## nag_bessel_y0 (s17acc)

## 1. Purpose

nag_bessel_y0 (s17acc) returns the value of the Bessel function $Y_{0}(x)$.

## 2. Specification

```
#include <nag.h>
#include <nags.h>
double nag_bessel_y0(double x, NagError *fail)
```

3. Description

The function evaluates the Bessel function of the second kind, $Y_{0}, x>0$.
The approximation is based on Chebyshev expansions.
For $x$ near zero, $Y_{0}(x) \simeq(2 / \pi)(\ln (x / 2)+\gamma)$, where $\gamma$ denotes Euler's constant. This approximation is used when $x$ is sufficiently small for the result to be correct to machine precision.

For very large $x$, it becomes impossible to provide results with any reasonable accuracy (see Section 6.1), hence the function fails. Such arguments contain insufficient information to determine the phase of oscillation of $Y_{0}(x)$; only the amplitude, $\sqrt{2 / x}$, can be determined and this is returned. The range for which this occurs is roughly related to the machine precision: the function will fail if $x \gtrsim 1 /$ machine precision.

## 4. Parameters

x
Input: the argument $x$ of the function. Constraint: $\mathrm{x}>0.0$.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
5. Error Indications and Warnings

NE_REAL_ARG_GT
On entry, $\mathbf{x}$ must not be greater than $\langle$ value $\rangle: \mathbf{x}=\langle$ value $\rangle$.
$\mathbf{x}$ is too large, the function returns the amplitude of the $Y_{0}$ oscillation, $\sqrt{2 / \pi x}$.

## NE_REAL_ARG_LE

On entry, $\mathbf{x}$ must not be less than or equal to $0.0: \mathbf{x}=\langle$ value $\rangle$.
$Y_{0}$ is undefined, the function returns zero.

## 6. Further Comments

### 6.1. Accuracy

Let $\delta$ be the relative error in the argument and $E$ be the absolute error in the result. (Since $Y_{0}(x)$ oscillates about zero, absolute error and not relative error is significant, except for very small $x$.)

If $\delta$ is somewhat larger than the machine representation error (e.g. if $\delta$ is due to data errors etc.), then $E$ and $\delta$ are approximately related by $E \simeq\left|x Y_{1}(x)\right|>\delta$ (provided $E$ is also within machine bounds).
However, if $\delta$ is of the same order as the machine representation errors, then rounding errors could make $E$ slightly larger than the above relation predicts.

For very small $x$, the errors are essentially independent of $\delta$ and the function should provide relative accuracy bounded by the machine precision.

For very large $x$, the above relation ceases to apply. In this region, $Y_{0}(x) \simeq \sqrt{2 / \pi x} \sin (x-\pi / 4)$. The amplitude $\sqrt{2 / \pi x}$ can be calculated with reasonable accuracy for all $x$, but $\sin (x-\pi / 4)$ cannot. If $x-\pi / 4$ is written as $2 N \pi+\theta$ where $N$ is an integer and $0 \leq \theta<2 \pi$, then $\sin (x-\pi / 4)$ is determined by $\theta$ only. If $x \gtrsim \delta^{-1}, \theta$ cannot be determined with any accuracy at all. Thus if $x$ is greater than, or of the order of the inverse of machine precision, it is impossible to calculate the phase of $Y_{0}(x)$ and the function must fail.

### 6.2. References

Abramowitz M and Stegun I A (1968) Handbook of Mathematical Functions Dover Publications, New York ch 9 p 358.
Clenshaw C W (1962) Mathematical Tables, Chebyshev series for mathematical functions National Physical Laboratory H.M.S.O. 5.
7. See Also
nag_bessel_y1 (s17adc)

## 8. Example

The following program reads values of the argument $x$ from a file, evaluates the function at each value of $x$ and prints the results.

### 8.1. Program Text

```
/* nag_bessel_y0(s17acc) Example Program
    *
    * Copyright 1990 Numerical Algorithms Group.
    *
    * Mark 2 revised, 1992.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
main()
{
    double x, y;
    /* Skip heading in data file */
    Vscanf("%*[`\n]");
    Vprintf("s17acc Example Program Results\n");
    Vprintf(" x y\n");
    while (scanf("%lf", &x) != EOF)
        {
            y = s17acc(x, NAGERR_DEFAULT);
            Vprintf("%12.3e%12.3e\n", x, y);
        }
    exit(EXIT_SUCCESS);
}
```

8.2. Program Data

```
s17acc Example Program Data
```

                    0.5
                    1.0
                    3.0
                    6.0
                    8.0
                    10.0
                        1000.0
    8.3. Program Results

| s17acc Example Program Results |  |
| :---: | :---: |
| x | y |
| $5.000 \mathrm{e}-01$ | $-4.445 \mathrm{e}-01$ |
| $1.000 \mathrm{e}+00$ | $8.826 \mathrm{e}-02$ |
| $3.000 \mathrm{e}+00$ | $3.769 \mathrm{e}-01$ |
| $6.000 \mathrm{e}+00$ | $-2.882 \mathrm{e}-01$ |
| $8.000 \mathrm{e}+00$ | $2.235 \mathrm{e}-01$ |
| $1.000 \mathrm{e}+01$ | $5.567 \mathrm{e}-02$ |
| $1.000 \mathrm{e}+03$ | $4.716 \mathrm{e}-03$ |

