
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/228631944

Collaboration	in	Grid	Environments	using
Clarens

Article

CITATION

1

READS

26

10	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Establishing	Grid	node	at	SEECS	(NUST)	fund	for	MS	Thesis	View	project

CERN:	Object-Relational	Transformation	View	project

Frank	van	Lingen

Cisco	Systems,	Inc

53	PUBLICATIONS			5,288	CITATIONS			

SEE	PROFILE

Conrad	Steenberg

TriNet

83	PUBLICATIONS			6,090	CITATIONS			

SEE	PROFILE

Ashiq	Anjum

University	of	Derby

97	PUBLICATIONS			2,240	CITATIONS			

SEE	PROFILE

Tahir	Azim

Stanford	University

26	PUBLICATIONS			208	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Conrad	Steenberg	on	20	May	2014.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/228631944_Collaboration_in_Grid_Environments_using_Clarens?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228631944_Collaboration_in_Grid_Environments_using_Clarens?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Establishing-Grid-node-at-SEECS-NUST-fund-for-MS-Thesis?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CERN-Object-Relational-Transformation?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frank_Van_Lingen?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frank_Van_Lingen?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Cisco_Systems_Inc?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frank_Van_Lingen?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Conrad_Steenberg?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Conrad_Steenberg?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Conrad_Steenberg?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ashiq_Anjum?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ashiq_Anjum?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Derby?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ashiq_Anjum?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tahir_Azim?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tahir_Azim?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Stanford_University?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tahir_Azim?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Conrad_Steenberg?enrichId=rgreq-549d0ac20587a0e941994f98e31ed446-XXX&enrichSource=Y292ZXJQYWdlOzIyODYzMTk0NDtBUzo5ODcwNzE3NzQ3NjExOEAxNDAwNTQ1MDMzOTMw&el=1_x_10&_esc=publicationCoverPdf

Collaboration in Grid Environments using Clarens

Frank van Lingen1, Conrad Steenberg1, Michael Thomas1, Ashiq Anjum2, Tahir Azim2, Faisal Khan2, Harvey Newman1,

Arshad Ali2 , Julian Bunn1, Iosif Legrand1

1California Institute of Technology, United States

Email:{fvlingen, julian.bunn@caltech.edu} {iosif.legrand@cern.ch} {newman, conrad, thomas@hep.caltech.edu}

2National University of Science and Technology, Pakistan
Email:{arshad.ali, ashiq.anjum, tahir, faisal.khan@niit.edu.pk}

Keywords: Distributed Systems, Collaboration, Web
Services

Abstract

In 2007 the LHC experiments will start data taking,
resulting in vast amounts of data being generated (tera
bytes to peta bytes). These data are stored in globally
distributed facilities. Hundreds of geographically
dispersed groups of physicists will utilize these data for
their analysis using a resource limited distributed system
(limited in bandwidth, cpu, and storage). Other than for
example astronomy, physics analysis resembles the
"needle in the haystack" problem which results in
unpredictable resource usage patterns as physics groups
are using their analysis algorithms to sift through the
data.

In order to facilitate this unpredictable use of
distributed resources by geographically dispersed
research groups, applications are being developed to
enable collaboration, This article will give an overview of
some of the components that have been developed using
the Clarens Web Service framework.

1. INTRODUCTION

Scientific collaborations are becoming more and more
geographically dispersed. Researchers from all over the
world collaborate on new scientific discoveries and
breakthroughs in many "big science" experiments such as
the Virtual Observatory [50], the Large Hadron Collider
(LHC) program [7], LIGO [8] and Nuclear fusion [9] .
Not only do these experiments generate tera bytes to peta
bytes of data. In many cases resources for analyzing and
storing these large amounts of data are distributed on a
national or international scale.

Some of the largest scientific collaborations today, such
as CMS [10] and ATLAS [11] who are building
experiments for CERN's LHC program, each encompass
2000 physicists from 150 institutions in more than 30
countries. Each of these collaborations include 300-400
physicists in the US, from more than 30 universities, as
well as the major US HEP laboratories.

Realizing the scientific wealth of these science
experiments, presents new problems in data access,
processing, distribution, and collaboration across national
and international networks, on a scale unprecedented in
the history of science. One technology that holds the

promise to form the basis of such an integrated, managed,
distributed system are Web Services. The service oriented
architecture (SOA) as proposed by [4] has been endorsed
by many grid projects such as OSG [5] and EGEE [6].

The (soon to be started) DISUN1 project and the
Ultralight project [1] are two SOA based projects that are
providing components to enable distributed physics
analysis for a large user base. It is not only important that
the system enables users to perform their data analysis,
but it is equally important that they are able to share and
publish their results, and are able to collaborate with other
users. The authors argue that in order to enable
collaboration between groups in a distributed
environment based on Web Services some basic
requirements need to be satisfied (this is not en exhaustive
list):

• Authentication of users and secure access to data and

Web Services.
• Virtual organizations and role management: users can

have different roles in different groups.
• Access control on data: groups can share data while

excluding others from reading/writing this data.
• Access control on Web Services: groups (or

administrators) can restrict access to Web Services.
• Discovery of services, data, and software:

geographically dispersed groups will
install/move/remove Web Services and (analysis)
software in an unpredictable manner. Other members
of the groups need to be able to discover these
services, applications and data.

• Automated tests of Web Services: within a global
distributed service environment services need to be
available 24/7. This can be achieved by offering the
same services on multiple locations. However when a
service does not respond this has to be identified as
quickly as possible.

• User feedback when a problem occurs. Being able to
diagnose what went wrong during a session.

To address the requirements mentioned, the Clarens

project was started in 2001 [28] to provide a scalable Web
Service framework for the development of distributed
applications. Initially Clarens was developed as part of
the CMS experiment, however as Web and Grid Services

1 DISUN: Data Intensive Science University Network

became two of the de facto standards for development of
distributed applications, Clarens became part of several
projects: Ultralight [1], HotGrid [18], Monte Carlo
Processing Service using RunJob [19], the physics shell
project (PHYSH) [20], Lambda Station [21] project.
IGUANA [22] and the PROOF [23] Enabled Analysis
Center (PEAC). Development and deployment of Clarens
is also part of several large Grid collaborations such as
PPDG [24], IvdGL [25], Griphyn [27], OSG and Grid3
[26]. Clarens was also used in the winning
SuperComputing 2003 bandwidth challenge (23 Gb/s
peak), in which Clarens servers generated a peak of 3.2
Gb/s disk-to-disk streams consisting of CMS detector
events.

Section two gives an overview of Clarens, a Web
Service framework. Section three to eight discuss several
services developed to enable and foster collaboration
between users of the system as outlined in the
requirements in this section. More information about
Clarens can be found in [28], [29], [30], [31], [32] and,
[33] Although the Clarens project focuses on the physics
community much the functionality and many of the Web
Services can be used by other scientific communities.

Within this paper we use the following definitions for
Web Services and Web Service Framework: A Web
Service is a component performing a task, most likely
over a network. A Web Service can be identified by a
URI and its public interfaces and bindings are described
using WSDL. At the basis of a Web Service call
(invocation) is a protocol (frequently, but not exclusively
this is XML-RPC [12], or SOAP [13]). A Web Service
Framework is an application that provides support for
developing and deploying Web Services. Unless
mentioned otherwise Clarens refers to both the Python
and the Java implementation of Clarens. PClarens refers
to the Python implementation and JClarens to the Java
implementation.

2. CLARENS
Clarens aims to provide the basis for a consistent, high-

performance, fault tolerant system of distributed Web
Services deployment and development. By leveraging
existing, widely implemented standards and software
components, including HTTP, SSL/TLS (RFC 2246)
encryption and X509 (RFC 3280)2 certificate-based
authentication, and SOAP/XML RPC data serialization,
Clarens also aims to be easily accessible to a wide variety
of client implementations with the minimum of software
dependencies. This approach lowers the barriers of entry
to participate in the service network, re-use of existing
developer skills, and a wide choice of development tools
and languages.

In order to improve scalability, the PClarens server is
implemented as an extension to the Apache Web Server
[14] using the mod_python extension in the Python
byte-code compiled language. PClarens itself is both

2 For Internet Engineering Task Force Request For Comment (RFC)
documents, see http://www.ietf.org/

architecture and platform independent by virtue of using
Python as an implementation language. Figure 1 shows
the PClarens architecture. The Apache server receives an
HTTP POST or GET request from the client, and invokes
PClarens based on the form of the URL specified by the
client (other URLs are handled transparently by the
Apache server according to its configuration). Secure
Sockets Layer (SSL) encrypted connections are handled
transparently by the Apache server, with no special
coding needed in PClarens itself to decrypt (encrypt)
requests (responses).

After the request has been processed, a response is sent
back to the client, which is usually encoded as an RPC
response, but may also be in the form of binary data. GET
requests return a file or an XML-encoded error message
to the client, while XML-RPC or SOAP encoded POST
requests return a similarly encoded response error
message

In response to a preference for developing not only
Python based web services but also Java based Web
Services, a second Java based Web Service framework
has been implemented (JClarens). The Java language and
runtime environment have several desirable
characteristics, including implementations on several
platforms, a large developer community, and mature Web
Service development tools.

APACHE WEB
SERVER

MOD_PYTHON

VO Management

Service Management

Remote File Access

Security PKI

XML-RPC GET

Discovery

SOAP

Databases

Client

Core Services Utilities

Process Management

Clarens

INTERNET

Figure 1. PClarens Architecture

The JClarens implementation is based on so-called
servlets implemented inside a commodity container, in
this case the open source Apache Tomcat server [15] For
JClarens the Tomcat server replaces the Apache web
server and mod_python module in the architecture as
depicted in Figure 1.

The architecture discussed in this section can give the
impression that Clarens (both the Python and Java
implementation) is very similar to for example a Tomcat
server and an Apache AXIS module [16] (the Java
implementation actually uses Tomcat and AXIS). Both
systems can be called Web Servers that host Web

Services. The difference is that the Clarens Web Service
framework address issues such as:

• Certificate based authentication when establishing a

connection.
• Access control on Web Services.
• Remote file access (and access control on files).
• Discovery of services and software.
• Proxy management.
• Shell access based on certificates.
• Virtual Organization management.
• Multiple protocols (XML-RPC, SOAP, Java RMI

(only for JClarens), JSON-RPC [17]).

The next sections will discuss several of Clarens based

services in detail. Other services and functionality
discussed in the requirements in section one such as
remote file access, access control lists, and service
discovery, have been discussed in [33].

3. VIRTUAL ORGANIZATION AND ROLE
MANAGEMENT

Virtual organization management allows

(geographically dispersed) users in large collaborations to
be grouped together. Using this group structure it is easier
for administrators of Grid resources to create fine grained
access control lists for different groups and sub groups of
scientists.

Each Clarens server instance manages a tree-like
Virtual Organization (VO) structure, as shown in Figure
2, rooted in a list of administrators. This group, named
admins, is populated statically from values provided in
the server configuration file on each server restart. The
list of group members is cached in a database, as is all VO
information. The admins group is authorized to create
and delete groups at all levels.

Each group consists of two lists of distinguished names
(DNs), for the group members and administrators
respectively. Group administrators are authorized to add
and delete group members, as well as groups at lower
levels. The group structure is hierarchical because group
members of higher level groups are automatically
members of lower level groups in the same branch. The
example in Figure 2 demonstrates the top-level groups
A,B, and C with second level groups A.1, A.2, and
A.3

A further optimization, the hierarchical information in
the DNs may also be used to define membership, so that
only the initial significant part of the DN need to be
specified in defining members of a group. DNs are
structured to include information on the country (C),
state/province (ST), locality/city (L), organization (O),
organizational unit (OU), common name (CN), and
(Email). An example DN issued by the DOE Science Grid
CA for individuals is:
/O=doesciencegrid.org/OU=People/CN=Joh
n Smith 12345

.

DN1, DN2, …
Members

Group: Admins

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group A

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group B

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group C

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group A.1

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group A.2

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group A.3

Figure 2. Clarens Group Diagram

For servers a DN could look like:
/O=doesciencegrid.org/OU=Services/CN=h
ost/www.mysite.edu for servers.

To add all individuals to a particular group, only
/O=doesciencegrid.org/OU=People need to be
specified as member DN

In many Grid projects virtual organization structures
are not more than one or two levels deep. OSG, CMS,
ATLAS virtual organizations are examples this. The
hierarchical group structure within the Clarens group
service enables these VO’s to define roles within their
VO’s. For example within the CMS VO we can identify
several roles. E.g. : detector physics (user doing analysis
for detector studies), analysis physics (user doing analysis
on event data) US grid-operator (persons responsible for
data transfer in the US), EU grid-operator (person
responsible for data transfer in Europe). Within the
Clarens group service the following groups can describe
these roles:

• CMS.physics.detector
• CMS.physics.analysis
• CMS.grid-operator.US
• CMS.grid-operator.EU

Persons that have multiple roles will have their DN

associated to multiple groups. The Clarens group service
offers a flexible and extendible structure for defining
VO’s and roles within a VO.

4. DISTRIBUTED TESTING AND
MONITORING

The two implementations (Java and Python) of Clarens
are used within several projects. In these projects several
Clarens servers are running on several locations. Within

the Ultralight [1] testbed there are at least 15 servers
running a variety of services. It is vital that servers and
services are fully functional all of the time (if possible)
and that downtime is minimized. Within (large)
collaboration services and servers are administrated by
different (geographically dispersed) groups/persons. It is
therefore important that these services can be periodically
validated without human intervention and when a service
fails a test a person responsible for that service gets
notified.

Specification
File

Run Tests

Tests

Reports

HTML summary
page

Generate
Summary

Test Run

Java/Python

Tests

(Clarens)
Web Server

Copy Test Files

Parallel execution
of tests

Specify

Insert/delete
entries/tests

Generate
Cron jobs

Localhost

Clarens
Server 1

Clarens
Server 2

Clarens
Server n Test Services on

Clarens servers

Figure 3. Clarens Distributed Testing Framework.

Figure 3 shows an overview of the components of the
Clarens test environment. An administrator can define
groups of tests, servers and email addresses in
specification file. A run tests application parses this
file periodically and spawns off separate test runs (one for
each server). Each of these runs generates a status report.
Periodically a summary is generated. The reports,
summary and the tests itself are published on a web
server. If a test failed emails are send to the administrators
of that service. Users can browse the summary page and
analyze the test results and tests. Within Clarens the
testing framework also serves to identify compatibility
issues between Java/Python clients and Java/Python
servers. Multiple sites can use the test framework to
prevent a single point of failure for testing services.

5. LOGGING SERVICE
Large scientific collaborations will deploy numerous

Web Services in a globally distributed system. In most
cases users will access these Web Services through so-
called portals. These portals hide much of the Web
Service complexity behind an easy to use (web based)
interface. However when errors occur (generated by
either a user or the system) it is important that users (and
administrators) get the appropriate feedback to diagnose
the problem to identify which group within the
collaboration is responsible and has the authority to
resolve the problem.

The base PClarens server contains support for a request
and response logging facility. The logging service allows
users to access this facility remotely. The Clarens server
logs Web Service requests and responses in various levels
of detail, namely: 1) no logging 2) request method name,
call time, calling user DN, and return status, and lastly 3)
the complete request/response text in addition to the
information of level 2. A default minimum logging level
can be specified by the server administrator for debugging
or security purposes. The logging service API contains
methods to set and get the log level for a particular user
session: logging.get_log_level, and
logging.set_log_level. Additionally, the logging
service allows users to create named logging sessions to
organize the storage and retrieval of logged information
for later use. These sessions can be listed, accessed and
deleted by their owner. Currently access control is
implemented such that logging data can only be access by
the server administrators and the original calling user. In
future access control lists may be added to allow users to
share sessions with other users on a selective basis.
Logging information can be accessed using various
criteria, including access times, session names, method
names, or return status. A bowser-based interface is
available to allow zero-install access to the service by
remote users.

6. CATALOG SERVICE
As discussed in [33], the Clarens file service enables

secure and access controlled access to (groups of) files
and directories. In many cases however, physicists want
to access and discover data on a higher conceptual level.
When collaborating with colleagues, scientists can refer
to data as for example “dataset Muon342_Run2” without
referring to a specific location or to the numerous files
representing this dataset. For example within the CMS
experiment there is the notion of datasets. A dataset
consists of collections, which in turn consists of logical
file names. Each logical filename (lfn) is associated to
several physical file names (pfn), representing replicas.
Within CMS several catalogs (refdb [41], pubdb, phedex
[42], pool file catalog [43]) contain information that
describe this data hierarchy. Furthermore, these catalogs
change overtime (schema evolution or designed from
scratch). Whatever the database, there were several
characteristics that are similar in all catalogs within CMS:

• Many users want to query information associated to

data that can be represented as key values
• All catalogs are implemented as a SQL database.

The catalog service exploits these characteristics to
provide a generic front end for SQL based databases. The
service contains four generic methods which can be
augmented with more specific methods, depending on the
catalog.

The catalog.getViews method returns the
different views a user can use in this catalog. In many

cases there will be only one view which the user does not
have to specify. Examples of views can be ‘dataset’,
‘collection’, ‘pfn’, and ‘lfn’ .Once a user selects a view
he/she can request the attributes that are associated to this
view. The catalog.getMetadataSpec returns a
list of meta data attributes and their formats which are the
meta data keys attached to a view in a dictionary format.
Formats supported are: string, integer, float, double, and
xml (xml is represented as a string). The
catalog.getMetadataValues method returns a
sample of values for a particular attribute. This methods
enables users to get an impression of what values are in a
particular catalog and to tune their queries accordingly.
Finally the catalog.queryCatalog method
accepts simple queries (‘and’ and ‘or’ key value queries)
and returns a set of key/values associated to a view.

Mapping file

Catalog Service
Interface

Complex
Schema

Translation &
Query Construction

Based upon

Presents simple
key/value views to
users/applications

Figure 4. Catalog Service Architecture

Figure 4 shows an overview of the catalog service. A
mapping file describes a mapping between a (complex)
SQL schema and key/value views that will be exposed to
users/applications. A translation component converts user
queries to database specific queries, and formats the result
of these queries as key/value views. The only thing that
needs to be changed for catalogs with different schemas is
the mapping file. The advantage of such a service are:

• Shield users from database schema and changes in

schema.
• Providing enough flexibility for users to query the

data, and return data as key values.
• Allow users to discover the simplified schema (keys)

and browse through associated values.
• Provide a uniform interface for different catalogs

(which are represented by a relational database).

Using the Clarens discovery service, users can discover
certain types of catalogs and query these catalogs in a
dynamic service environment. Although the catalog
service provides a generic frontend to SQL database, it is
also restricted, in querying these datatabases, especially if
these databases contain a complex schema. However it
was recognized that most of the time users want to query

for key/values associated to a data entity, which is what
the catalog service addresses.

7. CONFMON SERVICE
In many instances within a distributed system,

information is ordered in a hierarchy. Examples of such
hierarchies are: the Glue schema [44], the Clarens service
hierarchy (server/service/method), Clarens VO
management (see section 3), Clarens access control lists
(see [33]), software discovery service
(server/application/version) (see section 8), File system,
etc…. Also in many instances users (or groups of users)
want to organize and share their (meta) data in a
hierarchical structure with groups they collaborate with
(and perhaps hide it for other groups). The confmon
service provides a tree structure to which users can attach
key/values pairs, containing time stamps, an expiration
date and access control on the tree nodes. The access
control methods are based on the access control methods
of the file service (see [32]). The argument for most of the
(non ACL) confmon methods is a struct that consists of a
list of endpoints (server and protocol), a provider
(specified as a DN), a category (representing the node in
the tree), a set of key/values and a duration (0 means it
does not expire). Besides the access control methods the
confmon service exposes five methods.
confmon.register registers information in the
hierarchy. confmon.append appends additional data
to existing key/values (a key can have multiple values).
confmon.deregister will delete entries that match
the deregister pattern given as input. In order to renew the
expiration time on data the confmon.expire method
can be used. If the duration period 0 is used the data will
never expire. confmon.find is used to query data in
the hierarchy. The find method takes as input endpoint
patterns, key/values, providers, and returns a list of entries
that match this pattern. Results of all these methods are
dependent on the read and write access of the user on the
elements in the hierarchy.

The current implementation uses a MySQL database as
backend, but future implementations will investigate
hierarchical storage such as XML databases or LDAP
[49]. The main design criteria for the confmon service
have been to provide users with access controlled
key/values hierarchies with limited functionality for
inserting, deleting and browsing this hierarchy but
flexible enough to enable users to share key/value
hierarchies.

8. DYNAMIC SOFTWARE DISCOVERY
Many criteria can be used to select a site on which to

run user analysis jobs. One such a criteria is the type and
version of a particular piece of software needed for this
job. User analysis jobs (within the physics community)
require (not infrequent) a specific version and type of
certain analysis packages and libraries. Certain sites have
restrictive software installation policies, or it can take a
long time to install a required package. Often sites will

not install all possible versions of all possible packages.
Within a global distributed environment software
packages will be installed, (re)moved and updated. It is
virtually impossible for scientists in large collaborations,
and applications to keep track of these changes. Users and
services need to be able to discover in real time what
packages and what versions are installed on the sites such
that can be decided where to run a particular analysis.

CS

SS

DS

CL

MonALISA JINI
Network

Station
Servers

Clarens Software
Discovery

Servers/JINI Clients

Clarens
Servers

Clients

SS SS

DS

CL CL

CS CS CS

Figure 5. The MonALISA-based Software Discovery
architecture.

The software discovery service is based on the Web
Service discovery [33]. Registration with the Software
Discovery service must happen at regular intervals in
order to prove that a particular package is still available.
If a site fails to notify the software discovery service
within a certain time period, it is automatically removed
from the registry. The register method is used to add
a new software package to the registry while a find
method is used to locate software instances that match
certain search criteria such as name, location, version.
The deregister method is used to remove software
packages from the registry (however is seldom used since
the registry will automatically remove the software
package once it fails to re-register).

The Software Discovery service follows a peer-to-peer
model based on JINI [46] and the MonALISA [45] Grid
monitoring system, as shown in Figure 5. MonALISA is a
JINI-based monitoring system that uses station servers to
collect local monitoring data, and uses a JINI peer-to-peer
network to share selected monitoring data with other
station servers or other interested clients. Arbitrary
monitoring data can be published to a MonALISA station
server using a UDP based application. Each software
discovery service contains a client that listens for
software publications messages on the MonALISA JINI
network, and stores them in an in-memory cache. The
software discovery service periodically purges expired
entries from this in-memory cache. Since the software
registry is stored in memory, it is not persistent across
server restarts, which does not pose a problem since the
registry will be rapidly populated with new information
once it restarts. The current refresh rate for software
discovery information is between 10 to 30 seconds. The

initial version of the Software Discovery services uses
SCRAM [47]3 for local site software discovery and
publishes the results into the MonALISA network. Future
versions will also include plugins to discover VDT [48]
based software applications.

9. FUTURE WORK
Future work will focus (amongst others) on: message

based protocols, mass storage integration, improved
service discovery functionality.

The current Clarens Web Service implementation was
designed for a request response mode of operation,
making it ill-suited for the type of asynchronous bi-
directional communication required for interactions
between users and the jobs they are running on private
networks protected by network address translation (NAT)
and firewalls. An instant messaging (IM) architecture
provides the possibility to overcome this limitation. Since
messages can be sent and received by jobs
asynchronously, jobs can be instrumented to act as
Clarens servers, or clients sending information to
monitoring systems or remote debugging tools.

Although Clarens provides remote file access through a
web service, it does not support interfaces to mass storage
facilities yet. Work is under way to provide an SRM
service interface [38] to dCache[39] such that Clarens can
support robust file transfer between different mass storage
facilities.

Work is underway to provide interoperability between
the Clarens discovery service and Globus MDS [40] such
that both systems can publish/retrieve information in the
other system. Other activities include collaboration with
the EGEE project on a common discovery interface.

When scientists collaborate they not only share data but
also share/develop sequences of commands and analysis
applications with each other. The CODESH project [51]
addresses distributed collaboration. At the time of writing
CODESH functionality is being integrated into Clarens,
such CODESH can be used within a secure access
controlled distributed environment in conjunction with
other Clarens functionality such as remote file access.

10. RELATED WORK
Several other Web Service frameworks have been

developed in the last couple of years. The last versions of
Globus [34] have been service oriented frameworks based
on the open grid service architecture (OGSA). Although
Globus offers secure and authenticated access using the
concept of grid map files, it has a much coarser
authentication and access control granularity than the
Clarens ACL and VO management.

Ibm Websphere [35] is a commercial product that
enables you to develop and deploy web services and is
therefore not a desirable candidate to be deployed in large
science collaborations that rely on open source.

3 SCRAM is a software configuration environment used in the LHC
experiments including CMS and ATLAS.

Glite [36] is a Perl based service framework based on
Alien [37] that is used by the EGEE project [6] to develop
web services. Several of the interfaces developed for
services in this project are similar (but not the same) to
Clarens service interfaces. The first versions of the Glite
framework were based on Alien which initially was not
designed to be a generic service oriented framework,
while Clarens was. Substantial work has been carried out
however to make Glite, less dependent of Alien.

The Globus information and discovery system (MDS)
[40] is distributed in nature and provides much more
functionality than the confmon service discussed in this
paper.

The catalog service functionality described in section
six is not novel by itself. In many data integration projects
wrappers have been developed to shield
applications/users from underlying database complexity.
However this catalog service is embedded in a distributed
Web Service environment that facilitates access control,
authorized access and service discovery.

11. SUMMARY
The Clarens Web Service framework is gaining

acceptance in the science community to support the
development of a scalable distributed service
environment. Several of the projects have chosen Clarens
as it offers a good service response performance and yet
provides powerful features such as ACL and VO
management, service discovery, and remote file access.
These features enable the creation of services that enable
collaboration on a user and administrator level for large
scientific communities.

Clarens provides a growing functionality for distributed
analysis in a Grid-based environment, coupled with a set
of useful client implementations for physics analysis. The
projects that utilize Clarens also provide valuable
feedback, which enable the Clarens team to enhance and
improve the core functionality of Clarens and reuse
components across projects that focus on scientific
analysis.

12. ACKNOWLEDGEMENTS
This work is partly supported by the Department of

Energy grants: DE-FC02-01ER25459, DE-FG02-92-
ER40701, DE-FG02-04ER25613, DE-AC02-76CH03000
as part of the Particle Physics DataGrid project, National
Science Foundation grants: ANI-0230967, PHY-
0218937, PHY-0122557, PHY-0427110 and by
Department of State grant: S-LMAQM-04-GR-170. Any
opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the Department of
Energy, the National Science Foundation, or the
Department of State.

REFERENCES

[1] UltraLight Collaboration “UltraLight: An Ultrascale
Information System for Data Intensive Research”
proposal Submitted to NSF MPS/Physics: “ITR” February
2004. See also: http://ultralight.caltech.edu/portal

[2] J. Bunn and H. Newman "Data Intensive Grids for High
Energy Physics", in "Grid Computing: Making the Global
Infrastructure a Reality”, edited by Fran Berman,
Geoffrey Fox and Tony Hey, March 2003 by Wiley.

[3] F. van Lingen, J. Bunn, I. Legrand, H. Newman, C.
Steenberg, M. Thomas, P. Avery, D. Bourilkov, R.
Cavanaugh, L. Chitnis, M. Kulkarni, J. Uk In, A. Anjum,
T. Azim "Grid Enabled Analysis: Architecture, Prototype
and Status" CHEP 2004 Interlaken

[4] Foster, I., Kesselman, C., Nick, J., and Tuecke, S. “The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration”, Global
Grid Forum, June 22, 2002

[5] Open Science Grid, http://www.opensciencegrid.org/
[6] E. Laure, F. Hemmer, F. Prelz, S. Beco, S. Fisher, M.

Livny, L. Guy, M. Barroso, P. Buncic, P. Kunszt, A. Di
Meglio, A. Aimar, A. Edlund, D. Groep, F. Pacini, M.
SGaravatto, O. Mulmo, " Middleware for the next
generation Grid infrastructure", In proceedings of CHEP,
Interlaken, Switzerland 2004

[7] LHC Project, http://lhc-new-homepage.web.cern.ch/lhc-
new-homepage/

[8] LIGO, http://www.ligo.caltech.edu/
[9] Join European Torus, http://www.jet.efda.org/
[10] The Compact Muon Solenoid Technical Proposal,

CERN/LHCC 94-38 (1994) and CERN LHCC-P1; see
also: http://cmsdoc.cern.ch/

[11] The ATLAS Technical Proposal, CERN/LHCC 94-43
(1994) and CERN LHCC-P2; see also:
http://atlasinfo.cern.ch/ATLAS/TP/NEW/HTML/tp9new/t
p9.html

[12] XML Remote Procedure Call Website,
http://www.xmlrpc.com

[13] Simple Object Access Protocol, W3 Consortium,
http://www.w3.org/2002/ws/

[14] Apache Web Server, Apache Software Foundation,
http://www.apache.org

[15] The Tomcat Servlet Engine, http://tomcat.apache.org
[16] AXIS, http://ws.apache.org/axis/
[17] JSON RPC,

http://oss.metaparadigm.com/jsonrpc/index.html
[18] R. Williams, C. Steenberg, J. Bunn, " HotGrid: Graduated

Access to Grid-based Science Gateways", In Proceedings
of IEEE Supercomputing Conference, Pittsburgh USA,
2004

[19] P. Love, I. Bertram, D. Evans, G. Graham, "Cross
Experiment Workflow Management: The Runjob
Project", In proceedings of CHEP, Interlaken Switzerland
2004

[20] Physh, http://cmsdoc.cern.ch/cms/aprom/physh/
[21] Lambda station, http://www.lambdastation.org/
[22] I. Osborne, S. Muzaffar, L. Taylor, L. Tuura, G. Alverson,

G. Eulisse, "IGUANA Interactive Graphics Project:
Recent Developments", In proceedings of CHEP 2004,
Interlaken

[23] M. Ballintijn, “Global Distributed Parallel Analysis using
PROOF and AliEn”, In Proceedings of CHEP 2004
Interlaken

[24] Particle Physics Data Grid, http://www.ppdg.net/
[25] International Virtual Data grid laboratory,

http://www.ivdgl.org/
[26] Grid3, http://www.ivdgl.org/grid2003/

[27] Grid Physics Network, http://www.griphyn.org/
[28] C. Steenberg, J. Bunn, T.Hickey, K. Holtman, I. Legrand,

V. Litvin, H. Newman, A. Samar, S. Singh, R. Wilkinson
(for the CMS Collaboration), "Prototype for a Generic
Thin-Client Remote Analysis Environment for CMS"
Proceedings of CHEP, paper 3-044, p. 186, H.S. Chen
(ed.), Beijing China, 2001

[29] C. Steenberg, J. Bunn, I. Legrand, H. Newman, M.
Thomas, F. van Lingen, A. Anjum, T. Azim "The Clarens
Grid-enabled Web Services Framework: Services and
Implementation" In Proceedings of CHEP, Interlaken
Switzerland 2004

[30] A. Ali, A. Anjum, R. Haider, T. Azim, W. ur Rehman, J.
Bunn, H. Newman, M. Thomas, C. Steenberg. “JClarens:
A Java Based Interactive Physics Analysis Environment
for Data Intensive Applications” in the Proceedings of
ICWS, the International Conference of Web Services, San
Diego, USA 2004

[31] Clarens homepage, http://clarens.sourceforge.net
[32] C. Steenberg, E. Aslakson, J. Bunn, H. Newman, M.

Thomas, F. van Lingen "Clarens Client and Server
Applications" CHEP 2003 La Jolla California

[33] F. van Lingen, J. Bunn, I. Legrand, H. Newman, C.
Steenberg, M. Thomas, A. Anjum, T. Azim, “The Clarens
Web Service Framework for Distributed Scientific
Analysis in Grid Projects” , Workshop on Web and Grid
Services for Scientific Data Analysis (WAGSSDA), Oslo,
June 14-17, 2005

[34] Foster, C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit” Intl. J. Supercomputer
Applications, 11(2):115-128, 1997

[35] Websphere, http://www.websphere.org/
[36] M. Lamanna, B. Koblitz, T. Chen, W. Ueng, J. Herrala, D.

Liko, A. Maier, J. Moscicki, A. Peters, F. Orellana, V.
Pose, A. Demichev, D. Feichtinger, "Experiences with the
gLite Grid Middleware" In proceedings of CHEP,
Interlaken Switzerland, 2004. see also:
http://glite.web.cern.ch/glite/

[37] P.Buncic, A.J. Peters, P.Saiz "The AliEn System, status
and perspectives",In proceedings of CHEP, La Jolla,
California 2003

[38] A. Shoshani, A. Sim, J. Gu, “Storage Resource Managers:
Middleware Components for Grid Storage”, In
proceedings of Mass Storage Systems conference,
Maryland USA 2002

[39] P. Fuhrmann, "dCache the commodity cache", In
proceedings of the Twelfth NASA Goddard and Twenty
First IEEE Conference on Mass Storage Systems and
Technologies, Washington DC 2004

[40] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman,
“Grid Information Services for Distributed Resource
Sharing”, Proceedings of the Tenth IEEE International
Symposium on High-Performance Distributed Computing
(HPDC-10), IEEE Press, August 2001

[41] V. Lefebure, J. Andreeva, "RefDB: The Reference
Database for CMS Monte Carlo Production" In
Proceedings of CHEP La Jolla, California, 2003

[42] T. Barras, A. Afaq, W. Jank, O. Maroney, S. Metson, D.
Newbold, K. Rabbertz, J. Rehn, L. Tuura, T. Wildish, Y.
Wu, C. Grandi, D. Bonacorsi, C. Charlot, M. Ernst, A.
Fanfani, I. Fisk, “Software agents in data and workflow
management”, In Proceedings of CHEP, Interlaken
Switzerland 2004

[43] I. Papadopoulos, "POOL, the LCG Persistency
Framework", In Proceedings of IEEE Nuclear Science
Symposium, Portland, Oregon, 2003

[44] GLUE, http://www.cnaf.infn.it/~sergio/datatag/glue/
index.htm

[45] I. Legrand, “MonALISA - MONitoring Agents using a
Large Integrated Service Architecure” International
Workshop on Advanced Computing and Analysis
Techniques in Physics Research, Tsukuba, Japan,
December 2003

[46] JINI, http://www.sun.com/software/jini/
[47] J.P. Wellisch, C. Williams, S. Ashby ,” SCRAM:

Software configuration and management for the LHC
Computing Grid project”, CHEP , La Jolla, California,
2003

[48] VDT, http://www.cs.wisc.edu/vdt/
[49] M. Smith, T. Howes', “LDAP: Programming Directory-

Enabled Applications with Lightweight Directory Access
Protocol” New Riders Publishing, Hardcover, March
1997 ISBN 1578700000

[50] National Virtual Observatory http://www.us-vo.org
[51] D. Bourilkov, “The CAVES Project - Collaborative

Analysis Versioning Environment System: The CODESH
Project - Collaborative Development Shell,”
arXiv:physics/0410226

View publication statsView publication stats

https://www.researchgate.net/publication/228631944

	1. INTRODUCTION
	2. CLARENS
	3. VIRTUAL ORGANIZATION AND ROLE MANAGEMENT
	4. DISTRIBUTED TESTING AND MONITORING
	5. LOGGING SERVICE
	6. CATALOG SERVICE
	7. CONFMON SERVICE
	8. DYNAMIC SOFTWARE DISCOVERY
	9. FUTURE WORK
	10. RELATED WORK
	11. SUMMARY
	12. ACKNOWLEDGEMENTS
	REFERENCES

