nag_tanh (s10aac)

1. Purpose

nag_tanh (s10aac) returns a value for the hyperbolic tangent, $\tanh x$.
2. Specification
\#include <nag.h>
\#include <nags.h>
double nag_tanh (double x)

3. Description

The function calculates an approximate value for the hyperbolic tangent of its argument, $\tanh x$.
For $|x| \leq 1$ the function is based on a Chebyshev expansion.
For $1<|x|<E_{1}$ (where E_{1} is a machine-dependent constant),

$$
\tanh x=\frac{e^{2 x}-1}{e^{2 x}+1}
$$

For $|x| \geq E_{1}, \tanh x=\operatorname{sign} x$ to within the representation accuracy of the machine and so this approximation is used.

4. Parameters

x
Input: the argument x of the function.

5. Error Indications and Warnings

None.

6. Further Comments

6.1. Accuracy

If δ and ϵ are the relative errors in the argument and the result respectively, then in principle,

$$
|\epsilon| \simeq\left|\frac{2 x}{\sinh 2 x} \delta\right|
$$

That is, a relative error in the argument, x, is amplified by a factor approximately $2 x / \sinh 2 x$ in the result.
The equality should hold if δ is greater than the machine precision (δ due to data errors etc.), but if δ is due simply to the round-off in the machine representation, it is possible that an extra figure may be lost in internal calculation round-off.
It should be noted that this factor is always less than or equal to 1.0 and away from $x=0$ the accuracy will eventually be limited entirely by the machine precision.

6.2. References

Abramowitz M and Stegun I A (1968) Handbook of Mathematical Functions Dover Publications, New York ch 4.5 p 83.

7. See Also

None.

8. Example

The following program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

8.1. Program Text

```
/* nag_tanh(s10aac) Example Program
    *
    * Copyright 1990 Numerical Algorithms Group.
    *
    * Mark 2 revised, 1992.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
main()
{
        double x, y;
        /* Skip heading in data file */
        Vscanf("%*[^\n]");
        Vprintf("s10aac Example Program Results\n");
        Vprintf(" x y\n");
        while (scanf("%lf", &x) != EOF)
            {
            y = s10aac(x);
            Vprintf("%12.1f%12.5f\n", x, y);
        }
    exit(EXIT_SUCCESS);
}
```

8.2. Program Data

```
s10aac Example Program Data
-20.0
    -5.0
    0.5
    5.0
```

8.3. Program Results

s10aac	Example
x	Program Res
-20.0	-1.00000
-5.0	-0.99991
0.5	0.46212
5.0	0.99991

