nag_gamma (s14aac)

1. Purpose
nag_gamma (s14aac) returns the value of the Gamma function $\Gamma(x)$.

2. Specification

\#include <nag.h>
\#include <nags.h>
double nag_gamma(double x, NagError *fail)

3. Description

This function evaluates

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

The function is based on a Chebyshev expansion for $\Gamma(1+u)$, and uses the property $\Gamma(1+x)=x \Gamma(x)$. If $x=N+1+u$ where N is integral and $0 \leq u<1$ then it follows that:

```
for \(N>0 \quad \Gamma(x)=(x-1)(x-2) \ldots(x-N) \Gamma(1+u)\)
for \(N=0 \quad \Gamma(x)=\Gamma(1+u)\)
for \(N<0 \quad \Gamma(x)=\Gamma(1+u) / x(x+1)(x+2) \ldots(x-N-1)\).
```

There are four possible failures for this function:
(i) if x is too large, there is a danger of overflow since $\Gamma(x)$ could become too large to be represented in the machine;
(ii) if x is too large and negative, there is a danger of underflow;
(iii) if x is equal to a negative integer, $\Gamma(x)$ would overflow since it has poles at such points;
(iv) if x is too near zero, there is again the danger of overflow on some machines.

For small $x, \Gamma(x) \simeq 1 / x$, and on some machines there exists a range of non-zero but small values of x for which $1 / x$ is larger than the greatest representable value.

4. Parameters

x
Input: the argument x of the function.
Constraint: \mathbf{x} must not be zero or a negative integer.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_REAL_ARG_GT

On entry, \mathbf{x} must not be greater than \langle value $\rangle: \mathbf{x}=\langle$ value \rangle.
The argument is too large, the function returns the approximate value of $\Gamma(x)$ at the nearest valid argument.

NE_REAL_ARG_LT

On entry, \mathbf{x} must not be less than \langle value $\rangle: \mathbf{x}=\langle$ value \rangle.
The argument is too large and negative, the function returns zero.

NE_REAL_ARG_TOO_SMALL

On entry, \mathbf{x} must be greater than \langle value $\rangle: \mathbf{x}=\langle$ value \rangle.
The argument is too close to zero, the function returns the approximate value of $\Gamma(x)$ at the nearest valid argument.

NE_REAL_ARG_NEG_INT

On entry, \mathbf{x} must not be effectively a negative integer: $\mathbf{x}=\langle$ value \rangle.
The argument is a negative integer, at which values $\Gamma(x)$ is infinite. The function returns a large positive value.

6. Further Comments

6.1. Accuracy

Let δ and ϵ be the relative errors in the argument and the result respectively. If δ is somewhat larger than the machine precision (i.e., is due to data errors etc.), then ϵ and δ are approximately related by $\epsilon \simeq|x \psi(x)| \delta$ (provided ϵ is also greater than the representation error). Here $\psi(x)$ is the digamma function $\Gamma^{\prime}(x) / \Gamma(x)$.
If δ is of the same order as machine precision, then rounding errors could make ϵ slightly larger than the above relation predicts.
There is clearly a severe, but unavoidable, loss of accuracy for arguments close to the poles of $\Gamma(x)$ at negative integers. However, relative accuracy is preserved near the pole at $x=0$ right up to the point of failure arising from the danger of setting overflow.
Also accuracy will necessarily be lost as x becomes large since in this region $\epsilon \simeq \delta x \ln x$. However, since $\Gamma(x)$ increases rapidly with x, the function must fail due to the danger of setting overflow before this loss of accuracy is too great. For example, for $x=20$, the amplification factor $\simeq 60$.
6.2. References

Abramowitz M and Stegun I A (1968) Handbook of Mathematical Functions Dover Publications, New York ch 6 p 255.

7. See Also

```
nag_log_gamma (s14abc)
nag_incomplete_gamma (s14bac)
```


8. Example

The following program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

8.1. Program Text

```
/* nag_gamma(s14aac) Example Program
    *
    * Copyright 1990 Numerical Algorithms Group.
    *
    * Mark 2 revised, 1992.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
main()
{
    double x, y;
    /* Skip heading in data file */
    Vscanf("%*[^\n]");
    Vprintf("s14aac Example Program Results\n");
    Vprintf(" x y\n");
    while (scanf("%lf", &x) != EOF)
        {
            y = s14aac(x, NAGERR_DEFAULT);
            Vprintf("%12.3e%12.3e\n", x, y);
        }
    exit(EXIT_SUCCESS);
}
```


8.2. Program Data

s14aac Example Program Data
1.0
1.25
1.5
1.75
2.0
5.0
10.0
-1.5
8.3. Program Results

```
s14aac Example Program Results
    x y
    1.000e+00 1.000e+00
    1.250e+00 9.064e-01
    1.500e+00 8.862e-01
    1.750e+00 9.191e-01
    2.000e+00 1.000e+00
    5.000e+00 2.400e+01
    1.000e+01 3.629e+05
    -1.500e+00 2.363e+00
```

