nag_cos_integral (s13acc)

1. Purpose

nag_cos_integral (s13acc) returns the value of the cosine integral $\mathrm{Ci}(x)$.
2. Specification
\#include <nag.h>
\#include <nags.h>
double nag_cos_integral(double x, NagError *fail)

3. Description

The function evaluates

$$
\operatorname{Ci}(x)=\gamma+\ln x+\int_{0}^{x} \frac{\cos u-1}{u} d u \quad x>0
$$

where γ denotes Euler's constant.
The approximation is based on several Chebyshev expansions.
4. Parameters
x
Input: the argument x of the function.
Constraint: $\mathrm{x}>0.0$.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
5. Error Indications and Warnings

NE_REAL_ARG_LE
On entry, \mathbf{x} must not be less than or equal to $0.0: \mathbf{x}=\langle$ value \rangle.
The function is not defined for this value and the result returned is zero.

6. Further Comments

6.1. Accuracy

If E and ϵ are the absolute and relative errors in the result and δ is the relative error in the argument then in principle these are related by $|E| \simeq|\delta \cos x|$ and $|\epsilon| \simeq|(\delta \cos x) / \operatorname{Ci}(x)|$. That is, accuracy will be limited by machine precision near the origin and near the zeros of $\cos x$, but near the zeros of $\mathrm{Ci}(x)$ only absolute accuracy can be maintained.

For large values of $x, \mathrm{Ci}(x) \sim(\sin x) / x$ therefore $\sim \delta x \cot x$ and since δ is limited by the finite precision of the machine it becomes impossible to return results which have any relative accuracy. That is, when $x \geq 1 / \delta$ we have that $|\mathrm{Ci}(x)| \leq 1 / x \sim E$ and hence is not significantly different from zero.

Hence, for $x>x_{\mathrm{hi}}$, where x_{hi} is a machine-dependent value, $\mathrm{Ci}(x)$ in principle has values less than machine precision, and so is set directly to zero.
6.2. References

Abramowitz M and Stegun I A (1968) Handbook of Mathematical Functions Dover Publications, New York ch 5.2 p 231.

7. See Also

nag_sin_integral (s13adc)

8. Example

The following program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.
8.1. Program Text

```
/* nag_cos_integral(s13acc) Example Program
    *
    * Copyright 1990 Numerical Algorithms Group.
    *
    * Mark 2 revised, 1992.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
main()
{
        double x, y;
        /* Skip heading in data file */
        Vscanf("%*[^\n]");
        Vprintf("s13acc Example Program Results\n");
        Vprintf(" x y\n");
        while (scanf("%lf", &x) != EOF)
            {
            y = s13acc(x, NAGERR_DEFAULT);
            Vprintf("%12.3e%12.3e\n", x, y);
        }
    exit(EXIT_SUCCESS);
}
```

8.2. Program Data
s13acc Example Program Data
0.2
0.4
0.6
0.8
1.0
8.3. Program Results

```
s13acc Example Program Results
    x y
    2.000e-01 -1.042e+00
    4.000e-01 -3.788e-01
    6.000e-01 -2.227e-02
    8.000e-01 1.983e-01
    1.000e+00 3.374e-01
```

