nag_real_cholesky_solve_mult_rhs (f04agc)

1. Purpose

nag_real_cholesky_solve_mult_rhs (f04agc) calculates the approximate solution of a set of real symmetric positive-definite linear equations with multiple right-hand sides, $A X=B$, where A has been factorized by nag_real_cholesky (f03aec).

2. Specification

\#include <nag.h>
\#include <nagf04.h>
void nag_real_cholesky_solve_mult_rhs (Integer n, Integer nrhs, double a[], Integer tda, double p[] , double b[] , Integer tdb, double x[] , Integer tdx, NagError *fail)

3. Description

To solve a set of real linear equations $A X=B$ where A is symmetric positive-definite, the function must be preceded by a call to nag_real_cholesky (f03aec) which computes a Cholesky factorization of A as $A=L L^{T}$, where L is lower triangular. The columns x of the solution X are found by forward and backward substitution in $L y=b$ and $L^{T} x=y$, where b is a column of the right-hand sides.

4. Parameters

n
Input: n, the order of the matrix A.
Constraint: $\mathbf{n} \geq 1$.
nrhs
Input: r, the number of right-hand sides.
Constraint: $\mathrm{nrhs} \geq 1$.
$\mathbf{a}[\mathbf{n}][$ tda $]$
Input: the upper triangle of the n by n positive-definite symmetric matrix A, and the subdiagonal elements of its Cholesky factor L, as returned by nag_real_cholesky (f03aec).
tda
Input: the second dimension of the array a as declared in the function from which nag_real_cholesky_solve_mult_rhs is called.
Constraint: tda $\geq \mathbf{n}$.
$\mathrm{p}[\mathrm{n}]$
Input: the reciprocals of the diagonal elements of L, as returned by nag_real_cholesky (f03aec).
$\mathrm{b}[\mathbf{n}][\mathrm{tdb}]$
Input: the n by r right-hand side matrix B. See also Section 6 .
tdb
Input: the second dimension of the array \mathbf{b} as declared in the function from which nag_real_cholesky_solve_mult_rhs is called.
Constraint: $\mathrm{tdb} \geq$ nrhs.
$\mathrm{x}[\mathrm{n}][\mathrm{tdx}]$
Output: the n by r solution matrix X. See also Section 6 .
tdx
Input: the second dimension of the array \mathbf{x} as declared in the function from which nag_real_cholesky_solve_mult_rhs is called.
Constraint: tdx \geq nrhs.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_INT_ARG_LT

On entry, \mathbf{n} must not be less than 1: $\mathbf{n}=\langle$ value \rangle.
On entry, nrhs must not be less than 1: nrhs $=\langle$ value \rangle.

NE_2_INT_ARG_LT

On entry, $\mathbf{t d a}=\langle$ value \rangle while $\mathbf{n}=\langle$ value \rangle. These parameters must satisfy $\mathbf{t d a} \geq \mathbf{n}$.
On entry, $\mathbf{t d b}=\langle$ value \rangle while $\mathbf{n r h s}=\langle$ value \rangle. These parameters must satisfy $\mathbf{t d b} \geq \mathbf{n r h s}$.
On entry, $\mathbf{t d x}=\langle$ value \rangle while $\mathbf{n r h s}=\langle$ value \rangle. These parameters must satisfy $\mathbf{t d x} \geq \mathbf{n r h s}$.

6. Further Comments

The time taken is approximately proportional to $n^{2} r$.
The function may be called with the same actual array supplied for parameters \mathbf{b} and \mathbf{x}, in which case the solution vectors will overwrite the right-hand sides.

6.1. Accuracy

The accuracy of the computed solutions depends on the conditioning of the original matrix. For a detailed error analysis see Wilkinson and Reinsch (1971) p 39.
6.2. References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation (Vol II, Linear Algebra) Springer-Verlag pp 31-44.

7. See Also

nag_real_cholesky (f03aec)

8. Example

To solve the set of linear equations $A X=B$ where

$$
A=\left(\begin{array}{rrrr}
5 & 7 & 6 & 5 \\
7 & 10 & 8 & 7 \\
6 & 8 & 10 & 9 \\
5 & 7 & 9 & 10
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{l}
23 \\
32 \\
33 \\
31
\end{array}\right)
$$

8.1. Program Text

```
/* nag_real_cholesky_solve_mult_rhs(f04agc) Example Program
    *
    * Copyright 1996 Numerical Algorithms Group.
*
* Mark 4, 1996.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf03.h>
#include <nagf04.h>
#define NMAX 8
#define NRHS 1
#define TDA NMAX
```

```
#define TDB NRHS
#define TDX NRHS
main()
{
    double d1;
    Integer i, id, j, n;
    double a [NMAX] [TDA], b[NMAX] [TDB], p[NMAX], x[NMAX] [TDX];
    static NagError fail;
    Vprintf("f04agc Example Program Results\n");
    /* Skip heading in data file */
    Vscanf("%*[^\n]");
    Vscanf("%ld", &n);
    if (n<1 || n>NMAX)
        {
            Vfprintf(stderr,"\nn is out of range: n = %ld\n", n);
            exit(EXIT_FAILURE);
        }
    for (i=0; i<n; ++i)
        for (j=0; j<n; ++j)
            Vscanf("%lf", &a[i][j]);
    for (i=0; i<n; ++i)
        for ( }\textrm{j}=0;\textrm{j}<\textrm{NRHS}; ++j
            Vscanf("%lf", &b[i][j]);
    fail.print = TRUE;
    /* Cholesky decomposition */
    f03aec(n, (double *)a, (Integer)TDA, p, &d1, &id, &fail);
    if (fail.code != NE_NOERROR)
        exit(EXIT_FAILURE);
    /* Approximate solution of linear equations */
    f04agc(n, (Integer)NRHS, (double *)a, (Integer)TDA, p, (double *)b,
            (Integer)TDB, (double *)x, (Integer)TDX, &fail);
    if (fail.code != NE_NOERROR)
        exit(EXIT_FAILURE);
    Vprintf("\n Solution\n");
    for (i=0; i<n; ++i)
        {
            for ( }\textrm{j}=0;\textrm{j}<\mathrm{ NRRHS; ++j)
                    Vprintf("%%.4f", x[i][j]);
            Vprintf("\n");
        }
    exit(EXIT_SUCCESS);
}
```


8.2. Program Data

f04agc Example Program Data
4

5	7	6	5
7	10	8	7
6	8	10	9
5	7	9	10
23	32	33	31

8.3. Program Results

f04agc Example Program Results
Solution
1.0000
1.0000
1.0000
1.0000

