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ABSTRACT
Deep Reinforcement Learning (DRL) has been proven to be capable
of designing an optimal control theory by minimising the error in
dynamic systems. However, in many of the real-world operations,
the exact behaviour of the environment is unknown. In such en-
vironments, random changes cause the system to reach different
states for the same action. Hence, application of DRL for unpre-
dictable environments is difficult as the states of the world cannot
be known for non-stationary transition and reward functions.

In this paper, a mechanism to encapsulate the randomness of
the environment is suggested using a novel bio-inspired homeo-
static approach based on a hybrid of Receptor Density Algorithm
(an artificial immune system based anomaly detection application)
and a Plastic Spiking Neuronal model. DRL is then introduced to
run in conjunction with the above hybrid model. The system is
tested on a vehicle to autonomously re-position in an unpredictable
environment. Our results show that the DRL based process control
raised the accuracy of the hybrid model by 32%.

CCS CONCEPTS
•Computingmethodologies→Online learning settings;Mo-
tionpathplanning; •Computer systems organization→Real-
time system architecture; • Software and its engineering →
Real-time systems software.
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1 INTRODUCTION
During the last decade, the unmanned vehicles industry has experi-
enced exponential growth. It is starting to play a major role in differ-
ent types of missions including search and rescue, environmental
monitoring, navigation, security surveillance, transportation and
inspection[20]. Many of these operations involve functioning in
unknown territories.

The computer vision-based navigational systems, the state of
art (SOA) for unmanned navigation, demand massive computing
power due to I/O operations and 3D map building. They require
constant access to powerful hardware either onboard or remotely
to cater to the processing demands. Consequently, they are prone
to latency issues due to substantial processing requirements, which
make them unsuitable for real-time operations. These limitations
heighten the urgency for a light-weight autonomous system for
unmanned navigation.

Deep Reinforcement Learning (DRL), on the other hand, can
evolve and achieve autonomy and robustness with minimal human
intervention. DRL has proven to be capable of designing an optimal
control theory by minimising the error in dynamic systems [27].
In some applications such as Atari games and Go competitions,
DRL has even been able to achieve superhuman performances
autonomously [26]. DRL can improve dynamic performance and
computational efficiency.

Since DRL is model-free, the learning is performed via the mea-
surements of rewards obtained through the environmental response.
For the learning to be consistent, the rewards generated has to be
reliable for the corresponding environmental conditions. This re-
quires that the environment remains stationary and the underlying
probability distribution of the environment is held constant which
makes the cause and effect directly observable. For example, in
board games, the rules can predict the next state of an action per-
formed by the agent. In robotic control, there are rules of physics
that govern the motion of the limbs of the robot.

This establishes the notion that the reward for a certain action
remains unique due to the predictability of the next state. However,
for unpredictable environments where the processes become non-
stationary, the validity of the reward function for a certain action
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does not remain consistent. Therefore, in unstable environments,
the application of reinforcement learning may not seem feasible.

DRL has been applied even in chaotic and turbulent environ-
ments, providing states can be predicted using laws of physical
relationships [5] or approximated [4]. To use DRL in unstable en-
vironments, several attempts to predict the states can be found in
recent literature. For example, a homeostatic, instinctive concept
presented in [7] is an viable alternative that maintains critical pa-
rameters of the agent for the reliable state prediction. However,
these methods require the environment to be at least partially ob-
servable.

An unobservable environment can be illustrated in a vessel in the
deep sea. The state changes of the vessel can be entirely random and
unpredictable due to the environmental forces. These forces can be
originated by fluid dynamics, wind, ocean currents, wave dynamics
and volcanic eruptions in the sea bed etc. In such environments,
DRL cannot be used because neither the actions nor the states can
be defined due to numerous factors affecting the motion.

Figure 1: Control Limits

In a parallel branch of research, bio-inspired, model-based sys-
tems have also endeavoured to achieve autonomy by taking human
homoeostasis as an example. Several bio-inspired algorithms have
been developed to emulate autonomy under unsupervised con-
ditions. They have been successfully applied in parts of control
process functions such as anomaly detection and fault-tolerant
applications [23],[14]. However, they are yet to adapt the whole
control process due to abstractions preventing them to evolve the
same way as their biological counterparts, impeding the ability to
auto-correct.

In this paper, a novel bio-inspired homeostatic algorithm is ex-
tended to providing a platform to implement DRL by managing
the unpredictability of environmental conditions. A specific appli-
cation of an unmanned vehicle that maintains its position in an
unobservable environment is used as the motivational use case.
The unmanned vehicle generates an opposing force against the
resultant environment force acting on the vehicle. The objective is
to maintain the position within pre-defined boundaries by applying
the opposing force mitigating the environmental effect. Figure 1

shows control limits in a two-dimensional space. The vehicle re-
quires to maintain the position at most at the safe zone or at least
within the control zone autonomously; to summarise, this paper
includes,
• A True Homeostatic autonomous system which evolves, cor-
rects and stabilises extreme environmental conditions with
the aid of DRL and
• A Deep Reinforcement Learning (DRL) system operates in
an unpredictable environment with the aid of a bio-inspired
homeostatic system

The paper is organised as follows. Section 2 presents the existing
approaches justifying their inability to achieving autonomy under
unpredictable conditions. Section 3 describes the approach taken by
this paper. Section 4 presents the application of the above approach
in the use case. Section 5 present experiments and simulation results
along with performance, design considerations and scalability.

2 RELATEDWORK
The state of the art (SOA) for operating in unknown territories is
computer-vision based navigation. The performance of computer
vision-based navigation depends on the hardware and Input/Output
(I/O) operations such as wide field-of-view cameras for feature
tracking and camera-IMU (Inertial Measuring Units) for extrinsic
calibration. These systems require massive software resources for
reconstructing a 3D dense environment of the actual environmental
conditions, trajectory planning and feedback control. For these rea-
sons, the highly complex mechanisms of computer vision systems
are not feasible for real-time operations as the required hardware
proficiency is not sufficient enough to cater to the processing de-
mands [3].

The SOA as well as other alternative solutions developed for
unpredictable environments such as Simultaneous Localisation And
Mapping (SLAM)[6], Fuzzy logic based tracking [32] etc. involve
map building relative to the surrounding objects such as landmarks
to identify the position. This requires sensors reflecting signals
from the landmarks. However, for the areas with no distinguishable
variations in the landscapes such as oceans and deserts, it may be
impossible for the sensors such as sonar to capture a perception
about the environment [19].

Several real-world applications, operating in unpredictable en-
vironments employ a model-based approach. They can function
effectively via data assimilation techniques such as Kalman Filters
[31]. However, these methods do not facilitate autonomy, due to
the dependence of stationary models rather than evolving mod-
els. In contemporary research, the prominent categories that could
potentially expedite evolving models are applications of DRL and
homeostatic algorithms. As identified in the previous section, both
categories are unable to support non-stationary real-time processes
with unknown states. In short, DRL suffers the inability to func-
tion in unpredictable environments and homeostatic algorithms
which are still in their infancy, are unable to evolve as same as their
biological counterparts.
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There have been several attempts to adopt reinforcement learn-
ing for non-stationary processes. One of those is learning the ap-
proximate distribution of possible values [4]. Alternatively, a home-
ostatic, instinctive concept has been used to maintain critical pa-
rameters for the state prediction [7]. However, these require the
identification of available states of a Markov process which may
not be available for an unpredictable environment.

Another approach is modelling the unstable environment as an
adversarial agent, whose goal is to destabilise the system by dam-
aging the system agent’s action. To understand the environment’s
behaviour, the adversarial agent’s disturbances are modelled in
training and test scenarios. This knowledge is later applied to ac-
complish the system goal of stability by solving for equilibrium for
the system agent. This equilibrium establishes stationary policies
which enable the system to outperform the environment. This field
of study is known as Robust Adversarial reinforcement learning
(RARL) [25]. However, to withstand the adversary, the system agent
needs to be trained under similar adversarial conditions, which may
not be observable in an unpredictable environment.

Despite being inspired by biology, the best autonomous system
there is, homoeostasis inspired algorithms cannot achieve auton-
omy as they do not represent the homeostatic behaviour as same as
their biological counterpart. Hence, their functions remainmediocre
with limited applications such as masking faulty conditions. Devel-
oped by abstracting the brain cells’ ability to compensate for an
injury, the Plastic Spiking Neuron (PSN), is so far, the only algo-
rithmwhich has come close to mimic homoeostasis at least partially
[14]. A PSN functions by detecting the reduction of the spiking
activity due to faults and altering the voltage to establish constant
spiking activity. By utilising this behaviour, a PSN network has been
able to establish a fault-free behaviour in the presence of faults of
various degrees. Since there is no fault correction mechanism in
place emulating the healing process of the biological homeostatic
counterparts, the system is unable to re-establish normal conditions.
Therefore, under persistent faulty conditions, the plasticity of the
neuron is destined to cease as it does not emulate true homoeostasis
(see Figure 2b).

Artificial Immune Systems are one of the interesting fields to
investigate when working with unpredictable environments. The
Receptor Density Algorithm (RDA), one of the versatile artificial im-
mune system inspired algorithms, has been applied in a vast array
of real-world applications such chemical detection [12], monitoring
industrial processes[8],safety and security applications [16], error
detection in swarm robotics [17], wireless sensor networks [18] ,
online fraud detection [13] etc. The secret behind the popularity of
RDA is its ability to operate unsupervised in real-time conditions.
A notable feature of RDA is the ability to maintain an equilibrium
state. This aspect is an attractive feature for stabilisation of the
vehicle in our use case. However, this condition is only true if the
receptor is influenced by a constant input, as steady negative feed-
back generated against the direction of the anomalous condition,
only applies if the input remains constant (see Figure 3). An ade-
quate extension of RDA for an unpredictable input may facilitate
our objective of autonomous stabilisation.

3 APPROACH
The objective of the motivational use case depicted in Figure 1 is
to stabilise the unmanned vehicle within the safe zone under un-
predictable environmental conditions. RDA’s ability to model the
unpredictable conditions enables the anticipation of unobservable
states. This supports the utilisation of DRL as the unobservable
states have now become observable. RDA is designed for anomaly
detection and only reaches equilibrium under constant forces. By
setting the target of DRL as the equilibrium state, RDA can be ex-
tended to reach equilibrium under all conditions. Hence, this paper
contributes to RDA to expand the spectrum of its applications from
anomaly detection to preventive maintenance. Also, the utilisation
of DRL for unobservable states is a novelty which open doors for
many real-world applications to benefit from DRL.

RDA is a T-Cell receptor communication inspired algorithm
where the receptor is denoted as a tuple (p,n, β , l) with position
p ≥ 0, negative feedback n, safe limit β > 0, and the danger limit
l > β . ut refers to the distance caused by the current unpredictable
force (see Figure 3). (utϵR and ut ≥ 0.) at time t = 0, 1, 2,. . . .

The pt ,nt can be mapped to pt+1,nt+1,

pt+1 = b ∗ pt + ut − a ∗ nt (1)

nt+1 =

{
d ∗ nt i f pt+1 < β
d ∗ nt + д i f pt+1 > β

(2)

The parameters 0 < b < d < 1 refer to decay rate, a > 0 refers
to negative feedback influence and д > 0 refers to the growth rate.
These parameters are derived from the actual biological function
T-cell receptor and are constant values. Having constant parameters
debilitates RDAs capacity to adapt for different conditions. With the
constant parameters, the equilibrium can only be achieved under
constant input, which requires the environment to be constant.

Since relying on constant parameters will not generate an evolv-
ing model, a DRL is applied to directly generate nt . With DRL nt
is generated as a response to the environmental conditions which
allows the RDA to be tuned to maintain equilibrium under vary-
ing forces. Since the position has to be maintained within the safe
limit (pt+1 ≤ β), the target position for DRL can be assigned to
β . A Deep Neural Network (DNN) can be inferred real-time with
this information to generate nt according to the conditions and
maintain equilibrium.

Transient operation of a DNN can be expensive resource-wise. By
using RDA, this can be managed, as running DNN is only required
if the position exceeds the safe limits (pt+1 > β) (see Equation 2).
The negative feedback nt is decayed automatically once the vehicle
is within the safe limits (pt+1 ≤ β) causing the system to release
the resources.

The behaviour of the above described RDA -DRL based homeo-
static system cannot be monitored just by the position itself. For
example, in a 3D space, the information about the position would
not provide an interpretation of the dynamics of the autonomous
system. The system requires real-time visualisation to observe the
autonomous behaviour of the system. A Plastic Spiking Neuron
(PSN) is proposed to accomplish the above purpose. Figure 4 depicts
the relationship between RDA, PSN and DRL. As a PSN receives
an input signal as an electrical pulse, it accumulates the neuron
potential until it reaches the threshold voltage (V) and as soon as
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(a) No motion (b) The plasticity is lost at 750ms

Figure 2: Plastic Spiking Neuron.

Under a constant inputut , the receptor reaches an equilibrium state
as the negative feedback nt becomes constant

Figure 3: The Receptor [23]

Figure 4: Approach

the PSN surpasses V the neuron fires and resets to resting poten-
tial (in our experiment to zero) and starts to accumulate voltage
depending on the input current.

By assuming the resting potential is equal to zero the voltage
(v(t)) of a spiking neuron (modelled as a leaky capacitor with mem-
brane resistance Rm under a constant input current It ) is calculated
using the following equation [9].

v(t) = −τm
dv

dt
+ ItRm (3)

In above Equation, t is current time and the time constant is denoted
by τm = RmCm (where Cm is the membrane capacitance).

By solving the Equation 3 assuming the input current is constant,
the voltage update during the time step ∆t can be written as:

vt+∆t = It ∗ Rm + (vt − It ∗ Rm )e
− ∆t
τm

Bymarking the starting position of RDA equivalent to the thresh-
old voltage (V), the signal supplied to the PSN can be set to the
maximum allowed step current. As long as the object has not moved
from the initial position, the PSN may fire consistently at V (See
Figure 2a). As the object moves away from the initial position, the
input signal is set to decline as the object moves towards the danger
limit.

As a result, the PSN halts firing and settles at a lower voltage. In
this occasion, if V of PSN is tuned to a lower threshold, the PSN
can be set to elicit fire again. This enables the PSN to display home-
ostatic behaviour providing visual evidence for the closeness to
the initial position. The threshold voltage multipliers for different
ranges of the input current can be derived from the experimental
data in [14]. Firing thresholds adjusted according to these multi-
pliers and tested by decreasing the input current incrementally
towards zero (See Figure 2b). In this experiment, under contin-
ued reduced input current, the neuron lost its plasticity when the
input current approached zero. Since there is no fault correction
mechanism in place (emulating the healing process of the biologi-
cal homeostatic counterparts), the system is unable to re-establish
normal conditions.

With the aid of RDA and DRL hybrid, the PSN can be tuned
to display healing properties. The auto-correction feature of RDA
aided by DRL enables the PSN to maintain its plasticity by gradually
increasing the firing threshold displaying true homoeostasis.

4 THE AUTONOMOUS SYSTEM
Autonomous self-correction is set to perform by the RDA and DRL
conjunction. As depicted in Figure 5, as the vehicle acts against the
environment, it is moved towards the safe limit through learning
mechanism of DRL. Reactions of the DRL are captured as an in-
creasing input signal and the voltage of PSN is tuned accordingly.
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Figure 5: The Overview

4.1 Learning Mechanism of the DRL
Reinforcement learning seeks to identify the best policy π (s) for a
particular state s which maximises the return at that state under
that policy. The return function is also known as the action-value
function Q(s,a) or simply the Q function. Selecting the best policy
for a certain state is interchangeably defined as the application of
action maximises the return for that state Q∗(s,a).

π (s) = arдamax[Q∗(s,a)]

Since the returnQ∗(s,a) is typically unknown, a function is approx-
imated as a multiplication of hypothetical weights θ and available
features at that particular state after the application of action a
denoted by the function ϕt (s,a). Therefore, a general description
for a certain state Q(s,a,θ ) can be defined as [30],

Q(s,a,θ ) = θ
⊺
t ϕt (s,a) (4)

Since the above approximation should reflect the success of the
operation, a function can be defined as the update target Ut . The
update target has to be the expected outcome of performing a
certain action. For example, in a game, winning the game can be
defined as the update target. For this particular case, winning the
game is equivalent to maintaining the position within the safe zone
for all environmental conditions.

Equation 1 of RDA for our specific application, specifies that
the only reason for pt of the vehicle to be altered is the resultant
environmental force. By assuming that negative feedback does not
influence by a specific condition, negative feedback influence a
can be ignored. Therefore, both the opposing decay rates b and
negative feedback influence a can be omitted from the equation (i.e.
a = b = 1). By anticipating the negative feedback to generate the
minimum force which is large enough to bring the vehicle into the
safe limit (pt+1 = β), the update target can be defined as,

Ut = nt = |pt | + ut − β

Due to operational constraints, above Ut may not be feasible to
be applied by the vehicle. Therefore, in such situations, the expected

negative feedback can be defined as,

Ut = nt = nmax − ut

where nmax is the maximum force that can be applied by the vehi-
cle.

Since Ut is the expected negative feedback, the feature vector
ϕ(s,a) can be equated to the current negative feedback nt , which
the new negative feedback has to build upon. Therefore, the action
value function from Equation 4 can be rewritten as,

Q(s,a,θ ) = θ
⊺
t nt

The action value function Q(s,a,θ ) should approach desired
outcome expected Ut . By comparing Ut with Q(s,a,θ ), the hypo-
thetical weights of θ can be adjusted via function approximation
of DNN. Therefore, in a DNN with n hidden layers and m nodes at
each layer, θ can be defined as,

θt =


W11 . . . W1m
W21 . . . W2m
. . . . . . . . .

Wn1 . . . Wnm


whereWi j is the weight assigned on the synapse which transi-

tions from ith node to jth node. Function approximation can be
defined as the minimisation the cost function between the target
Ut and the output Q(s,aθ ).

In DNN the weights are generally adjusted to approximate the
expected value by using stochastic gradient descent (SGD). In SGD,
the random values initially assigned for θ are optimised to reinforce
the optimal value of nt by measuring the rate at which the δt
changes in respect to the rate at which eachWi j of synapse changes.

Figure 6, shows forward propagation of a DNN structure which
consists of single input layer of feature vector equivalent to the
current negative feedback nt , n fully connected hidden layers with
m nodes at each layer and a single output layer equivalent to the
generated next negative feedback nt+1 which will be compared
against theUt to optimise the synaptic weights. Arrows represent
the synaptic weightsWi j and Σ represents the summation of the
outcome. f represents the application of the activation function
(a differentiable function, the sigmoid function in this case). Vi j
represents the value generated after the application of the sigmoid
function at each node. This value is then multiplied with the next
set of synaptic weightsW1j , . . .Wmj and so forth.

The differentiable activation functions not only standardise the
values but also enable the application of backpropagation through
chain rule [35] to optimise the parameters θt . The DNN is inferred
with SGD using backpropagation as a gradient computing tech-
nique. Algorithm 1 summarises the forward propagation and the
backpropagation of the DRL system.

4.2 Experimental Environment
The motion caused by the resultant force is captured as a position
change of the receptor of RDA. The safe zone β is seized as a sphere
surrounding the initial position of p0 = 0. Once the vehicle leaves
the safe zone, the decision-making process of DRL begins. In DRL,
the DNN is inferred against the update target Ut . The weights are
adjusted at each synapse to generate the optimal nt+1 to navigate
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Figure 6: Layers of the DNN Architecture for optimising the parameters

Algorithm 1 Inferring DRL
Ut+1 ← pt + ut − β
if Ut+1 ≥ nmax then
Ut+1 ← nmax

end if
# forward propagation
al1 ← σ (θ

(l1)⊺
t nt ) # input layer (l1 ≡ layer1)

alk ← σ (
∑
i θ
(lk)⊺
t (ji) a

(l (k−1))
i )

nt+1 ← aln ← σ (
∑
i θ
(ln)⊺
t (ji) a

(l (n−1))
i )# output layer (ln)

#back propagation
δt (ln) ← (Ut+1 − nt+1)σ

′(aln ) #minimising the cost function
δt (lk ) ← δt (lk+1)θ

(lk+1)⊺
t σ ′(alk )

δt (l1) ← δt (l2)θ
(l2)⊺
t σ ′(al1)

θ
(lk)
t+1 ← θ lkt − α ∗ δt (lk ) ∗ θ

(lk )
t # update parameters

the vehicle towards the safe limit. This brings new data nt+1 for
RDA corresponding to the current conditions.

Algorithm 2 PSN for Visualisation
# update the input current:
It ← Imax −

pt+1
l

# voltage:
vt+1 ← ItRm + (vt − ItRm ) ∗ exp

−[(t+1)−t ]
τm

# look up multiplier according to the error
V ← (multiplier

←
pt+1
l
) ∗V th # derive new threshold voltage

if vt+1 ≥ V then
vt+1 ← 0 # reset

end if
% Display PSN graph %
Plot(vt+1, t + 1)

The conditions are visualised using a PSN. The position of the ve-
hiclept+1 is reflected on PSN as aweakening input signal (from 1mA
to 0mA) by subtracting the displacement (pt+1l )). To maintain the
constant behaviour of the PSN, the threshold voltage is multiplied
by the initial firing threshold (V = 8mV) with a constant reflecting

the percentage displacement pt
l %. Algorithm 2 summarises the

voltage adjustment process of PSN.
As soon as the vehicle is brought within the safe zone, the in-

ferencing DNN halts and the application of Equation 2 is resumed
with residual negative feedback to navigate the vehicle towards the
initial position. The system prioritises on maintaining the position
within the safe zone by keeping the vehicle within an assigned
range of 0 ≤ pt+1 ≤ β .

This feature is utilised for adverse environmental conditions,
where the vehicle has the option of altering the β to l to maintain
the vehicle at most at the danger limit. Algorithm 3 summarises the
DRL-enabled homeostatic system. The program was implemented

Algorithm 3 The Homeostatic DRL system
repeat
pt+1 ← pt + ut − nt
Run PSN (Algorithm 2)
if pt ≤ β then
nt+1 ← d ∗ nt

else
if pt ≥ l then

β ← l # maintenance mode
l ← l ∗ K

end if
Run DRL (Algorithm 1)

end if
until t = t∞

in the MATLAB environment. A DNN was implemented with n = 1
hidden layers ofm = 7 hidden nodes to simulate DRL. The RDA
consisted of a danger limit l of 10 meters and a safe limit β of 2
meters. The maximum distance the vehicle can be moved against
the motion was defined as nmax=0.9m.

Note that the experimented system is implemented only as a
proof of concept and does not have the required scalability nor
the complexity for real-world deployment. In actual deployment,
implementing the DNN using Python-based TensorFlow or Py-
Torch environment is recommended. For deployments, depending
on the specific environments the historical data may be used to
structure the DNN. The complexity of the program may vary de-
pending on the structure of DNN. By using parallel programming
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the performance and the latency of the program can be significantly
improved.

5 RESULTS AND DISCUSSION
The performance of the system is monitored via the voltage vs
time graphs generated by the PSN. The safe limit of Figure 1 is
represented by a red line across the graphs which is generated
using the threshold voltage equivalent to β . An overall spiking
threshold above this line indicates that the algorithm functions
according to the system requirements. The algorithm is not up to
the standards if the majority of spikes are below this line.

Time-variant motion is initially used to assess the impact of
DRL. This is evaluated by using the hybrid of RDA and PSN as the
benchmark. The hybrid system gracefully handled sinusoidal input
even with added noise (See Figure 7a) and also excelled in handling
milder harmonic motion, as well as a motion under low impact
constant forces(See Figure 7d). This concludes that the hybrid of
RDA and PSN (the benchmark) can function without the aid of DRL
in milder environments.

When the sinusoidal force with added noise gets 3 times large
(See Figure 7b) or the impact of the constant force gets 2 times large
(See Figure 7e), the system fails to maintain its position within the
safe zone, almost in all occasions. Hence, when the environment
gets rough, the hybrid system fails to function appropriately.

As shown in Figure 7c and Figure 7f, the overall spiking threshold
can be seen above the safe limit mark. Hence, for rough environ-
ments, a significant improvement in the performance can be ob-
served when DRL was introduced. In unpredictable environments,
the magnitude of the forces cannot be predicted. Therefore, using
DRL in conjunction with the hybrid system is essential for such
environments.

The unpredictable environments were represented using, sam-
ples from normal distributions since many of the real-world phe-
nomena follow the normal distribution. The data sets were ran-
domly generated and normalised using z-score, where 68% of data
lied between [-1,1] and 95% of data within [-2,2].

The spikes in Figure 8a show the behaviour of the benchmark
system in an unpredictable environment. Except for the initial few
seconds, the benchmark failed to maintain the vehicle within the
safe zone. However, as shown in Figure 8b, the system performed
more consistently with higher reliability with DRL. Despite the
simplistic structure of the DNN, the hybrid system with DRL per-
forms impressively in random environments. This indicates that
the DRL can predict actions which are large enough to cancel the
unpredictable environmental forces.

To quantify the performance of the system, 31 datasets were
produced for various time intervals. In those, the instances that
the vehicle remained within the safe were counted for both DRL
enabled hybrid and the hybrid benchmark. As shown in Table 1,
the central limit theorem is used to statistical estimation of the pop-
ulation mean. Our calculations indicate that with 95% confidence,
the population mean of DRL-enabled hybrid system lies between
64.67% and 68.58% and the population mean of the benchmark lies
between 29.26% and 40.99. A performance indicator was defined
by obtaining the average of the upper bound (68.58 − 29.26%) and
the lower bound (64.67 − 40.99%). According to the performance

indicator, the system has reached approximately 32% accuracy with
DRL. For the actual deployments, optimising the DNN structure is
recommended for significant performance increment.

Table 1: Statistical Estimation of the performance

With 95% confidence interval
Sample Mean Std dev. Poputation Mean

DRL 66.63% 5.55% 64.67% - 68.58%
Benchmark 35.13% 16.66% 29.26% - 40.99%

Maximum Performance 39.322% -Upperbound
Minimum Performance 23.68%-Lower bound
Avg. Performance 31.50%

5.1 Evolution of the DRL
The performance of the system can be measured by calculating
the mean instances the vehicle remained within the safe zone. The
latency of the system can be estimated by calculating the average
time taken to generate the opposing force. As shown in See Fig-
ure 9, plotting the performance and the latency for various time
scales for both the DRL-enabled system and the benchmark enables
the visualisation of their efficiency. Linear trend lines enable the
comparison of the differences between the DRL system and the
benchmark.

As revealed in Figure 9a a comparison can be made between the
percentage performance of the algorithms over time. The DRL based
algorithm displays stable performance and predictable accuracy in
the long run. Displaying stability in an unsupervised algorithm is a
promising aspect. By optimising the structure of DNN using his-
torical data may enable achieving optimal performance for unseen
conditions.

Figure 9b indicates that the latency of the DRL system surpasses
the normal execution time of the benchmark. This is promising
as DRL generates forces which allow the vehicle to remain within
the safe limit. This indicates that the DNN parameters have been
optimised for the random environment. This aspect is a superhu-
man ability that artificial intelligence can offer since anticipating a
random environment is mathematically improbable.

The scientific reasoning behind the decision-making process of
DRL can not be seen as implicit operations of DRL are not observ-
able. The main reason behind this black box functionality is that
DRL does not have a model to quantify its decision-making process.
In this system, however, the model-based RDA may provide the
reasoning behind the superhuman abilities of DRL. Understanding
the decision-making process of applications of deep neural net-
works is a newly emerging field of research known as eXplainable
Artificial Intelligence (XAI). Henceforth, extensions of this research
may contribute to the field of XAI.

The novelty of the system can be summarised as follows.
• Applying DRL in unobservable environments with the aid
of a bio-inspired hybrid model.
• Utilising an anomaly detection algorithm (RDA) for position
control and improving it for an anomaly avoidance algorithm
with the aid of DRL.
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(a) Sinusoidal without DRL

(b) Sinusoidal with impact without DRL

(c) Sinusoidal with impact with DRL

(d) Without DRL (Low impact constant force)

(e) Without DRL (High impact constant force)

(f) With DRL (High impact constant force)

Figure 7: Time varient forces
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(a) Without DRL (b) With DRL

Figure 8: Application of DRL on Unpredictable Environments

(a) Performance

(b) Latency

Figure 9: Evolution of DRL

• Utilising plastic spiking neuronal model (PSN) to visualise
and improving it to maintain its plasticity with the aid of
RDA and DRL.
• Utilising the voltage-time graphs of model-based RDA-PSN
combination to describe the decision-making mechanism of
DNN

6 CONCLUSIONS AND FUTURE
DEVELOPMENTS

This paper addressed the issue of the validity of action generated by
a reinforcement learning algorithm in unpredictable environments.

In our approach, we proposed a bio-inspired homeostatic model to
introduce stability to the unpredictable environment. The model
includes RDA, an artificial immune system based, vehicle-centric,
homeostatic, control system and PSN, a homeostatic, position mon-
itoring, spiking neuronal model. The hybrid of RDA-PSN model
operates by performing auto-corrections (RDA ) and visualisation
(PSN).

The hybrid of RDA-PSN model operated satisfactorily in milder
environments. However, when the environmental forces get sig-
nificantly large, the performance of the hybrid model is hindered.
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However, the model provided critical state prediction functional-
ity that the DRL requires. With the hybrid model, the DRL was
successfully applied in unpredictable environments.

In the DRL system, as the DNN learns to generate the optimal ac-
tion for the unpredictable conditions, the vehicle may remainwithin
the safe zone longer. As the subsequent environmental changes
may not cause malpositions (as they become manageable by the
RDA to maintain the vehicle within the safe zone), the DNN is ac-
cessed less frequently. Hence, ultimately, the system may consume
fewer computing resources compared to the SOA. The system is
lightweight and robust and ideal for real-time operations which
surpasses the benefits of the SOA.

By observing the voltage-time graphs of PSN, the behaviour
of DRL and the underlying decision-making process of the DNN
becomes explainable. For example, our results showed that DRL can
learn the unpredictable environment and the underlying decision-
making process for this knowledge is observable from the PSN
graphs. Therefore, the systemmay open doors for investigating new
territories of eXplainable Artificial Intelligence (XAI) applications.
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