.deriv want had an illegal value.

NE INVALID REAL RANGE F
Value 〈value〉 given to options.f prec is not valid.
Correct range is f prec > 0.0.

NE H FORWARD NULL
options.use hfwd init = TRUE but argument h forward is NULL.

NE ALLOC FAIL
Memory allocation failed.

NW DERIV INFO
On exit, at least one element of the deriv info array does not contain the value Nag Deriv OK.
This does not necessarily represent an unsuccessful exit.

See Section 9.2 for information about the possible values which may be returned in deriv info.

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE WRITE ERROR
Error occurred when writing to file 〈string〉.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

9. Further Comments

9.1. Accuracy

The function exits with fail.code = NE NOERROR if the algorithm terminated successfully, i.e., the
forward-difference estimates of the appropriate first derivatives (computed with the final estimate
of the ‘optimal’ forward-difference interval hF) and the central-difference estimates (computed with
the interval hφ used to compute the final estimate of the second derivative) agree to at least half a
decimal place.

9.2. Diagnostic Information

Diagnostic information is returned via the array parameter deriv info. If fail.code=NE NOERROR
on exit then deriv info[j−1] = Nag Deriv OK, for j = 1, 2, . . . , n. If fail.code = NW DERIV INFO
on exit, then, for at least one j, deriv info[j − 1] contains one of the following values:

Nag Fun Constant
The appropriate function appears to be constant. On exit, h forward[j − 1] is set to the
initial trial interval corresponding to a well scaled problem, and Error est in the printed
output is set to zero. This value occurs when the estimated relative condition error in the
first derivative approximation is unacceptably large for every value of the finite-difference
interval. If this happens when the function is not constant the initial interval may be too
small; in this case, it may be worthwhile to rerun nag opt estimate deriv with larger initial
trial interval values supplied in h forward and with the optional parameter use hfwd init set
to TRUE. This error may also occur if the function evaluation includes an inordinately large
constant term or if optional parameter f prec is too large.

Nag Fun LinearOdd
The appropriate function appears to be linear or odd. On exit, h forward[j − 1] is set to
the smallest interval with acceptable bounds on the relative condition error in the forward-
and backward-difference estimates. In this case, the estimated relative condition error in the
second derivative approximation remained large for every trial interval, but the estimated
error in the first derivative approximation was acceptable for at least one interval. If the
function is not linear or odd the relative condition error in the second derivative may be
decreasing very slowly. It may be worthwhile to rerun nag opt estimate deriv with larger
initial trial interval values supplied in h forward and with use hfwd init set to TRUE.

3.e04xac.10 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04xac

Nag 2ndDeriv Large
The second derivative of the appropriate function appears to be so large that it cannot be
reliably estimated (e.g., near a singularity). On exit, h forward[j − 1] is set to the smallest
trial interval.

This value occurs when the relative condition error estimate in the second derivative remained
very small for every trial interval.

If the second derivative is not large the relative condition error in the second derivative may
be increasing very slowly. It may be worthwhile to rerun nag opt estimate deriv with smaller
initial trial interval values supplied in h forward and with use hfwd init set to TRUE. This
error may also occur when the given value of the optional parameter f prec is not a good
estimate of a bound on the absolute error in the appropriate function (i.e., options.f prec is
too small).

Nag 1stDeriv Small
The algorithm terminated with an apparently acceptable estimate of the second derivative.
However the forward-difference estimates of the appropriate first derivatives (computed with
the final estimate of the ‘optimal’ forward-difference interval) and the central difference
estimates (computed with the interval used to compute the final estimate of the second
derivative) do not agree to half a decimal place. The usual reason that the forward- and
central-difference estimates fail to agree is that the first derivative is small.

If the first derivative is not small, it may be helpful to run nag opt estimate deriv at a different
point.

9.3. Timing

Unless the objective function can be evaluated very quickly, the run time will usually be dominated
by the time spent in objfun.

To evaluate an acceptable set of finite-difference intervals for a well-scaled problem
nag opt estimate deriv will use around 2 function evaluations per variable; in a badly scaled problem
6 function evaluations per variable may be needed.

In the default case where gradients and the full Hessian matrix are required (i.e., optional parameter
deriv want = Nag Grad HessFull), nag opt estimate deriv performs a further 3n(n+1)/2 function
evaluations. If the full Hessian matrix is required, with the user supplying both function and
gradients (i.e., deriv want = Nag HessFull), a further n function evaluations are performed.

10. References

Gill P E, Murray W, Saunders M A and Wright M H (1983a) Documentation of FDCORE and
FDCALC Report SOL 83–6. Department of Operations Research, Stanford University.

Gill P E, MurrayW, Saunders M A andWright M H (1983b) Computing forward-difference intervals
for numerical optimization SIAM J. Sci. Statist. Comput. 4 310–321.

Gill P E Murray W and Wright M H (1981) Practical Optimization. Academic Press.

11. See Also

nag opt nlp (e04ucc)
nag opt init (e04xxc)
nag opt read (e04xyc)

12. Example 2

This example shows the use of certain optional parameters. The same objfun is used as in Example 1
and the derivatives are estimated at the same point. The options structure is declared and intialized
by nag opt init (e04xxc). Two options are set to suppress all printout from nag opt estimate deriv:
options.list is set to FALSE and options.print deriv is set to Nag D NoPrint. options.deriv want is
set to Nag Grad HessDiag and nag opt estimate deriv is called. The returned function value and
estimated derivative values are printed out and options.deriv want is reset to Nag HessFull before

[NP3275/5/pdf] 3.e04xac.11

nag opt estimate deriv NAG C Library Manual

nag opt estimate deriv is called again. On return, the computed function value and gradient, and
estimated Hessian, are printed out.

12.1. Program Text

#ifdef NAG_PROTO
static void ex2(void)
#else
static void ex2()
#endif
{
/* Local variables */
Integer i, j;
Integer n, tdh;

double objf;
double x[MAXN];
double h_central[MAXN];
double h_forward[MAXN];
double g[MAXN], h[MAXN][MAXN], hess_diag[MAXN];

Nag_DerivInfo deriv_info[MAXN];
Nag_E04_Opt options;
static NagError fail;

n = MAXN;
tdh = MAXN;
x[0] = 3.0;
x[1] = -1.0;
x[2] = 0.0;
x[3] = 1.0;
fail.print = TRUE;

Vprintf("\nExample 2: some options are set\n");

e04xxc(&options);
options.list = FALSE;
options.print_deriv = Nag_D_NoPrint;

options.deriv_want = Nag_Grad_HessDiag;

Vprintf("\nEstimate gradient and Hessian diagonals given function only\n");

/* Note: it is acceptable to pass an array of length n (hess_diag)
* as the Hessian parameter in this case.
*/

e04xac(n, x, objfun, &objf, g, h_forward, h_central,
hess_diag, tdh, deriv_info, &options, NAGCOMM_NULL, &fail);

Vprintf("\nFunction value: %12.4e\n", objf);
Vprintf("Estimated gradient vector\n");
for (i = 0; i < n; ++i)

Vprintf("%12.4e ", g[i]);
Vprintf("\nEstimated Hessian matrix diagonal\n");
for (i = 0; i < n; ++i)

Vprintf("%12.4e ", hess_diag[i]);
Vprintf("\n");

options.deriv_want = Nag_HessFull;

Vprintf("\nEstimate full Hessian given function and gradients\n");
e04xac(n, x, objfun, &objf, g, h_forward, h_central,

(double*)h, tdh, deriv_info, &options, NAGCOMM_NULL, &fail);

Vprintf("\nFunction value: %12.4e\n", objf);
Vprintf("Computed gradient vector\n");
for (i = 0; i < n; ++i)

Vprintf("%12.4e ", g[i]);
Vprintf("\nEstimated Hessian matrix\n");
for (i = 0; i < n; ++i)

3.e04xac.12 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04xac

{
for (j = 0; j < n; ++j)
Vprintf("%12.4e ", h[i][j]);

Vprintf("\n");
}

exit(EXIT_SUCCESS);
} /* ex2 */

12.2. Program Data

None.

12.3. Program Results

Example 2: some options are set

Estimate gradient and Hessian diagonals given function only

Function value: 2.1500e+02
Estimated gradient vector
3.0600e+02 -1.4400e+02 -2.0000e+00 -3.1000e+02

Estimated Hessian matrix diagonal
4.8200e+02 2.1200e+02 5.7995e+01 4.9000e+02

Estimate full Hessian given function and gradients

Function value: 2.1500e+02
Computed gradient vector
3.0600e+02 -1.4400e+02 -2.0000e+00 -3.1000e+02

Estimated Hessian matrix
4.8200e+02 2.0000e+01 0.0000e+00 -4.8000e+02
2.0000e+01 2.1200e+02 -2.4000e+01 0.0000e+00
0.0000e+00 -2.4000e+01 5.8000e+01 -1.0000e+01
-4.8000e+02 0.0000e+00 -1.0000e+01 4.9000e+02

[NP3275/5/pdf] 3.e04xac.13

