nag_arcsinh (s11abc)

1. Purpose

nag_arcsinh $(\mathbf{s} 11 \mathbf{a b c})$ returns the value of the inverse hyperbolic sine, $\operatorname{arcsinh} x$.
2. Specification

```
#include <nag.h>
#include <nags.h>
double nag_arcsinh(double x)
```


3. Description

The function calculates an approximate value for the inverse hyperbolic sine of its argument, $\operatorname{arcsinh} x$.
For $|x| \leq 1$ the function is based on a Chebyshev expansion.
For $|x|>1$

$$
\operatorname{arcsinh} x=\operatorname{sign} x \times \ln \left(|x|+\sqrt{x^{2}+1}\right)
$$

This form is used directly for $1<|x|<10^{k}$, where $k=n / 2+1$, and the machine uses approximately n decimal place arithmetic.
For $|x| \geq 10^{k}, \sqrt{x^{2}+1}$ is equal to $|x|$ to within the accuracy of the machine and hence we can guard against premature overflow and, without loss of accuracy, calculate

$$
\operatorname{arcsinh} x=\operatorname{sign} x \times(\ln 2+\ln |x|)
$$

4. Parameters

x
Input: the argument x of the function.

5. Error Indications and Warnings

None.

6. Further Comments

6.1. Accuracy

If δ and ϵ are the relative errors in the argument and the result, respectively, then in principle

$$
|\epsilon| \simeq\left|\frac{x}{\sqrt{1+x^{2}} \operatorname{arcsinh} x} \delta\right|
$$

That is, the relative error in the argument, x, is amplified by a factor at least

$$
\frac{x}{\sqrt{1+x^{2}} \operatorname{arcsinh} x}
$$

in the result.
The equality should hold if δ is greater than the machine precision (δ due to data errors etc.), but if δ is simply due to round-off in the machine representation, it is possible that an extra figure may be lost in internal calculation round-off.
It should be noted that this factor is always less than or equal to one. For large x we have the absolute error in the result, E, in principle, given by

$$
E \sim \delta
$$

This means that eventually accuracy is limited by machine precision.

6.2. References

Abramowitz M and Stegun I A (1968) Handbook of Mathematical Functions Dover Publications, New York ch 4.6 p 86.

7. See Also

None.

8. Example

The following program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

8.1. Program Text

```
/* nag_arcsinh(s11abc) Example Program
    *
    * Copyright }1989\mathrm{ Numerical Algorithms Group.
    * Mark 2 revised, }1992
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
main()
{
        double x, y;
    Vprintf("s11abc Example Program Results\n");
    Vscanf("%*[^\n]s"); /* skip the first input line */
    Vprintf(" x y\n");
    while (scanf("%lf", &x) != EOF)
            {
                y = s11abc(x);
            Vprintf("%12.3e%12.3e\n", x, y);
        }
    exit(EXIT_SUCCESS);
}
```


8.2. Program Data

s11abc Example Program Data

$$
-2.0
$$

$$
-0.5
$$

$$
1.0
$$

$$
6.0
$$

8.3. Program Results

```
s11abc Example Program Results
    x y
    -2.000e+00 -1.444e+00
    -5.000e-01 -4.812e-01
    1.000e+00 8.814e-01
    6.000e+00 2.492e+00
```

