nag_arccosh (s11acc)

1. Purpose

nag_arccosh (s11acc) returns the value of the inverse hyperbolic cosine, $\operatorname{arccosh} x$. The result is in the principal positive branch.
2. Specification
\#include <nag.h>
\#include <nags.h>
double nag_arccosh(double x, NagError *fail)

3. Description

The function calculates an approximate value for the inverse hyperbolic cosine, $\operatorname{arccosh} x$. It is based on the relation

$$
\operatorname{arccosh} x=\ln \left(x+\sqrt{x^{2}-1}\right)
$$

This form is used directly for $1<x<10^{k}$, where $k=n / 2+1$, and the machine uses approximately n decimal place arithmetic.
For $x \geq 10^{k}, \sqrt{x^{2}-1}$ is equal to \sqrt{x} to within the accuracy of the machine and hence we can guard against premature overflow and, without loss of accuracy, calculate

$$
\operatorname{arccosh} x=\ln 2+\ln x
$$

4. Parameters

x
Input: the argument x of the function.
Constraint: $\mathrm{x} \geq 1.0$.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_REAL_ARG_LT

On entry, \mathbf{x} must not be less than 1.0: $\mathbf{x}=\langle$ value \rangle.
$\operatorname{arccosh} x$ is not defined and the result returned is zero.

6. Further Comments

6.1. Accuracy

If δ and ϵ are the relative errors in the argument and result respectively, then in principle

$$
|\epsilon| \simeq\left|\frac{x}{\sqrt{x^{2}-1} \operatorname{arccosh} x} \delta\right|
$$

That is the relative error in the argument is amplified by a factor at least

$$
\frac{x}{\sqrt{x^{2}-1} \operatorname{arccosh} x}
$$

in the result. The equality should apply if δ is greater than the machine precision (δ due to data error etc.), but if δ is simply a result of round-off in the machine representation, it is possible that an extra figure may be lost in internal calculation and round-off.

It should be noted that for $x>2$ the factor is always less than 1.0. For large x we have the absolute error E in the result, in principle, given by

$$
E \sim \delta
$$

This means that eventually accuracy is limited by machine precision. More significantly for x close to $1, x-1 \sim \delta$, the above analysis becomes inapplicable due to the fact that both function and argument are bounded, $x \geq 1$, $\operatorname{arccosh} x \geq 0$. In this region we have

$$
E \sim \sqrt{\delta}
$$

That is, there will be approximately half as many decimal places correct in the result as there were correct figures in the argument.

6.2. References

Abramowitz M and Stegun I A (1968) Handbook of Mathematical Functions Dover Publications, New York ch 4.6 p 86.

7. See Also

None.

8. Example

The following program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

8.1. Program Text

```
/* nag_arccosh(s11acc) Example Program
    *
    * Copyright }1989\mathrm{ Numerical Algorithms Group.
    *
    * Mark 2 revised, 1992.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
main()
{
    double x, y;
    Vprintf("s11acc Example Program Results\n");
    Vscanf("%*[^\n]"); /* skip the first input line */
    Vprintf(" X , y\n");
    while (scanf("%lf", &x) != EOF)
        {
            y = s11acc(x, NAGERR_DEFAULT);
            Vprintf("%12.3e%12.3e\n", x, y);
        }
    exit(EXIT_SUCCESS);
}
```


8.2. Program Data

```
s11acc Example Program Data
    1.00
    2.0
    5.0
    10.0
```

8.3. Program Results
s11acc Example Program Results
$\begin{array}{cc}\mathrm{x} & \mathrm{y} \\ 1.000 \mathrm{e}+00 & 0.000 \mathrm{e}+00\end{array}$
$2.000 \mathrm{e}+00 \quad 1.317 \mathrm{e}+00$
$5.000 \mathrm{e}+00 \quad 2.292 \mathrm{e}+00$
$1.000 \mathrm{e}+01 \quad 2.993 \mathrm{e}+00$

