nag_mv_discrim_group (g03dcc)

1. Purpose

nag_mv_discrim_group (g03dcc) allocates observations to groups according to selected rules. It is intended for use after nag_mv_discrim (g03dac).
2. Specification
\#include <nag.h>
\#include <nagg03.h>
void nag_mv_discrim_group(Nag_DiscrimMethod type, Nag_GroupCovars equal,
Nag_PriorProbability priors, Integer nvar,
Integer ng, Integer nig[], double gmean[], Integer tdg, double gc[], double det[], Integer nobs, Integer m, Integer isx[], double x[], Integer tdx, double prior[], double p[], Integer tdp, Integer iag[], Boolean atiq, double ati[], NagError *fail)

3. Description

Discriminant analysis is concerned with the allocation of observations to groups using information from other observations whose group membership is known, X_{t}; these are called the training set. Consider p variables observed on n_{g} populations or groups. Let \bar{x}_{j} be the sample mean and S_{j} the within-group variance-covariance matrix for the j th group; these are calculated from a training set of n observations with n_{j} observations in the j th group, and let x_{k} be the k th observation from the set of observations to be allocated to the n_{g} groups. The observation can be allocated to a group according to a selected rule. The allocation rule or discriminant function will be based on the distance of the observation from an estimate of the location of the groups, usually the group means. A measure of the distance of the observation from the j th group mean is given by the Mahalanobis distance, $D_{k j}^{2}$:

$$
\begin{equation*}
D_{k j}^{2}=\left(x_{k}-\bar{x}_{j}\right)^{T} S_{j}^{-1}\left(x_{k}-\bar{x}_{j}\right) . \tag{1}
\end{equation*}
$$

If the pooled estimate of the variance-covariance matrix S is used rather than the within-group variance-covariance matrices, then the distance is:

$$
\begin{equation*}
D_{k j}^{2}=\left(x_{k}-\bar{x}_{j}\right)^{T} S^{-1}\left(x_{k}-\bar{x}_{j}\right) . \tag{2}
\end{equation*}
$$

Instead of using the variance-covariance matrices S and S_{j}, nag_mv_discrim_group uses the upper triangular matrices R and R_{j} supplied by nag_mv_discrim (g03dac) such that $S=R^{T} R$ and $S_{j}=R_{j}^{T} R_{j} . D_{k j}^{2}$ can then be calculated as $z^{T} z$ where $R_{j} z=\left(x_{k}-\bar{x}_{j}\right)$ or $R z=\left(x_{k}-\bar{x}_{j}\right)$ as appropriate.
In addition to the distances, a set of prior probabilities of group membership, π_{j}, for $j=1,2, \ldots, n_{g}$, may be used, with $\sum \pi_{j}=1$. The prior probabilities reflect the user's view as to the likelihood of the observations coming from the different groups. Two common cases for prior probabilities are $\pi_{1}=\pi_{2}=\ldots=\pi_{n_{g}}$, that is, equal prior probabilities, and $\pi_{j}=n_{j} / n$, for $j=1,2, \ldots, n_{g}$, that is, prior probabilities proportional to the number of observations in the groups in the training set.
nag_mv_discrim_group uses one of four allocation rules. In all four rules the p variables are assumed to follow a multivariate Normal distribution with mean μ_{j} and variance-covariance matrix Σ_{j} if the observation comes from the j th group. The different rules depend on whether or not the withingroup variance-covariance matrices are assumed equal, i.e., $\Sigma_{1}=\Sigma_{2}=\ldots=\Sigma_{n_{g}}$, and whether a predictive or estimative approach is used. If $p\left(x_{k} \mid \mu_{j}, \Sigma_{j}\right)$ is the probability of observing the observation x_{k} from group j, then the posterior probability of belonging to group j is:

$$
\begin{equation*}
p\left(j \mid x_{k}, \mu_{j}, \Sigma_{j}\right) \propto p\left(x_{k} \mid \mu_{j}, \Sigma_{j}\right) \pi_{j} . \tag{3}
\end{equation*}
$$

In the estimative approach, the parameters μ_{j} and Σ_{j} in (3) are replaced by their estimates calculated from X_{t}. In the predictive approach, a non-informative prior distribution is used for
the parameters and a posterior distribution for the parameters, $p\left(\mu_{j}, \Sigma_{j} \mid X_{t}\right)$, is found. A predictive distribution is then obtained by integrating $p\left(j \mid x_{k}, \mu_{j}, \Sigma_{j}\right) p\left(\mu_{j}, \Sigma_{j} \mid X\right)$ over the parameter space. This predictive distribution then replaces $p\left(x_{k} \mid \mu_{j}, \Sigma_{j}\right)$ in (3). See Aitchison and Dunsmore (1975), Aitchison et al. (1977) and Moran and Murphy (1979) for further details.
The observation is allocated to the group with the highest posterior probability. Denoting the posterior probabilities, $p\left(j \mid x_{k}, \mu_{j}, \Sigma_{j}\right)$, by q_{j}, the four allocation rules are:
(i) Estimative with equal variance-covariance matrices - Linear Discrimination.

$$
\log q_{j} \propto-\frac{1}{2} D_{k j}^{2}+\log \pi_{j}
$$

(ii) Estimative with unequal variance-covariance matrices - Quadratic Discrimination.

$$
\log q_{j} \propto-\frac{1}{2} D_{k j}^{2}+\log \pi_{j}-\frac{1}{2} \log \left|S_{j}\right|
$$

(iii) Predictive with equal variance-covariance matrices.

$$
q_{j}^{-1} \propto\left(\left(n_{j}+1\right) / n_{j}\right)^{p / 2}\left\{1+\left[n_{j} /\left(\left(n-n_{g}\right)\left(n_{j}+1\right)\right)\right] D_{k j}^{2}\right\}^{\left(n+1-n_{g}\right) / 2}
$$

(iv) Predictive with unequal variance-covariance matrices.

$$
q_{j}^{-1} \propto C\left\{\left(\left(n_{j}^{2}-1\right) / n_{j}\right)\left|S_{j}\right|\right\}^{p / 2}\left\{1+\left(n_{j} /\left(n_{j}^{2}-1\right)\right) D_{k j}^{2}\right\}^{n_{j} / 2}
$$

where

$$
C=\frac{\Gamma\left(\frac{1}{2}\left(n_{j}-p\right)\right)}{\Gamma\left(\frac{1}{2} n_{j}\right)}
$$

In the above the appropriate value of $D_{k j}^{2}$ from (1) or (2) is used. The values of the q_{j} are standardized so that,

$$
\sum_{j=1}^{n_{g}} q_{j}=1
$$

Moran and Murphy (1979) show the similarity between the predictive methods and methods based upon likelihood ratio tests.

In addition to allocating the observation to a group, nag_mv_discrim_group computes an atypicality index, $I_{j}\left(x_{k}\right)$. This represents the probability of obtaining an observation more typical of group j than the observed x_{k} (see Aitchison and Dunsmore (1975) and Aitchison et al. (1977)). The atypicality index is computed as:

$$
I_{j}\left(x_{k}\right)=P\left(B \leq z: \frac{1}{2} p, \frac{1}{2}\left(n_{j}-d\right)\right)
$$

where $P(B \leq \beta: a, b)$ is the lower tail probability from a beta distribution where, for unequal within-group variance-covariance matrices,

$$
z=D_{k j}^{2} /\left(D_{k j}^{2}+\left(n_{j}^{2}-1\right) / n_{j}\right)
$$

and for equal within-group variance-covariance matrices,

$$
z=D_{k j}^{2} /\left(D_{k j}^{2}+\left(n-n_{g}\right)\left(n_{j}-1\right) / n_{j}\right)
$$

If $I_{j}\left(x_{k}\right)$ is close to 1 for all groups it indicates that the observation may come from a grouping not represented in the training set. Moran and Murphy (1979) provide a frequentist interpretation of $I_{j}\left(x_{k}\right)$.

4. Parameters

type
Input: indicates whether the estimative or predictive approach is to be used.
If type $=$ Nag_DiscrimEstimate, the estimative approach is used.
If type $=$ Nag_DiscrimPredict, the predictive approach is used.
Constraint: type $=$ Nag_DiscrimEstimate or Nag_DiscrimPredict.
equal
Input: indicates whether or not the within-group variance-covariance matrices are assumed to be equal and the pooled variance-covariance matrix used.

If equal $=$ Nag_EqualCovar, the within-group variance-covariance matrices are assumed equal and the matrix R stored in the first $p(p+1) / 2$ elements of gc is used.
If equal $=$ Nag_NotEqualCovar, the within-group variance-covariance matrices are assumed to be unequal and the matrices R_{i}, for $i=1,2, \ldots, n_{g}$, stored in the remainder of $\mathbf{g c}$ are used.
Constraint: equal $=$ Nag_EqualCovar or Nag_NotEqualCovar.
priors
Input: indicates the form of the prior probabilities to be used.
If priors = Nag_EqualPrior, equal prior probabilities are used.
If priors $=$ Nag_GroupSizePrior, prior probabilities proportional to the group sizes in the training set, n_{j}, are used.
If priors = Nag_UserPrior, the prior probabilities are input in prior.
Constraint: priors = Nag_EqualPrior, Nag_GroupSizePrior or Nag_UserPrior.
nvar
Input: the number of variables, p, in the variance-covariance matrices as specified to nag_mv_discrim (g03dac).
Constraint: nvar ≥ 1.
ng
Input: the number of groups, n_{g}.
Constraint: $\mathbf{n g} \geq 2$.
nig[ng]
Input: the number of observations in each group training set, n_{j}.
Constraints:

```
If equal \(=\mathbf{N a g}\) EqualCovar, \(\boldsymbol{\operatorname { n i g }}[j-1]>0\), for \(j=1,2, \ldots, n_{g}\) and \(\sum_{j=1}^{n_{g}} \boldsymbol{n i g}[j-1]>\)
ng + nvar.
If equal \(=\) Nag_NotEqualCovar, \(\boldsymbol{n i g}[j-1]>\mathbf{n v a r}\), for \(j=1,2, \ldots, n_{g}\).
```

gmean[ng][tdg]
Input: the j th row of gmean contains the means of the p variables for the j th group, for $j=1,2, \ldots, n_{j}$. These are returned by nag_mv_discrim (g03dac).
tdg
Input: the last dimension of the array gmean as declared in the calling program.
Constraint: tdg \geq nvar
$\operatorname{gc}[(\mathbf{n g}+1) * \mathbf{n v a r} *(\operatorname{nvar}+1) / 2]$
Input: the first $p(p+1) / 2$ elements of gc should contain the upper triangular matrix R and the next n_{g} blocks of $p(p+1) / 2$ elements should contain the upper triangular matrices R_{j}. All matrices must be stored packed by column. These matrices are returned by nag_mv_discrim (g03dac). If equal=Nag_EqualCovar only the first $p(p+1) / 2$ elements are referenced, if equal $=\mathbf{N a g}$ NotEqualCovar only the elements $p(p+1) / 2$ to $\left(n_{g}+1\right) p(p+1) / 2-1$ are referenced.
Constraints:
If equal $=$ Nag_EqualCovar, the diagonal elements of R must be $\neq 0.0$,
If equal $=$ Nag_NotEqualCovar, the diagonal elements of the R_{j} must be $\neq 0.0$, for $j=1,2, \ldots, n_{g}$.
$\operatorname{det}[\mathbf{n g}]$
Input: if equal = Nag_NotEqualCovar the logarithms of the determinants of the within-group variance-covariance matrices as returned by nag_mv_discrim (g03dac). Otherwise det is not referenced.
nobs
Input: the number of observations in \mathbf{x} which are to be allocated.
Constraint: nobs ≥ 1.
m
Input: the number of variables in the data array \mathbf{x}.
Constraint: $\mathbf{m} \geq$ nvar.
isx[m]
Input: isx $[l-1]$ indicates if the l th variable in \mathbf{x} is to be included in the distance calculations. If isx $[l-1]>0$ the l th variable is included, for $l=1,2, \ldots, \mathbf{m}$; otherwise the l th variable is not referenced.
Constraint: isx $[l-1]>0$ for nvar values of l.
$\mathrm{x}[$ nobs $][$ tdx]
Input: $\mathbf{x}[k-1][l-1]$ must contain the k th observation for the l th variable, for $k=1,2, \ldots$, nobs; $l=1,2, \ldots, \mathbf{m}$.
tdx
Input: the last dimension of the array \mathbf{x} as declared in the calling program.
Constraint: $\mathbf{t d x} \geq \mathbf{m}$.
prior[ng]
Input: if priors $=$ Nag_UserPrior, the prior probabilities for the n_{g} groups.
Constraint: if priors $=$ Nag_UserPrior, then $\operatorname{prior}[j-1]>0.0$ for $j=1,2, \ldots, n_{g}$ and $\left|1-\sum_{j=1}^{n_{g}} \operatorname{prior}[j-1]\right| \leq 10 \times$ machine precision.
Output: if priors $=$ Nag_GroupSizePrior, the computed prior probabilities in proportion to group sizes for the n_{g} groups. If priors $=$ Nag_UserPrior, the input prior probabilities will be unchanged, and if priors = Nag_EqualPrior, prior is not set.
$\mathrm{p}[$ nobs $][\mathrm{tdp}$]
Output: $\mathbf{p}[k-1][j-1]$ contains the posterior probability $p_{k j}$ for allocating the k th observation to the j th group, for $k=1,2, \ldots$, nobs; $j=1,2, \ldots, n_{g}$.
tdp
Input: the last dimension of the array \mathbf{p} and ati as declared in the calling program.
Constraint: $\mathbf{t d p} \geq \mathbf{n g}$.
iag[nobs]
Output: the groups to which the observations have been allocated.
atiq
Input: atiq must be TRUE if atypicality indices are required. If atiq is FALSE, the array ati is not set.
ati[nobs][tdp]
Output: if atiq is TRUE, ati $[k-1][j-1]$ will contain the atypicality index for the k th observation with respect to the j th group, for $k=1,2, \ldots, \mathbf{n o b s} ; j=1,2, \ldots, n_{g}$. If atiq is FALSE, ati is not set.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_BAD_PARAM

On entry, parameter type had an illegal value.
On entry, parameter equal had an illegal value.
On entry, parameter priors had an illegal value.

NE_INT_ARG_LT

On entry, nvar must not be less than 1: nvar $=\langle$ value \rangle.
On entry, ng must not be less than $2: \mathbf{n g}=\langle$ value \rangle.
On entry, nobs must not be less than 1: nobs $=\langle$ value \rangle.

NE_2_INT_ARG_LT

On entry, $\mathbf{m}=\langle$ value \rangle while nvar $=\langle$ value \rangle.
These parameters must satisfy $\mathbf{m} \geq \mathbf{n v a r}$.
On entry, tdx $=\langle$ value \rangle while $\mathbf{m}=\langle$ value \rangle.
These parameters must satisfy $\mathbf{t d x} \geq \mathbf{m}$.
On entry, $\mathbf{t d p}=\langle$ value \rangle while $\mathbf{n g}=\langle$ value \rangle.
These parameters must satisfy $\mathbf{t d p} \geq \mathbf{n g}$.
On entry, tdg $=\langle$ value \rangle while nvar $=\langle$ value \rangle.
These parameters must satisfy tdg $\geq \mathbf{n v a r}$.

NE_VAR_INCL_INDICATED

The number of variables, nvar in the analysis $=\langle$ value \rangle, while number of variables included in the analysis via array isx $=\langle$ value \rangle.
Constraint: these two numbers must be the same.

NE_INTARR

On entry, nig $[\langle$ value $\rangle]=\langle$ value \rangle.
Constraint: nig $[i-1]>0, i=1,2, \ldots, \mathbf{n g}$ when equal $=$ Nag_EqualCovar.

NE_INTARR_INT

On entry, nig $[\langle$ value $\rangle]=\langle$ value $\rangle, \mathbf{n v a r}=\langle$ value \rangle.
Constraint: nig $[i-1]>$ nvar, $i=1,2, \ldots$, ng when equal $=$ Nag_NotEqualCovar.

NE_REALARR

On entry, $\operatorname{prior}[\langle$ value $\rangle]=\langle$ value \rangle.
Constraint: $\operatorname{prior}[j-1]>0, j=1,2, \ldots, \mathbf{n g}$ when priors $=$ Nag_UserPrior.

NE_PRIOR_SUM

On entry, $\sum_{j=1}^{\mathbf{n g}} \operatorname{prior}[j-1]=\langle$ value \rangle.
Constraint: $\sum_{j=1}^{\text {ng }}$ prior $[j-1]$ must be within $10 \times$ machine precision of 1 when priors $=$ Nag_UserPrior.

NE_GROUP_SUM

On entry, the $\sum_{j=1}^{\mathbf{n g}} \mathbf{n i g}[j-1]=\langle$ value $\rangle, \mathbf{n g}=\langle$ value \rangle, nvar $=\langle$ value \rangle.
Constraint: $\sum_{j=1}^{\mathbf{n g}} \mathbf{n i g}[j-1]>\mathbf{n g}+\mathbf{n v a r}$ when equal $=$ Nag_EqualCovar.

NE_DIAG_0_COND

A diagonal element of R is zero when equal $=$ Nag_EqualCovar.

NE_DIAG_0_J_COND

A diagonal element of R is zero for some j, when equal $=$ Nag_NotEqualCovar

NE_ALLOC_FAIL

Memory allocation failed.

NE_INTERNAL_ERROR

An internal error has occurred in this function.
Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6. Further Comments

The distances $D_{k j}^{2}$ can be computed using nag_mv_discrim_mahaldist (g03dbc) if other forms of discrimination are required.

6.1. Accuracy

The accuracy of the returned posterior probabilities will depend on the accuracy of the input R or R_{j} matrices. The atypicality index should be accurate to four significant places.

6.2. References

Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge.
Aitchison J, Habbema J D F and Kay J W (1977) A critical comparison of two methods of statistical discrimination Appl. Statist. 26 15-25.
Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) Griffin (3rd Edition).
Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press.
Moran M A and Murphy B J (1979) A closer look at two alternative methods of statistical discrimination Appl. Statist. 28 223-232.
Morrison D F (1967) Multivariate Statistical Methods McGraw-Hill.

7. See Also

nag_mv_discrim_mahaldist (g03dbc)
nag_mv_discrim (g03dac)

8. Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three 'types' of Cushing's syndrome. The variables are the logarithms of the urinary excretion rates ($\mathrm{mg} / 24 \mathrm{hr}$) of two steroid metabolites. Observations for a total of 21 patients are input and the group means and R matrices are computed by nag_mv_discrim (g03dac). A further six observations of unknown type are input and allocations made using the predictive approach and under the assumption that the within-group covariance matrices are not equal. The posterior probabilities of group membership, q_{j}, and the atypicality index are printed along with the allocated group. The atypicality index shows that observations 5 and 6 do not seem to be typical of the three types present in the initial 21 observations.

8.1. Program Text

```
/* nag_mv_discrim_group (g03dcc) Example Program.
    *
    * Copyright }1998\mathrm{ Numerical Algorithms Group.
    *
    * Mark 5, 1998.
    *
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>
#define NMAX 21
#define MMAX 2
#define GPMAX 3
main()
{
    double stat;
    double ati [NMAX] [GPMAX], det [GPMAX],
    gc[(GPMAX+1)*MMAX* (MMAX+1)/2], gmean [GPMAX] [MMAX],
    p [NMAX] [GPMAX], prior [GPMAX],
    wt [NMAX], x [NMAX] [MMAX];
    double df;
    double sig;
    double *wtptr=0;
    Integer nobs, nvar;
    Integer i, j, m, n;
```

```
Integer iag[NMAX], ing[NMAX], isx[MMAX],
nig[GPMAX];
Integer ng;
Integer tdgmean=MMAX, tdp=GPMAX, tdx=MMAX;
Boolean atiq = TRUE;
char char_type[2];
char char_equal [2];
char weight[2];
Nag_DiscrimMethod type;
Nag_GroupCovars equal;
Vprintf("g03dcc Example Program Results\n\n");
/* Skip headings in data file */
Vscanf("%*[^\n]");
Vscanf("%ld",&n);
Vscanf("%ld",&m);
Vscanf("%ld",&nvar);
Vscanf("%ld",&ng);
Vscanf("%s",weight);
if (n <= NMAX && m <= MMAX)
    {
        if (*weight == 'W')
            for (i = 0; i < n; ++i)
                    {
                    for (j = 0; j < m; ++j)
                            Vscanf("%lf",&x[i][j]);
                    Vscanf("%ld",&ing[i]);
                    Vscanf("%lf",&wt[i]);
                }
            wtptr = wt;
        }
        else
            {
                for (i = 0; i < n; ++i)
                    {
                            for (j = 0; j < m; ++j)
                            Vscanf("%lf",&x[i][j]);
                            Vscanf("%ld",&ing[i]);
                    }
            }
        for (j = 0; j < m; ++j)
            Vscanf("%ld",&isx[j]);
        g03dac(n, m, (double *)x, tdx, isx, nvar, ing, ng, wtptr, nig,
                            (double *)gmean, tdgmean, det, gc, &stat, &df, &sig, NAGERR_DEFAULT);
        Vscanf("%ld",&nobs);
        Vscanf("%s",char_equal);
        Vscanf("%s",char_type);
        if (nobs <= NMAX)
            {
                for (i = 0; i < nobs; ++i)
                    for (j = 0; j < m; ++j)
                        Vscanf("%lf",&x[i][j]);
                        }
                        }
                if (*char_type == 'E')
                        type = Nag_DiscrimEstimate;
            else if (*char_type == 'P')
                        type = Nag_DiscrimPredict;
```

```
                    if (*char_equal == 'E')
                    equal = Nag_EqualCovar;
                else if (*char_equal == 'U')
                    equal = Nag_NotEqualCovar;
                    g03dcc(type, equal, Nag_EqualPrior, nvar, ng, nig, (double *)gmean,
                            tdgmean, gc, det, nobs, m, isx, (double *)x, tdx, prior, (double *)p,
                            tdp, iag, atiq, (double *)ati, NAGERR_DEFAULT);
                Vprintf("\n");
                Vprintf(" Obs Posterior Allocated ");
                Vprintf(" Atypicality ");
                Vprintf("\n");
                Vprintf(" probabilities to group index ");
                Vprintf("\n");
                Vprintf("\n");
                for (i = 0; i < nobs; ++i)
                            {
                                Vprintf(" %6ld ",i+1);
                        for (j = 0; j < ng; ++j)
                            {
                            Vprintf("%6.3f",p[i][j]);
                            }
                            Vprintf(" %6ld ",iag[i]);
                                for (j = 0; j < ng; ++j)
                            {
                                Vprintf("%6.3f",ati[i][j]);
                            }
                                Vprintf("\n");
                                }
                }
                exit(EXIT_SUCCESS);
        }
    else
        {
        Vprintf("Incorrect input value of n or m.\n");
        exit(EXIT_FAILURE);
        }
}
```

8.2. Program Data
g03dcc Example Program Data
21223 U

1.1314	2.4596	1
1.0986	0.2624	1
0.6419	-2.3026	1
1.3350	-3.2189	1
1.4110	0.0953	1
0.6419	-0.9163	1
2.1163	0.0000	2
1.3350	-1.6094	2
1.3610	-0.5108	2
2.0541	0.1823	2
2.2083	-0.5108	2
2.7344	1.2809	2
2.0412	0.4700	2
1.8718	-0.9163	2
1.7405	-0.9163	2
2.6101	0.4700	2
2.3224	1.8563	3
2.2192	2.0669	3
2.2618	1.1314	3
3.9853	0.9163	3
2.7600	2.0281	3
1	1	
60 P		
1.6292	-0.9163	
2.5572	1.6094	
2.5649	-0.2231	

0.9555	-2.3026
3.4012	-2.3026
3.0204	-0.2231

8.3. Program Results

g03dcc Example Program Results

Obs	Posterior probabilities			Allocated to group	$\begin{aligned} & \text { Atypicality } \\ & \text { index } \end{aligned}$		
1	0.094	0.905	0.002	2	0.596	0.254	0.975
2	0.005	0.168	0.827	3	0.952	0.836	0.018
3	0.019	0.920	0.062	2	0.954	0.797	0.912
4	0.697	0.303	0.000	1	0.207	0.860	0.993
5	0.317	0.013	0.670	3	0.991	1.000	0.984
6	0.032	0.366	0.601	3	0.981	0.978	0.887

