nag_bessel_j1 (s17afc)

1. Purpose

nag_bessel_j1 (s17afc) returns the value of the Bessel function $J_{1}(x)$.
2. Specification
\#include <nag.h>
\#include <nags.h>
double nag_bessel_j1(double x, NagError *fail)

3. Description

This function evaluates an approximation to the Bessel function of the first kind $J_{1}(x)$.
The function is based on Chebyshev expansions.
For x near zero, $J_{1}(x) \simeq x / 2$. This approximation is used when x is sufficiently small for the result to be correct to machine precision.
For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 6.1), hence the function fails. Such arguments contain insufficient information to determine the phase of oscillation of $J_{1}(x)$; only the amplitude, $\sqrt{2 / \pi|x|}$, can be determined. The range for which this occurs is roughly related to the machine precision.

4. Parameters

x
Input: the argument x of the function.
fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
5. Error Indications and Warnings

NE_REAL_ARG_GT
On entry, \mathbf{x} must not be greater than \langle value $\rangle: \mathbf{x}=\langle$ value \rangle.
\mathbf{x} is too large. The function returns the amplitude of the J_{1} oscillation, $\sqrt{2 / \pi|x|}$.

6. Further Comments

6.1. Accuracy

Let δ be the relative error in the argument and E be the absolute error in the result. (Since $J_{1}(x)$ oscillates about zero, absolute error and not relative error is significant.)
If δ is somewhat larger than machine precision (e.g. if δ is due to data errors etc.), then E and δ are approximately related by $E \simeq\left|x J_{0}(x)-J_{1}(x)\right| \delta$ (provided E is also within machine bounds).
However, if δ is of the same order as machine precision, then rounding errors could make E slightly larger than the above relation predicts.
For very large x, the above relation ceases to apply. In this region, $J_{1}(x) \simeq \sqrt{2 / \pi|x|} \cos (x-3 \pi / 4)$. The amplitude $\sqrt{2 / \pi|x|}$ can be calculated with reasonable accuracy for all x, but $\cos (x-3 \pi / 4)$ cannot. If $x-3 \pi / 4$ is written as $2 N \pi+\theta$ where N is an integer and $0 \leq \theta<2 \pi$, then $\cos (x-3 \pi / 4)$ is determined by θ only. If $x \gtrsim \delta^{-1}, \theta$ cannot be determined with any accuracy at all. Thus if x is greater than, or of the order of, machine precision, it is impossible to calculate the phase of $J_{1}(x)$ and the function must fail.

6.2. References

Abramowitz M and Stegun I A (1968) Handbook of Mathematical Functions Dover Publications, New York ch 9 p 358.
Clenshaw C W (1962) Mathematical Tables, Chebyshev series for mathematical functions National Physical Laboratory H.M.S.O. 5.

7. See Also

nag_bessel_j0 (s17aec)

8. Example

The following program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

8.1. Program Text

```
/* nag_bessel_j1(s17afc) Example Program
    *
    * Copyright 1990 Numerical Algorithms Group.
    * Mark 2 revised, 1992.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
main()
{
    double x, y;
    /* Skip heading in data file */
    Vscanf("%*[^\n]");
    Vprintf("s17afc Example Program Results\n");
    Vprintf(" x y\n");
    while (scanf("%lf", &x) != EOF)
        {
            y = s17afc(x, NAGERR_DEFAULT);
            Vprintf("%12.3e%12.3e\n", x, y);
        }
    exit(EXIT_SUCCESS);
}
```

8.2. Program Data
s17afc Example Program Data
0.0
0.5
1.0
3.0
6.0
8.0
10.0
-1.0
1000.0
8.3. Program Results

```
s17afc Example Program Results
    x y
    0.000e+00 0.000e+00
    5.000e-01 2.423e-01
    1.000e+00 4.401e-01
    3.000e+00 3.391e-01
    6.000e+00 -2.767e-01
    8.000e+00 2.346e-01
    1.000e+01 4.347e-02
    -1.000e+00 -4.401e-01
    1.000e+03 4.728e-03
```

