nag_fresnel_s (s20acc)

1. Purpose

nag_fresnel_s (s20acc) returns a value for the Fresnel Integral $S(x)$.
2. Specification
\#include <nag.h>
\#include <nags.h>
double nag_fresnel_s(double x)

3. Description

This function evaluates an approximation to the Fresnel Integral

$$
S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t
$$

The function is based on Chebyshev expansions.
4. Parameters
x
Input: the argument x of the function.
5. Error Indications and Warnings

None.

6. Further Comments

6.1. Accuracy

Let δ and ϵ be the relative errors in the argument and result respectively.
If δ is somewhat larger than the machine precision (i.e., if δ is due to data errors etc.), then ϵ and δ are approximately related by $\epsilon \simeq\left|x \sin \left(\pi x^{2} / 2\right) / S(x)\right| \delta$.
However, if δ is of the same order as the machine precision, then rounding errors could make ϵ slightly larger than the above relation predicts.

For small $x, \epsilon \simeq 3 \delta$ and hence there is only moderate amplification of relative error. Of course for very small x where the correct result would underflow and exact zero is returned, relative error-control is lost.
For moderately large values of $x,|\epsilon| \simeq\left|2 x \sin \left(\pi x^{2} / 2\right)\right||\delta|$ and the result will be subject to increasingly large amplification of errors. However, the above relation breaks down for large values of x (i.e., when $1 / x^{2}$ is of the order of the machine precision); in this region the relative error in the result is essentially bounded by $2 / \pi x$.
Hence the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.

6.2. References

Abramowitz M and Stegun I A (1968) Handbook of Mathematical Functions Dover Publications, New York ch 7 p 300.

7. See Also

nag_fresnel_c (s20adc)

8. Example

The following program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

8.1. Program Text

```
/* nag_fresnel_s(s20acc) Example Program
    *
    * Copyright 1990 Numerical Algorithms Group.
    *
    * Mark 2 revised, 1992.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
main()
{
        double x, y;
        /* Skip heading in data file */
        Vscanf("%*[^\n]");
        Vprintf("s20acc Example Program Results\n");
        Vprintf(" x y\n");
        while (scanf("%lf", &x) != EOF)
            {
            y = s20acc(x);
            Vprintf("%12.3e%12.3e\n", x, y);
        }
    exit(EXIT_SUCCESS);
}
```

8.2. Program Data

```
s20acc Example Program Data
                    0.0
                            0.5
                    1.0
                    2.0
                    4 . 0
                            5.0
                    6.0
                    8.0
                    10.0
                    -1.0
                    1000.0
```


8.3. Program Results

```
s20acc Example Program Results
```

x	y
$0.000 \mathrm{e}+00$	$0.000 \mathrm{e}+00$
$5.000 \mathrm{e}-01$	$6.473 \mathrm{e}-02$
$1.000 \mathrm{e}+00$	$4.383 \mathrm{e}-01$
$2.000 \mathrm{e}+00$	$3.434 \mathrm{e}-01$
$4.000 \mathrm{e}+00$	$4.205 \mathrm{e}-01$
$5.000 \mathrm{e}+00$	$4.992 \mathrm{e}-01$
$6.000 \mathrm{e}+00$	$4.470 \mathrm{e}-01$
$8.000 \mathrm{e}+00$	$4.602 \mathrm{e}-01$
$1.000 \mathrm{e}+01$	$4.682 \mathrm{e}-01$
$-1.000 \mathrm{e}+00$	$-4.383 \mathrm{e}-01$
$1.000 \mathrm{e}+03$	$4.997 \mathrm{e}-01$

