nag_real_symm_general_eigensystem (f02aec)

1. Purpose

nag_real_symm_general_eigensystem (f02aec) calculates all the eigenvalues and eigenvectors of $Ax = \lambda Bx$, where A is a real symmetric matrix and B is a real symmetric positive-definite matrix.

2. Specification

```
#include <nag.h>
#include <nagf02.h>
```

3. Description

The problem is reduced to the standard symmetric eigenproblem using Cholesky's method to decompose B into triangular matrices $B = LL^T$, where L is lower triangular. Then $Ax = \lambda Bx$ implies $(L^{-1}AL^{-T})(L^Tx) = \lambda(L^Tx)$; hence the eigenvalues of $Ax = \lambda Bx$ are those of $Py = \lambda y$, where P is the symmetric matrix $L^{-1}AL^{-T}$. Householder's method is used to tridiagonalise the matrix P and the eigenvalues are found using the QL algorithm. An eigenvector z of the derived problem is related to an eigenvector x of the original problem by $z = L^Tx$. The eigenvectors z are determined using the QL algorithm and are normalised so that $z^Tz = 1$; the eigenvectors of the original problem are then determined by solving $L^Tx = z$, and are normalised so that $x^TBx = 1$.

4. Parameters

 \mathbf{n}

Input: n, the order of the matrices A and B. Constraint: $\mathbf{n} \geq 1$.

a[n][tda]

Input: the upper triangle of the n by n symmetric matrix A. The elements of the array below the diagonal need not be set.

Output: the lower triangle of the array is overwritten. The rest of the array is unchanged. See also Section 6.

tda

Input: the second dimension of the array ${\bf a}$ as declared in the function from which nag_real_symm_general_eigensystem is called.

Constraint: $\mathbf{tda} \geq \mathbf{n}$.

b[n][tdb]

Input: the upper triangle of the n by n symmetric positive-definite matrix B. The elements of the array below the diagonal need not be set.

Output: the elements below the diagonal are overwritten. The rest of the array is unchanged.

tdb

Input: the second dimension of the array **b** as declared in the function from which nag_real_symm_general_eigensystem is called. Constraint: $tdb \ge n$.

$\mathbf{r}[\mathbf{n}]$

Output: the eigenvalues in ascending order.

v[n][tdv]

Output: the normalised eigenvectors, stored by columns; the *i*th column corresponds to the *i*th eigenvalue. The eigenvectors x are normalised so that $x^T B x = 1$. See also Section 6.

 $\mathbf{t}\mathbf{d}\mathbf{v}$

Input: the second dimension of the array v as declared in the function from which nag_real_symm_general_eigensystem is called. Constraint: $tdv \geq n.$

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_NOT_POS_DEF

The matrix B is not positive-definite, possibly due to rounding errors.

NE_TOO_MANY_ITERATIONS

More than $\langle value \rangle$ iterations are required to isolate all the eigenvalues.

NE_INT_ARG_LT

On entry, **n** must not be less than 1: $\mathbf{n} = \langle value \rangle$.

NE_2_INT_ARG_LT

```
On entry, \mathbf{tda} = \langle value \rangle while \mathbf{n} = \langle value \rangle. These parameters must satisfy \mathbf{tda} \geq \mathbf{n}.
On entry, \mathbf{tdb} = \langle value \rangle while \mathbf{n} = \langle value \rangle. These parameters must satisfy \mathbf{tdb} \geq \mathbf{n}.
On entry, \mathbf{tdv} = \langle value \rangle while \mathbf{n} = \langle value \rangle. These parameters must satisfy \mathbf{tdv} \geq \mathbf{n}.
```

NE_ALLOC_FAIL

Memory allocation failed.

6. Further Comments

The time taken by the function is approximately proportional to n^3 .

The function may be called with the same actual array supplied for parameters \mathbf{a} and \mathbf{v} , in which case the eigenvectors will overwrite the original matrix A.

6.1. Accuracy

In general this function is very accurate. However, if B is ill-conditioned with respect to inversion, the eigenvectors could be inaccurately determined. For a detailed error analysis see Wilkinson and Reinsch (1971) pp 310, 222 and 235.

6.2. References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation (Vol II, Linear Algebra) Springer-Verlag pp 303–314, 212–226 and 227–240.

7. See Also

None.

8. Example

To calculate all the eigenvalues and eigenvectors of the general symmetric eigenproblem $Ax = \lambda Bx$ where A is the symmetric matrix

(0.5)	1.5	6.6	4.8
1.5	6.5	6.6 16.2 37.6 9.8	8.6
6.6	16.2	37.6	9.8
14.8	8.6	9.8	-17.1

and B is the symmetric positive-definite matrix

$$\begin{pmatrix} 1 & 3 & 4 & 1 \\ 3 & 13 & 16 & 11 \\ 4 & 16 & 24 & 18 \\ 1 & 11 & 18 & 27 \end{pmatrix}.$$

8.1. Program Text

```
/* nag_real_symm_general_eigensystem(f02aec) Example Program
 * Copyright 1990 Numerical Algorithms Group.
 *
 * Mark 2 revised, 1992.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf02.h>
#define NMAX 8
#define TDA NMAX
#define TDB NMAX
#define TDV NMAX
main()
{
  Integer i, j, n;
double a[NMAX][TDA], b[NMAX][TDB], r[NMAX], v[NMAX][TDV];
  Vprintf("f02aec Example Program Results\n");
  /* Skip heading in data file */
  Vscanf("%*[^\n]");
  Vscanf("%ld",&n);
if (n<1 || n>NMAX)
{
       Vfprintf(stderr, "N is out of range: N = %5ld\n", n);
       exit(EXIT_FAILURE);
    }
  for (i=0; i<n; i++)</pre>
    {
       for (j=0; j<n; j++)</pre>
       Ior (j=0; j:n; j=1);
Vscanf("%lf",&a[i][j]);
for (j=0; j<n; j++)
Vscanf("%lf",&b[i][j]);
    }
  f02aec(n, (double *)a, (Integer)TDA, (double *)b, (Integer)TDB, r,
           (double *)v, (Integer)TDV, NAGERR_DEFAULT);
  Vprintf("Eigenvalues\n");
  for (i=0; i<n; i++)
    Vprintf("%9.4f%s",r[i],(i%8==7 || i==n-1) ? "\n" : " ");
  Vprintf("Eigenvectors\n");
for (i=0; i<n; i++)</pre>
    for (j=0; j<n; j++)
Vprintf("%9.4f%s",v[i][j],(j%8==7 || j==n-1) ? "\n" : " ");</pre>
  exit(EXIT_SUCCESS);
}
```

8.2. Program Data

f02aec Example Program Data 4 0.5 1.5 6.6 4.8 1.0 3.0 4.0 1.0 1 6

1.5	6.5	16.2	8.6	3.0	13.0	16.0	11.0
6.6	16.2	37.6	9.8	4.0	16.0	24.0	18.0
4.8	8.6	9.8	-17.1	1.0	11.0	18.0	27.0

$nag_real_symm_general_eigensystem$

8.3. Program Results

f02aec Example Program Results						
Eigenvalues						
-3.0000	-1.0000	2.0000	4.0000			
Eigenvectors						
-4.3500	-2.0500	-3.9500	2.6500			
0.0500	0.1500	0.8500	0.0500			
1.0000	0.5000	0.5000	-1.0000			
-0.5000	-0.5000	-0.5000	0.5000			