nag_incomplete_gamma (s14bac)

1. Purpose
nag_incomplete_gamma (s14bac) computes values for the incomplete gamma functions $P(a, x)$ and $Q(a, x)$.
2. Specification
```
#include <nag.h>
#include <nags.h>
void nag_incomplete_gamma(double a, double x, double tol, double *p,
    double *q, NagError *fail)
```


3. Description

This function evaluates the incomplete gamma functions in the normalised form

$$
\begin{aligned}
& P(a, x)=\frac{1}{\Gamma(a)} \int_{0}^{x} t^{a-1} e^{-t} d t \\
& Q(a, x)=\frac{1}{\Gamma(a)} \int_{x}^{\infty} t^{a-1} e^{-t} d t
\end{aligned}
$$

with $x \geq 0$ and $a>0$, to a user-specified accuracy. With this normalisation, $P(a, x)+Q(a, x)=1$.
Several methods are used to evaluate the functions depending on the arguments a and x, the methods including Taylor expansion for $P(a, x)$, Legendre's continued fraction for $Q(a, x)$, and power series for $Q(a, x)$. When both a and x are large, and $a \simeq x$, the uniform asymptotic expansion of Temme (1987) is employed for greater efficiency - specifically, this expansion is used when $a \geq 20$ and $0.7 a \leq x \leq 1.4 a$.
Once either of P or Q is computed, the other is obtained by subtraction from 1. In order to avoid loss of relative precision in this subtraction, the smaller of P and Q is computed first.
This function is derived from subroutine GAM in Gautschi (1979b).

4. Parameters

a
Input: the argument a of the functions.
Constraint: $\mathbf{a}>0.0$.
x
Input: the argument x of the functions.
Constraint: $\mathrm{x} \geq 0.0$.
tol
Input: the relative accuracy required by the user in the results. If nag_incomplete_gamma is entered with tol greater than 1.0 or less than machine precision, then the value of machine precision is used instead.
p
q
Output: the values of the functions $P(a, x)$ and $Q(a, x)$ respectively.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

On error nag_incomplete_gamma returns with a value of 0.0 for \mathbf{p} and \mathbf{q}.

NE_REAL_ARG_LE

On entry, a must not be less than or equal to 0.0 : $\mathbf{a}=\langle$ value \rangle.

NE_REAL_ARG_LT

On entry, \mathbf{x} must not be less than 0.0: $\mathbf{x}=\langle$ value \rangle.

NE_ALG_NOT_CONV

The algorithm has failed to converge in 〈value〉 iterations.
Convergence of the Taylor series or Legendre continued fraction has failed within the specified number of iterations. This error is extremely unlikely to occur; if it does, contact NAG.

6. Further Comments

The time taken for a call of nag_incomplete_gamma depends on the precision requested through tol, and also varies slightly with the input arguments a and \mathbf{x}.

6.1. Accuracy

There are rare occasions when the relative accuracy attained is somewhat less than that specified by parameter tol. However, the error should never exceed more than one or two decimal places. Note also that there is a limit of 18 decimal places on the achievable accuracy, because constants in the function are given to this precision.

6.2. References

Gautschi W (1979a) A Computational Procedure for Incomplete Gamma Functions ACM Trans. Math. Software 5 466-481.
Gautschi W (1979b) Algorithm 542: Incomplete Gamma Functions ACM Trans. Math. Software $\mathbf{5}$ 482-489.
Temme N M (1987) On the computation of the incomplete gamma functions for large values of the parameters Algorithms for Approximation J C Mason and M G Cox (ed) Oxford University Press.
7. See Also

None.

8. Example

The following program reads values of the argument a and x from a file, evaluates the function and prints the results.

8.1. Program Text

```
/* nag_incomplete_gamma(s14bac) Example Program
    *
    * Copyright }1990\mathrm{ Numerical Algorithms Group.
    *
    * Mark 2 revised, 1992.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
#include <nagx02.h>
main()
{
    double a, p, q, tol, x;
    /* Skip heading in data file */
    Vscanf("%*[^\n]");
```

```
    Vprintf("s14bac Example Program Results\n");
    tol = X02AJC;
```



```
    while (scanf("%lf %lf", &a, &x) != EOF)
        {
            s14bac(a, x, tol, &p, &q, NAGERR_DEFAULT);
            Vprintf("%12.4f%12.4f%12.4f%12.4f\n", a, x, p, q);
        }
    exit(EXIT_SUCCESS);
}
```


8.2. Program Data

s14bac	Example Program Data
2.0	3.0
7.0	1.0
0.5	99.0
20.0	21.0
21.0	20.0

8.3. Program Results

s14bac Example Program Results			
a	x	p	q
2.0000	3.0000	0.8009	0.1991
7.0000	1.0000	0.0001	0.9999
0.5000	99.0000	1.0000	0.0000
20.0000	21.0000	0.6157	0.3843
21.0000	20.0000	0.4409	0.5591

