nag_complex_apply_q (f01rdc)

1. Purpose

nag_complex_apply_q (f01rdc) performs one of the transformations

$$
B:=Q B \quad \text { or } \quad B:=Q^{H} B
$$

where B is an m by ncolb complex matrix and Q is an m by m unitary matrix, given as the product of Householder transformation matrices.

This function is intended for use following nag_complex_qr (f01rcc).

2. Specification

```
#include <nag.h>
#include <nagf01.h>
void nag_complex_apply_q(MatrixTranspose trans, Nag_WhereElements wheret,
    Integer m, Integer n, Complex a[], Integer tda, Complex theta[],
    Integer ncolb, Complex b[], Integer tdb, NagError *fail)
```


3. Description

The unitary matrix Q is assumed to be given by

$$
Q=\left(Q_{n} Q_{n-1} \ldots Q_{1}\right)^{H}
$$

Q_{k} being given in the form

$$
Q_{k}=\left(\begin{array}{ll}
I & 0 \\
0 & T_{k}
\end{array}\right)
$$

where

$$
\begin{aligned}
& T_{k}=I-\gamma_{k} u_{k} u_{k}^{H} \\
& u_{k}=\binom{\zeta_{k}}{z_{k}}
\end{aligned}
$$

γ_{k} is a scalar for which $\operatorname{Re} \gamma_{k}=1.0, \zeta_{k}$ is a real scalar and z_{k} is an $(m-k)$ element vector.
z_{k} must be supplied in the $(k-1)$ th column of \mathbf{a} in elements $\mathbf{a}[k][k-1], \ldots, \mathbf{a}[m-1][k-1]$ and θ_{k}, given by

$$
\theta_{k}=\left(\zeta_{k}, \operatorname{Im} \gamma_{k}\right)
$$

must be supplied either in $\mathbf{a}[k-1][k-1]$ or in theta $[k-1]$, depending upon the parameter wheret.
To obtain Q explicitly B may be set to I and premultiplied by Q. This is more efficient than obtaining Q^{H}. Alternatively, nag_complex_form_q (f01rec) may be used to obtain Q overwritten on A.

4. Parameters

trans
Input: the operation to be performed as follows:
trans $=$ NoTranspose, perform the operation $B:=Q B$.
trans $=$ ConjugateTranspose, perform the operation $B:=Q^{H} B$.
Constraint: trans must be one of NoTranspose or ConjugateTranspose.
wheret
Input: the elements of θ are to be found as follows:
wheret $=$ Nag_ElementsIn The elements of θ are in A.
wheret $=$ Nag_ElementsSeparate The elements of θ are separate from A, in theta.
Constraint: wheret must be one of Nag_ElementsIn or Nag_ElementsSeparate.
m
Input: m, the number of rows of A.
Constraint: $\mathbf{m} \geq \mathbf{n}$.
n
Input: n, the number of columns of A.
When $\mathbf{n}=0$ then an immediate return is effected.
Constraint: $\mathbf{n} \geq 0$.
$\mathbf{a}[\mathbf{m}][\mathrm{tda}]$
Input: the leading m by n strictly lower triangular part of the array a must contain details of the matrix Q. In addition, when wheret $=$ Nag_ElementsIn, then the diagonal elements of a must contain the elements of θ as described under the parameter theta below.
When wheret $=$ Nag_ElementsSeparate, then the diagonal elements of the array a are referenced, since they are used temporarily to store the ζ_{k}, but they contain their original values on return.
tda
Input: the second dimension of the array a as declared in the function from which nag_complex_apply_q is called. Constraint: tda $\geq \mathbf{n}$.
theta[n]
Input: with wheret $=$ Nag_ElementsSeparate, the array theta must contain the elements of θ. If theta $[k-1]=0.0$ then T_{k} is assumed to be I; if theta $[k-1]=\alpha$, with $\operatorname{Re} \alpha<0.0$, then T_{k} is assumed to be of the form

$$
T_{k}=\left(\begin{array}{cc}
\alpha & 0 \\
0 & I
\end{array}\right)
$$

otherwise theta $[k-1]$ is assumed to contain θ_{k} given by $\theta_{k}=\left(\zeta_{k}, \operatorname{Im} \gamma_{k}\right)$.
When wheret $=$ Nag_ElementsIn, the array theta is not referenced, and may be set to the null pointer, i.e., (Complex *)0.
ncolb
Input: ncolb, the number of columns of B.
When ncolb $=0$ then an immediate return is effected.
Constraint: ncolb ≥ 0.
$\mathbf{b}[\mathbf{m}][\mathbf{t d b}]$
Input: the leading m by ncolb part of the array \mathbf{b} must contain the matrix to be transformed. Output: \mathbf{b} is overwritten by the transformed matrix.
tdb
Input: the second dimension of the array \mathbf{b} as declared in the function from which nag_complex_apply_q is called.
Constraint: tdb \geq ncolb.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_BAD_PARAM

On entry, parameter trans had an illegal value.
On entry, parameter wheret had an illegal value.

NE_2_INT_ARG_LT

On entry, $\mathbf{m}=\langle$ value \rangle while $\mathbf{n}=\langle$ value \rangle. These parameters must satisfy $\mathbf{m} \geq \mathbf{n}$.
On entry, $\mathbf{t d a}=\langle$ value \rangle while $\mathbf{n}=\langle$ value \rangle. These parameters must satisfy $\mathbf{t d a} \geq \mathbf{n}$.
On entry, $\mathbf{t d b}=\langle$ value \rangle while ncolb $=\langle$ value \rangle. These parameters must satisfy $\mathbf{t d b} \geq \mathbf{n c o l b}$.

NE_INT_ARG_LT

On entry, \mathbf{n} must not be less than $0: \mathbf{n}=\langle$ value \rangle.
On entry, ncolb must not be less than 0 : ncolb $=\langle$ value \rangle.

NE_ALLOC_FAIL

Memory allocation failed.

6. Further Comments

The approximate number of real floating-point operations is given by $8 n(2 m-n) n c o l b$.

6.1. Accuracy

Letting C denote the computed matrix $Q^{H} B, C$ satisfies the relation

$$
Q C=B+E
$$

where $\|E\| \leq c \epsilon\|B\|, \epsilon$ being the machine precision, c is a modest function of m and $\|$.$\| denotes$ the spectral (two) norm. An equivalent result holds for the computed matrix $Q B$. See also Section 6.1 of nag_complex_qr (f01rcc).

6.2. References

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Clarendon Press, Oxford.

7. See Also

nag_complex_form_q (f01rec)
nag_complex_qr (f01rcc)

8. Example

To obtain the matrix $Q^{H} B$ for the matrix B given by

$$
B=\left(\begin{array}{rr}
-0.55+1.05 i & 0.45+1.05 i \\
0.49+0.93 i & 1.09+0.13 i \\
0.56-0.16 i & 0.64+0.16 i \\
0.39+0.23 i & -0.39-0.23 i \\
1.13+0.83 i & -1.13+0.77 i
\end{array}\right)
$$

following the $Q R$ factorization of the 5 by 3 matrix A given by

$$
A=\left(\begin{array}{rrr}
0.5 i & -0.5+1.5 i & -1.0+1.0 i \\
0.4+0.3 i & 0.9+1.3 i & 0.2+1.4 i \\
0.4 & -0.4+0.4 i & 1.8 \\
0.3-0.4 i & 0.1+0.7 i & 0.0 \\
-0.3 i & 0.3+0.3 i & \\
& 2.4 i
\end{array}\right) .
$$

8.1. Program Text

```
/* nag_complex_apply_q(f01rdc) Example Program
    *
    * Copyright 1990 Numerical Algorithms Group.
    *
    * Mark 1, 1990.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf01.h>
#define MMAX 20
#define NMAX 10
#define NCBMAX 5
#define TDA NMAX
#define TDB NCBMAX
#define COMPLEX(A) A.re, A.im
```

```
main()
{
    Integer i, j, m, n, ncolb;
    Complex a[MMAX][TDA], b[MMAX] [TDB], theta[NMAX];
    static NagError fail;
    Vprintf("f01rdc Example Program Results\n");
    /* Skip heading in data file */
    Vscanf("%*[^\n]");
    Vscanf("%ld%ld", &m, &n);
    if (m>MMAX || n>NMAX)
        {
            Vfprintf(stderr,"\n m or n is out of range.\n");
            Vfprintf(stderr,"m = %ld n = %ld", m, n);
            exit(EXIT_FAILURE);
        }
    for (i=0; i<m; ++i)
        for ( j=0; j<n; ++j)
            Vscanf(" ( %lf , %lf ) ", COMPLEX(&a[i][j]));
    Vscanf("%ld", &ncolb);
    if (ncolb>NCBMAX)
        {
            Vprintf("\n ncolb is out of range.\n ncolb = %ld\n", ncolb);
            exit(EXIT_FAILURE);
        }
    for (i=0; i<m; ++i)
        for (j=0; j<ncolb; ++j)
            Vscanf(" ( %lf , %lf ) ", COMPLEX(&b[i][j]));
    /* Find the QR factorization of A. */
    fail.print = TRUE;
    f01rcc(m, n, (Complex *)a, (Integer)TDA, theta, &fail);
    /* Form conjg( Q' )*B. */
    f01rdc(ConjugateTranspose, Nag_ElementsSeparate, m, n, (Complex *)a, (Integer)
                theta, ncolb, (Complex *)b, (Integer)TDB, &fail);
    if (fail.code != NE_NOERROR)
        exit(EXIT_FAILURE);
    Vprintf("\nMatrix conjg( Q' )*B\n");
    for (i=0; i<m; ++i)
        {
            for (j=0; j<ncolb; ++j)
                Vprintf(" (%7.4f, %8.4f)%s", COMPLEX(b[i][j]),
                            (j%2==1 || j==n-1) ? "\n" : " ");
        }
    exit (EXIT_SUCCESS);
}
```


8.2. Program Data

8.3. Program Results
f01rdc Example Program Results
Matrix conjg(Q') $*$ B

$(1.0000$,	$1.0000)$	$(1.0000$,	$-1.0000)$
$(-1.0000$,	$0.0000)$	$(-1.0000$,	$0.0000)$
$(-1.0000$,	$1.0000)$	$(-1.0000$,	$-1.0000)$
$(-0.0600$,	$-0.0200)$	$(-0.0400$,	$0.1200)$
$(0.0400$,	$0.1200)$	$(-0.0600$,	$0.0200)$

