
m01 – Sorting m01cac

nag double sort (m01cac)

1. Purpose

nag double sort (m01cac) rearranges a vector of real numbers into ascending or descending order.

2. Specification

#include <nag.h>
#include <nag_stddef.h>
#include <nagm01.h>

void nag_double_sort(double vec[], size_t n, Nag_SortOrder order, NagError *fail)

3. Description

nag double sort is based on Singleton’s implementation of the ‘median-of-three’ Quicksort
algorithm, see Singleton (1969), but with two additional modifications. First, small subfiles are
sorted by an insertion sort on a separate final pass, see Sedgewick (1978). Second, if a subfile is
partitioned into two very unbalanced subfiles, the larger of them is flagged for special treatment:
before it is partitioned, its end-points are swapped with two random points within it; this makes
the worst case behaviour extremely unlikely.

4. Parameters

vec[n]
Input: elements of vec must contain real values to be sorted.
Output: these values are rearranged into sorted order.

n
Input: the length of vec.
Constraint: n ≥ 1.

order
Input: Specifies whether the array will be sorted into ascending or descending order.
Constraint: order = Nag Ascending or Nag Descending.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE INT ARG GT
On entry, n must not be greater than 〈value〉: n = 〈value〉.
This parameter is limited by an implementation-dependent size which is printed in the error
message.

NE BAD PARAM
On entry, order had an illegal value.

6. Further Comments

The average time taken by the function is approximately proportional to n logn. The worst case
time is proportional to n2 but this is extremely unlikely to occur.

6.1. References

Maclaren N M (1985) Comput. J. 28 446.
Sedgewick R (1978) Implementing Quicksort programs Commun. ACM 21 847–857.
Singleton R C (1969) An efficient algorithm for sorting with minimal storage: Algorithm 347

Commun. ACM 12 185–187.

[NP3275/5/pdf] 3.m01cac.1

nag double sort NAG C Library Manual

7. See Also

None.

8. Example

The example program reads a list of real numbers and sorts them into ascending order.

8.1. Program Text

/* nag_double_sort(m01cac) Example Program
*
* Copyright 1990 Numerical Algorithms Group.
*
* Mark 1, 1990.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_stddef.h>
#include <nagm01.h>

#define NMAX 50

main()
{
double vec[NMAX];
Integer i, n;
static NagError fail;

/* Skip heading in data file */
Vscanf("%*[^\n]");
Vprintf("m01cac Example Program Results\n");
Vscanf("%ld",&n);
if (n<0 || n>NMAX)

{
Vfprintf(stderr, "n is out of range: n = %5ld\n", n);
exit(EXIT_FAILURE);

}
for (i=0; i<n; ++i)

Vscanf("%lf",&vec[i]);
fail.print = TRUE;
m01cac(vec, (size_t) n, Nag_Ascending, &fail);
if (fail.code != NE_NOERROR)

exit (EXIT_FAILURE);
Vprintf("Sorted numbers\n\n");
for (i=0; i<n; ++i)

Vprintf("%10.6g%c",vec[i],(i%7==6 || i==n-1) ? ’\n’ : ’ ’);
exit(EXIT_SUCCESS);

}

8.2. Program Data

m01cac Example Program Data
16
1.3 5.9 4.1 2.3 0.5 5.8 1.3 6.5
2.3 0.5 6.5 9.9 2.1 1.1 1.2 8.6

8.3. Program Results

m01cac Example Program Results
Sorted numbers

0.5 0.5 1.1 1.2 1.3 1.3 2.1
2.3 2.3 4.1 5.8 5.9 6.5 6.5
8.6 9.9

3.m01cac.2 [NP3275/5/pdf]

