## nag_complex_qr (f01rcc)

## 1. Purpose

nag_complex_qr (f01rcc) finds the $Q R$ factorization of the complex $m$ by $n$ matrix $A$, where $m \geq n$.

## 2. Specification

```
#include <nag.h>
#include <nagf01.h>
void nag_complex_qr(Integer m, Integer n, Complex a[], Integer tda,
    Complex theta[], NagError *fail)
```


## 3. Description

The $m$ by $n$ matrix $A$ is factorized as

$$
\begin{array}{ll}
A=Q\binom{R}{0} & \text { when } m>n \\
A=Q R & \text { when } m=n
\end{array}
$$

where $Q$ is an $m$ by $m$ unitary matrix and $R$ is an $n$ by $n$ upper triangular matrix with real diagonal elements.

The factorization is obtained by Householder's method. The $k$ th transformation matrix, $Q_{k}$, which is used to introduce zeros into the $k$ th column of $A$ is given in the form

$$
Q_{k}=\left(\begin{array}{ll}
I & 0 \\
0 & T_{k}
\end{array}\right),
$$

where

$$
\begin{aligned}
& T_{k}=I-\gamma_{k} u_{k} u_{k}^{H} \\
& u_{k}=\binom{\zeta_{k}}{z_{k}}
\end{aligned}
$$

$\gamma_{k}$ is a scalar for which $\operatorname{Re} \gamma_{k}=1.0, \zeta_{k}$ is a real scalar and $z_{k}$ is an $(m-k)$ element vector. $\gamma_{k}$, $\zeta_{k}$ and $z_{k}$ are chosen to annihilate the elements below the triangular part of $A$ and to make the diagonal elements real.

The scalar $\gamma_{k}$ and the vector $u_{k}$ are returned in the $(k-1)$ th element of the array theta and in the $(k-1)$ th column of $\mathbf{a}$, such that $\theta_{k}$, given by

$$
\theta_{k}=\left(\zeta_{k}, \operatorname{Im} \gamma_{k}\right)
$$

is in theta $[k-1]$ and the elements of $z_{k}$ are in $\mathbf{a}[k][k+1], \ldots, \mathbf{a}[m-1][k-1]$. The elements of $R$ are returned in the upper triangular part of $A$.
$Q$ is given by

$$
Q=\left(Q_{n} Q_{n-1} \ldots Q_{1}\right)^{H}
$$

A good background description to the $Q R$ factorization is given in Dongarra et al(1979).

## 4. Parameters

m
Input: $m$, the number of rows of $A$.
Constraint: $\mathbf{m} \geq \mathbf{n}$.
n
Input: $n$, the number of columns of $A$.
Constraint: $\mathbf{n} \geq 0$.
When $\mathbf{n}=0$ then an immediate return is effected.
$\mathrm{a}[\mathrm{m}][$ tda $]$
Input: the leading $m$ by $n$ part of the array a must contain the matrix to be factorized.
Output: the $n$ by $n$ upper triangular part of a will contain the upper triangular matrix $R$, with the imaginary parts of the diagonal elements set to zero, and the $m$ by $n$ strictly lower triangular part of a will contain details of the factorization as described above.
tda
Input: the second dimension of the array a as declared in the function from which nag_complex_qr is called.
Constraint: tda $\geq \mathbf{n}$.
theta[n]
Output: the scalar $\theta_{k}$ for the $k$ th transformation. If $T_{k}=I$ then $\operatorname{theta}[k-1]=0.0$; if

$$
T_{k}=\left(\begin{array}{cc}
\alpha & 0 \\
0 & I
\end{array}\right) \quad \operatorname{Re} \alpha<0.0
$$

then theta $[k-1]=\alpha$; otherwise theta $[k-1]$ contains theta $[k-1]$ as described in Section 3 and $\operatorname{Re}(\operatorname{theta}[k-1])$ is always in the range $(1.0, \sqrt{2.0})$.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

## 5. Error Indications and Warnings

## NE_2_INT_ARG_LT

On entry, $\mathbf{m}=\langle$ value $\rangle$ while $\mathbf{n}=\langle$ value $\rangle$. These parameters must satisfy $\mathbf{m} \geq \mathbf{n}$.
On entry, $\boldsymbol{t d a}=\langle$ value $\rangle$ while $\mathbf{n}=\langle$ value $\rangle$. These parameters must satisfy $\boldsymbol{t d a} \geq \mathbf{n}$.

## NE_INT_ARG_LT

On entry, $\mathbf{n}$ must not be less than $0: \mathbf{n}=\langle$ value $\rangle$.

## 6. Further Comments

The approximate number of real floating-point operations is given by $8 n^{2}(3 m-n) / 3$.
Following the use of this function the operations

$$
B:=Q B \quad \text { and } \quad B:=Q^{H} B
$$

where $B$ is an $m$ by $k$ matrix, can be performed by calls to nag_complex_apply_q (f01rdc).
The operation $B:=Q B$ can be obtained by the call:

```
f01rdc(NoTranspose, Nag_ElementsSeparate, m, n, (Complex *) a, tda,
            theta, k, (Complex *) b, tdb, &fail)
```

and $B:=Q^{H} B$ can be obtained by the call:

```
f01rdc(ConjugateTranspose, Nag_ElementsSeparate, m, n, (Complex *) a,
    tda, theta, k, (Complex *) b, tdb, &fail)
```

If $B$ is a one-dimensional array (single column) then the parameter $t d b$ can be replaced by 1 . See nag_complex_apply_q (f01rdc) for further details.
The first $k$ columns of the unitary matrix $Q$ can either be obtained by setting $B$ to the first $k$ columns of the unit matrix and using the first of the above two calls, or by calling nag_complex_form_q (f01rec), which overwrites the $k$ columns of $Q$ on the first $k$ columns of the array a. $Q$ is obtained by the call:

```
f01rec(Nag_ElementsSeparate, m, n, k, (Complex *) a, tda, theta, &fail)
```

If $k$ is larger than $n$, then $A$ must have been declared to have at least $k$ columns.

### 6.1. Accuracy

The computed factors $Q$ and $R$ satisfy the relation

$$
Q\binom{R}{0}=A+E
$$

where $\|E\| \leq c \epsilon\|A\|, \epsilon$ being the machine precision, $c$ is a modest function of $m$ and $n$ and $\|\cdot\|$ denotes the spectral (two) norm.
6.2. References

Dongarra J J, Moler C B, Bunch J R and Stewart G W (1979) LINPACK Users' Guide SIAM, Philadelphia.
Wilkinson J H (1965) The Algebraic Eigenvalue Problem Clarendon Press, Oxford.

## 7. See Also

nag_complex_apply_q (f01rdc)
nag_complex_form_q (f01rec)

## 8. Example

To obtain the $Q R$ factorization of the 5 by 3 matrix

$$
A=\left(\right)
$$

### 8.1. Program Text

```
/* nag_complex_qr(f01rcc) Example Program
    *
    * Copyright 1990 Numerical Algorithms Group.
    *
    * Mark 1, 1990.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf01.h>
#define MMAX 20
#define NMAX 10
#define TDA NMAX
#define COMPLEX(A) A.re, A.im
main()
{
    Integer i, j, m, n;
    static NagError fail;
    Complex a[MMAX][TDA], theta[NMAX];
    /* Skip heading in data file */
    Vscanf("%*[^\n]");
    Vprintf("f01rcc Example Program Results\n");
    Vscanf("%ld%ld", &m, &n);
    Vprintf("\n");
    if (m>MMAX || n>NMAX)
            {
                Vfprintf(stderr, "\n m or n is out of range.\n");
                Vfprintf(stderr, "m = %ld n = %ld\n", m, n);
                exit(EXIT_FAILURE);
```

```
        }
    for (i=0; i<m; ++i)
        for ( j=0; j<n; ++j)
            Vscanf(" ( %lf , %lf ) ", COMPLEX(&a[i][j]));
    /* Find the QR factorization of A. */
    fail.print = TRUE;
    f01rcc(m, n, (Complex *)a, (Integer)TDA, theta, &fail);
    if (fail.code != NE_NOERROR)
        exit(EXIT_FAILURE);
    Vprintf("QR factorization of A\n");
    Vprintf("Vector THETA\n");
    for (i=0; i<n; ++i)
        Vprintf(" (%7.4f,%8.4f)%s", COMPLEX(theta[i]),
                (i%3==2 || i==n-1) ? "\n" : " ");
    Vprintf("\nMatrix A after factorization (upper triangular part is R)\n");
    for (i=0; i<m; ++i)
        {
            for ( j=0; j<n; ++j)
                Vprintf(" (%7.4f,%8.4f)%s", COMPLEX(a[i][j]),
                                    (j%3==2 || j==n-1) ? "\n" : " ");
        }
    exit(EXIT_SUCCESS);
}
```


### 8.2. Program Data

f01rcc Example Program Data
$\quad 503$

| $(0.0$, | $0.5)$ | $(-0.5$, | $1.5)$ | $(-1.0$, |
| :--- | :--- | :--- | :--- | :--- |
| $(0.4$, | $0.3)$ | $(0.9)$ |  |  |
| $(0.4$, | $0.0)$ | $(-0.4$, | $0.4)$ | $(0.2$, |
| $(0.4)$ |  |  |  |  |
| $(0.3$, | $-0.4)$ | $(0.1$, | $0.7)$ | $(0.0$, |
| $(0.0$, | $-0.3)$ | $(0.3$, | $0.3)$ | $(0.0$, |
| $2.4)$ |  |  |  |  |

8.3. Program Results


