nag_real_apply_q (f01qdc)

1. Purpose

nag_real_apply_q (f01qde) performs one of the transformations

$$
B:=Q B \quad \text { or } \quad B:=Q^{T} B
$$

where B is an m by ncolb real matrix and Q is an m by m orthogonal matrix, given as the product of Householder transformation matrices.

This function is intended for use following nag_real_qr (f01qcc).

2. Specification

```
#include <nag.h>
#include <nagf01.h>
void nag_real_apply_q(MatrixTranspose trans, Nag_WhereElements wheret,
    Integer m, Integer n, double a[], Integer tda, double zeta[],
    Integer ncolb, double b[], Integer tdb, NagError *fail)
```


3. Description

Q is assumed to be given by

$$
Q=\left(Q_{n} Q_{n-1} \ldots Q_{1}\right)^{T}
$$

Q_{k} being given in the form

$$
Q_{k}=\left(\begin{array}{ll}
I & 0 \\
0 & T_{k}
\end{array}\right)
$$

where

$$
\begin{aligned}
& T_{k}=I-u_{k} u_{k}^{T} \\
& u_{k}=\binom{\zeta_{k}}{z_{k}},
\end{aligned}
$$

ζ_{k} is a scalar and z_{k} is an $(m-k)$ element vector. z_{k} must be supplied in the $(k-1)$ th column of \mathbf{a} in elements $\mathbf{a}[k][k-1], \ldots, \mathbf{a}[m-1][k-1]$ and ζ_{k} must be supplied either in $\mathbf{a}[k-1][k-1]$ or in zeta $[k-1]$, depending upon the parameter wheret.
To obtain Q explicitly B may be set to I and premultiplied by Q. This is more efficient than obtaining Q^{T}.
4. Parameters
trans
Input: the operation to be performed as follows:
trans $=$ NoTranspose, perform the operation $B:=Q B$.
trans $=$ Transpose or ConjugateTranspose, perform the operation $B:=Q^{T} B$.
Constraint: trans must be one of NoTranspose, Transpose or ConjugateTranspose.
wheret
Input: indicates where the elements of ζ are to be found as follows:
wheret $=$ Nag_ElementsIn, the elements of ζ are in a.
wheret $=$ Nag_ElementsSeparate, the elements of ζ are separate from a, in zeta.
Constraint: wheret must be Nag_ElementsIn or Nag_ElementsSeparate.
m
Input: m, the number of rows of A.
Constraint: $\mathbf{m} \geq \mathbf{n}$.
n
Input: n, the number of columns of A.
When $\mathbf{n}=0$ then an immediate return is effected.
Constraint: $\mathbf{n} \geq 0$.
$\mathrm{a}[\mathrm{m}][$ tda $]$
Input: the leading m by n strictly lower triangular part of the array a must contain details of the matrix Q. In addition, when wheret $=$ Nag_ElementsIn, then the diagonal elements of a must contain the elements of ζ as described under the parameter zeta below.
When wheret = Nag_ElementsSeparate, the diagonal elements of the array a are referenced, since they are used temporarily to store the ζ_{k}, but they contain their original values on return.
tda
Input: the second dimension of the array a as declared in the function from which nag_real_apply_q is called.
Constraint: tda $\geq \mathbf{n}$.
zeta[n]
Input: if wheret $=$ Nag_ElementsSeparate, the array zeta must contain the elements of ζ. If $\operatorname{zeta}[k-1]=0.0$ then T_{k} is assumed to be I otherwise zeta $[k-1]$ is assumed to contain ζ_{k}. When wheret $=$ Nag_ElementsIn, zeta is not referenced and may be set to the null pointer, i.e., (double *)0.
ncolb
Input: ncolb, the number of columns of B.
When ncolb $=0$ then an immediate return is effected.
Constraint: ncolb ≥ 0.
$\mathbf{b}[\mathbf{m}][\mathbf{t d b}]$
Input: the leading m by ncolb part of the array \mathbf{b} must contain the matrix to be transformed. Output: \mathbf{b} is overwritten by the transformed matrix.
tdb
Input: the second dimension of the array \mathbf{b} as declared in the function from which nag_real_apply_q is called.
Constraint: tdb \geq ncolb.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_BAD_PARAM

On entry, parameter trans had an illegal value.
On entry, parameter wheret had an illegal value.

NE_2_INT_ARG_LT

On entry, $\mathbf{m}=\langle$ value \rangle while $\mathbf{n}=\langle$ value \rangle. These parameters must satisfy $\mathbf{m} \geq \mathbf{n}$.
On entry, $\boldsymbol{t d a}=\langle$ value \rangle while $\mathbf{n}=\langle$ value \rangle. These parameters must satisfy $\mathbf{t d a} \geq \mathbf{n}$.
On entry, $\mathbf{t d b}=\langle$ value \rangle while $\mathbf{n c o l b}=\langle$ value \rangle. These parameters must satisfy $\mathbf{t d b} \geq \mathbf{n c o l b}$.

NE_INT_ARG_LT

On entry, \mathbf{n} must not be less than $0: \mathbf{n}=\langle$ value \rangle.
On entry, ncolb must not be less than 0: ncolb $=\langle$ value \rangle.

NE_ALLOC_FAIL

Memory allocation failed.

6. Further Comments

The approximate number of floating-point operations is given by $2 n(2 m-n) n$ colb.

6.1. Accuracy

Letting C denote the computed matrix $Q^{T} B, C$ satisfies the relation

$$
Q C=B+E
$$

where $\|E\| \leq c \epsilon\|B\|, \epsilon$ is the machine precision, c is a modest function of m and $\|\cdot\|$ denotes the spectral (two) norm. An equivalent result holds for the computed matrix $Q B$. See also Section 6.1 of nag_real_qr (f01qcc).
6.2. References

Golub G H and Van Loan C F (1989) Matrix Computations (2nd Edn) Johns Hopkins University Press, Baltimore.
Wilkinson J H (1965) The Algebraic Eigenvalue Problem Clarendon Press, Oxford.
7. See Also
nag_real_qr (f01qcc)

8. Example

To obtain the matrix $Q^{T} B$ for the matrix B given by

$$
B=\left(\begin{array}{rr}
1.10 & 0.00 \\
0.90 & 0.00 \\
0.60 & 1.32 \\
0.00 & 1.10 \\
-0.80 & -0.26
\end{array}\right)
$$

following the $Q R$ factorization of the 5 by 3 matrix A given by

$$
A=\left(\begin{array}{rrr}
2.0 & 2.5 & 2.5 \\
2.0 & 2.5 & 2.5 \\
1.6 & -0.4 & 2.8 \\
2.0 & -0.5 & 0.5 \\
1.2 & -0.3 & -2.9
\end{array}\right) .
$$

8.1. Program Text

```
/* nag_real_apply_q(f01qdc) Example Program
    *
    * Copyright 1990 Numerical Algorithms Group.
*
* Mark 1, 1990.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf01.h>
#define MMAX 20
#define NMAX 10
#define NCBMAX 5
main()
{
    Integer tda = NMAX;
    Integer tdb = NCBMAX;
    double zeta[NMAX], a[MMAX] [NMAX], b [MMAX] [NCBMAX];
    Integer i, j, m, n, ncolb;
    Vprintf("f01qdc Example Program Results\n");
    Vscanf(" %*[`\n]"); /* skip headings in data file */
```

```
    Vscanf(" %*[^\n]");
    Vscanf("%ld%ld", &m, &n);
    if (m > MMAX || n > NMAX)
        {
            Vprintf("m or n is out of range.\n");
            Vprintf("m = %2ld, n = %2ld\n", m, n);
        }
    else
    {
        Vscanf(" %*[^\n]");
        for (i = 0; i < m; ++i)
            for (j = 0; j < n; ++j)
                Vscanf("%lf", &a[i][j]);
        Vscanf(" %*[^\n]");
        Vscanf("%ld", &ncolb);
        if (ncolb > NCBMAX)
            {
                    Vprintf("ncolb is out of range.\n");
                    Vprintf("ncolb = %2ld\n", ncolb);
            }
        else
            {
                Vscanf(" %*[^\n]");
                    for (i = 0; i < m; ++i)
                    for (j = 0; j < ncolb; ++j)
                            Vscanf("%lf", &b[i][j]);
                    /* Find the QR factorization of A */
                    f01qcc(m, n, (double *)a, tda, zeta, NAGERR_DEFAULT);
                    /* Form Q'*B */
                    f01qdc(Transpose, Nag_ElementsSeparate, m, n, (double *)a, tda, zeta,
                                    ncolb, (double *)b, tdb, NAGERR_DEFAULT);
                    Vprintf("Matrix Q'*B\n");
                    for (i = 0; i < m; ++i)
                            for (j = 0; j < ncolb; ++j)
                                Vprintf(" %8.4f", b[i][j]);
                                Vprintf("\n");
                                }
            }
        }
    exit(EXIT_SUCCESS);
}
```

8.2. Program Data
f01qdc Example Program Data
Values of m and n.
53
Matrix A
$\begin{array}{lll}2.0 & 2.5 & 2.5\end{array}$
$2.0 \quad 2.5 \quad 2.5$
$\begin{array}{lll}1.6 & -0.4 & 2.8\end{array}$
$\begin{array}{lll}2.0 & -0.5 & 0.5\end{array}$
$\begin{array}{lll}1.2 & -0.3 & -2.9\end{array}$
Value of ncolb
2
Matrix B
1.10 .0
$0.9 \quad 0.0$
$0.6 \quad 1.32$
$0.0 \quad 1.1$
$-0.8-0.26$
8.3. Program Results
f01qdc Example Program Results
Matrix $Q^{\prime} * B$
$-1.0000-1.0000$
$-1.00001 .0000$
-1.0000 -1.0000
$-0.1000 \quad 0.1000$
-0.1000 -0.1000

