nag_prob_students_t (g01ebc)

1. Purpose

nag_prob_students_t (g01ebc) returns the lower tail, upper tail or two-tail probability for the Student's t-distribution with real degrees of freedom.

2. Specification

3. Description

The lower tail probability for the Student's t-distribution with ν degrees of freedom, $P(T \le t : \nu)$, is defined by

$$P(T \le t : \nu) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\pi\nu}\Gamma(\nu/2)} \int_{-\infty}^{t} \left[1 + \frac{T^2}{\nu} \right]^{-(\nu+1)/2} dT, \quad \nu \ge 1.$$

Computationally, there are two situations:

(a) when $\nu < 20$, a transformation of the beta distribution, $P_{\beta}(B \leq \beta : a, b)$ is used;

$$P(T \le t : \nu) = \frac{1}{2} P_{\beta} \left(B \le \frac{\nu}{\nu + t^2} : \nu/2, \frac{1}{2} \right)$$
 when $t < 0.0$

or

$$P(T \le t : \nu) = \frac{1}{2} + \frac{1}{2}P_{\beta}\left(B \ge \frac{\nu}{\nu + t^2} : \nu/2, \frac{1}{2}\right)$$
 when $t > 0.0$

(b) when $\nu \geq 20$, an asymptotic normalising expansion of the Cornish–Fisher type is used to evaluate the probability, see Hill (1970).

4. Parameters

tail

Input: indicates which tail the returned probability should represent.

If **tail** = Nag_UpperTail, the upper tail probability is returned, i.e., $P(T \ge t : \nu)$.

If tail = Nag_LowerTail, the lower tail probability is returned, i.e., $P(T \le t : \nu)$.

If **tail** = **Nag_TwoTailSignif**, the two tail (significance level) probability is returned, i.e., $P(T \ge |t| : \nu) + P(T \le -|t| : \nu)$.

If **tail** = Nag_TwoTailConfid, the two tail (confidence interval) probability is returned, i.e., $P(T \le |t| : \nu) - P(T \le -|t| : \nu)$.

 ${\bf Constraint:} \ \ {\bf tail} = {\bf Nag_UpperTail} \ {\bf or} \ {\bf Nag_LowerTail} \ {\bf or} \ {\bf Nag_TwoTailSignif} \ {\bf or} \ {\bf Nag_TwoTailConfid}.$

 \mathbf{t}

Input: the value of the Student's t variate, t.

 \mathbf{df}

Input: the degrees of freedom, ν , of the Student's t-distribution. Constraint: $\mathbf{df} \geq 1$.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

[NP3275/5/pdf] 3.g01ebc.1

5. Error Indications and Warnings

On any of the error conditions listed below nag_prob_students_t returns 0.0.

NE_BAD_PARAM

On entry, parameter tail had an illegal value.

NE_REAL_ARG_LT

On entry, **df** must not be less than 1.0: **df** = $\langle value \rangle$.

6. Further Comments

The probabilities could also be obtained by using the appropriate transformation to a Beta distribution (see Abramowitz and Stegun, 1965) and using nag_prob_beta_dist (g01eec). This function allows the user to set the required accuracy.

6.1. Accuracy

The computed probability should to be accurate to 5 significant places for reasonable probabilities but there will be some loss of accuracy for very low probabilities (less than 10^{-10}), see Hill (1970).

6.2. References

Abramowitz M and Stegun I A (1965) Handbook of Mathematical Functions Dover Publications, New York ch 26.

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth. Hill G W (1970) Student's t-distribution Commun. ACM 13 (10) 617–619.

7. See Also

None.

8. Example

Values from, and degrees of freedom for Student's t-distributions are read along with the required tail. The probabilities are calculated and printed until the end of data is reached.

8.1. Program Text

```
/* nag_prob_students_t(g01ebc) Example Program
 * Copyright 1996 Numerical Algorithms Group.
* Mark 4, 1996.
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg01.h>
main()
 double df, prob, t;
 int i:
 static Nag_TailProbability tail[4] = {Nag_LowerTail, Nag_UpperTail,
                                        Nag_TwoTailSignif, Nag_TwoTailConfid};
 Vprintf("g01ebc Example Program Results\n\n");
 /* Skip heading in data file */
Vscanf("%*[^\n]");
Vprintf(" t df prob
                           prob
                                     tail\n\n");
 while (scanf("%lf %lf %ld\n", &t, &df, &i) != EOF)
     prob = g01ebc(tail[i], t, df, NAGERR_DEFAULT);
     Vprintf(" %6.3f%8.3f%8.4f %s\n", t, df, prob, tailmess[i]);
 exit(EXIT_SUCCESS);
```

3.g01ebc.2 [NP3275/5/pdf]

8.2. Program Data

```
g01ebc Example Program Data
0.85 20.0 0
0.85 20.0 2
0.85 20.0 3
0.85 20.0 1
```

8.3. Program Results

g01ebc Example Program Results

t	df	prob	tail
0.850 0.850	20.000 20.000 20.000 20.000	0.4054 0.5946	Nag_LowerTail Nag_TwoTailSignif Nag_TwoTailConfid Nag_UpperTail

[NP3275/5/pdf] 3.g01ebc.3