nag_prob_f_dist (g01edc)

1. Purpose

nag_prob_f_dist (g01edc) returns the probability for the lower or upper tail of the F or variance-ratio distribution with real degrees of freedom.
2. Specification

```
#include <nag.h>
#include <nagg01.h>
double nag_prob_f_dist(Nag_TailProbability tail, double f, double df1,
    double df2, NagError *fail)
```


3. Description

The lower tail probability for the F, or variance-ratio distribution, with ν_{1} and ν_{2} degrees of freedom, $P\left(F \leq f: \nu_{1}, \nu_{2}\right)$, is defined by

$$
P\left(F \leq f: \nu_{1}, \nu_{2}\right)=\frac{\nu_{1}^{\nu_{1} / 2} \nu_{2}^{\nu_{2} / 2} \Gamma\left(\left(\nu_{1}+\nu_{2}\right) / 2\right)}{\Gamma\left(\nu_{1} / 2\right) \Gamma\left(\nu_{2} / 2\right)} \int_{0}^{f} F^{\left(\nu_{1}-2\right) / 2}\left(\nu_{1} F+\nu_{2}\right)^{-\left(\nu_{1}+\nu_{2}\right) / 2} d F
$$

for $\nu_{1}, \nu_{2}>0, f \geq 0$.
The probability is computed by means of a transformation to a beta distribution, $P_{\beta}(B \leq \beta: a, b)$

$$
P\left(F \leq f: \nu_{1}, \nu_{2}\right)=P_{\beta}\left(B \leq \frac{\nu_{1} f}{\nu_{1} f+\nu_{2}}: \nu_{1} / 2, \nu_{2} / 2\right)
$$

and using a call to nag_prob_beta_dist (g01eec).
For very large values of both ν_{1} and ν_{2}, greater than 10^{5}, a normal approximation is used. If only one of ν_{1} or ν_{2} is greater than 10^{5} then a χ^{2} approximation is used, see Abramowitz and Stegun (1965).

4. Parameters

tail
Input: indicates whether the upper or lower tail probability is required.
If tail $=\mathbf{N a g}$ LowerTail, the lower tail probability is returned, i.e., $P\left(F \leq f: \nu_{1}, \nu_{2}\right)$.
If tail $=$ Nag_UpperTail, the upper tail probability is returned, i.e., $P\left(F \geq f: \nu_{1}, \nu_{2}\right)$.
Constraint: tail = Nag_LowerTail or Nag_UpperTail.
f
Input: the value of the F variate, f.
Constraint: $\mathbf{f} \geq 0.0$.
df1
Input: the degrees of freedom of the numerator variance, ν_{1}.
Constraint: df1 > 0.0.
df2
Input: the degrees of freedom of the denominator variance, ν_{2}.
Constraint: df2 >0.0.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

On any of the error conditions listed below except NE_PROBAB_CLOSE_TO_TAIL nag_prob_f_dist returns 0.0.

NE_BAD_PARAM

On entry, parameter tail had an illegal value.

NE_REAL_ARG_LT

On entry, \mathbf{f} must not be less than $0.0: \mathbf{f}=\langle$ value \rangle.

NE_REAL_ARG_LE

On entry, df1 must not be less than or equal to 0.0 : df1 $=\langle$ value \rangle.
On entry, df2 must not be less than or equal to $0.0: \mathbf{d f} 2=\langle$ value \rangle.

NE_PROBAB_CLOSE_TO_TAIL

The probability is too close to 0.0 or 1.0 .
\mathbf{f} is too far out into the tails for the probability to be evaluated exactly. The result tends to approach 1.0 if f is large, or 0.0 if f is small. The result returned is a good approximation to the required solution.

6. Further Comments

For higher accuracy nag_prob_beta_dist (g01eec) can be used along with the transformations given in Section 3.

6.1. Accuracy

The result should be accurate to 5 significant digits.

6.2. References

Abramowitz M and Stegun I A (1965) Handbook of Mathematical Functions Dover Publications, New York ch 26.
Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth.
7. See Also
nag_prob_beta_dist (g01eec)

8. Example

Values from, and degrees of freedom for F-distributions are read, the lower-tail probabilities computed, and all these values printed, until the end of data is reached.
8.1. Program Text

```
/* nag_prob_f_dist(g01edc) Example Program
    *
    * Copyright 1990 Numerical Algorithms Group.
    *
    * Mark 1, 1990.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg01.h>
main()
{
    double df1, df2, f, prob;
    static NagError fail;
    /* Skip heading in data file */
    Vscanf("%*[`\n]");
    Vprintf("g01edc Example Program Results\n");
    Vprintf(" f df1 df2 prob\n\n");
```

```
        while (scanf("%lf %lf %lf", &f, &df1, &df2) != EOF)
        {
            prob = g01edc(Nag_LowerTail, f, df1, df2, &fail);
                if (fail.code==NE_NOERROR)
                Vprintf("%6.3f%8.3f%8.3f%8.4f\n", f, df1, df2, prob);
        else
            Vprintf("%6.3f%8.3f%8.3f%8.4f\n Note: %s\n",f,df1,df2,prob,
                                    fail.message);
        }
        exit(EXIT_SUCCESS);
}
```


8.2. Program Data

g01edc	Example Program Data	
5.5	1.5	25.5
39.9	1.0	1.0
2.5	20.25	1.0

8.3. Program Results

$\underset{f}{\mathrm{~g} 01 \mathrm{edc}}$	$\begin{gathered} \text { Example } \\ \mathrm{df} 1 \end{gathered}$	$\underset{\text { df } 2}{\text { Program }}$	$\begin{aligned} & \text { Results } \\ & \text { prob } \end{aligned}$
5.500	1.500	25.500	0.9837
39.900	1.000	1.000	0.9000
2.500	20.250	1.000	0.5342

