
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 1

Deadline Constrained Video Analysis via In-Transit
Computational Environments

Ali Reza Zamani, Mengsong Zou, Javier Diaz-Montes, Ioan Petri, Omer Rana, Ashiq Anjum, and Manish Parashar

Abstract—Combining edge processing (at data capture site) with analysis carried out while data is enroute from the capture site to a
data center offers a variety of different processing models. Such in-transit nodes include network data centers that have generally been
used to support content distribution (providing support for data multicast and caching), but have recently started to offer user-defined
programmability, through Software Defined Networks (SDN) capability, e.g. OpenFlow and Network Function Visualization (NFV).
We demonstrate how this multi-site computational capability can be aggregated to support video analytics, with Quality of Service
and cost constraints (e.g. latency-bound analysis). The use of SDN technology enables separation of the data path from the control
path, enabling in-network processing capabilities to be supported as data is migrated across the network. We propose to leverage SDN
capability to gain control over the data transport service with the purpose of dynamically establishing data routes such that we can
opportunistically exploit the latent computational capabilities located along the network path. Using a number of scenarios, we
demonstrate the benefits and limitations of this approach for video analysis, comparing this with the baseline scenario of undertaking
all such analysis at a data center located at the core of the infrastructure.

Index Terms—edge computing, in-transit, software-defined networks, video analysis, cloud federation, CometCloud

F

1 Introduction
With the maturity of the Internet of Things (IoT)

paradigm and associated devices, data sensing can now be
combined with data processing/analysis on the same device.
As IoT devices increase in function and capability, existing
infrastructures such as monitoring/ storage and network capa-
bilities can be combined to create a more general purpose data
analysis and computational environment. Such a perspective
assumes that IoT devices and in-transit network nodes, over
which such data is channeled, can be used to support data
processing along with the data centres to which this data
is sent, typically located at the core of the infrastructure.
This comes with the recent interest in moving away from
centralized, large-scale data centers to a more distributed
multi-cloud setting (as demonstrated by significant interest
in cloud federation and interoperability efforts). Such a multi-
cloud environment is often formed by a network of smaller
virtualized infrastructure runtime nodes, often with an ad hoc
and unstructured architecture.

Combining IoT and Cloud computing capability enables
the creation of smart environments that can respond to real-
time events, by (a) combining services offered by multiple
stakeholders (i.e. those that are at the network edge with ser-
vices provided within a data centre) and, (b) providing scale to
support a large number of users in a reliable and decentralized
manner. They need to be able to operate in both wired and
wireless network environments and deal with constraints such
as access devices or data sources with limited power and
unreliable connectivity. The Cloud application platforms need
to be enhanced to support (a) the rapid deployment of services

• A.R. Zamani, M. Zou, J. Diaz-Montes, and M. Parashar are with
Rutgers Discovery Informatics Institute, Rutgers University, NJ
USA.

• I. Petri and O. Rana are with School of Computer Science &
Informatics, Cardiff University, UK.

• Ashiq Anjum is with the Computing & Mathematics Dept., Uni-
versity of Derby, UK

by providing domain specific programming tools and environ-
ments and (b) seamless execution of applications harnessing
capabilities of multiple dynamic, and heterogeneous, resources
to meet quality of service requirements of different users.

Additionally, network operators are increasingly becom-
ing potential providers of general purpose computation in-
frastructure. They are minimizing the amount of network-
specialized hardware hosted in their data centers and moving
towards the use of commodity hardware. This strategy is
supported in recent efforts in Software Defined Networking
(SDN) and Network Functions Virtualization (NFV). SDN,
in particular, is an approach devised to simplify network
management through abstraction of lower-level functionality.
Specifically, SDN separates control plane (where to send data)
from data plane (data forwarding functions). This enables the
software-based control plane to be run on commodity servers
and to leverage the latest-generation of processors, which are
faster than embedded-class processors in most switches [9].
On the other hand, NFV goes a step further and extends
the as-a-service cloud model to offer networking functions
on-demand using virtualization techniques. This approach
promises, as the cloud, a reduction in capital expenses and
a rapid deployment and delivery of new functionality [18].

Data centers managed and operated by network providers
form a significant part of the current Internet infrastructure,
as there is a large number of such data centers that are almost
ubiquitous across the world. These data centers may not be
as powerful as computational data centers, hosted by cloud
providers or traditional high performance computing (HPC)
providers. However, their ubiquity and the fact that we have
to necessarily use them, when moving data over the Internet,
makes them a useful source of pervasive computing at the
edge of the network. Understanding how the availability of
commodity servers within such “network data centers” can
contribute towards data processing would enable an effective
way to extend the boundaries of a cloud system – from a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 2

high end, often localized data center, to multiple distributed
data centers that can process data while it is in transit from
source to destination. This also provides the possibility of
additional revenue models for network providers – who are
able to convert underutilized network resources to offer in-
transit computation.

In this paper we propose a model to leverage the combined
use of computational capabilities available at the network
edge and within network data centers to support data trans-
formation and analysis from source to destination. We demon-
strate how this can lead to more efficient use of computational
resources and extend the capability and capacity of the overall
infrastructure. The contributions of this paper are:

• An in-network computational model to leverage com-
putational resources located at the edge, within the
network and those at a traditional cloud data centre.

• An optimization strategy that allows us to prioritize
data processing based on the expected value of the
data to user. We describe how this subjective notion
can influence the location of where data processing
takes place.

• An experimental and analytical validation of the pro-
posed model using a video analysis use case.

The rest of the paper is organized as follows. Section 2 presents
our motivating use case. Section 3 presents our federation
model. Section 4 formalizes our problem, and Section 5 pro-
poses an scheduling optimization strategy. Section 6 describes
the deployment used for our experiments. Section 7 presents
our evaluation and results. Section 8 collects the related work.
Section 9 discuss the results obtained. Section 10 presents the
conclusions and ongoing activities.

2 Video Analytics Use Case
We describe use cases centered on processing video sequences
submitted from a single/ multiple camera(s). These video
sequences can be encoded using different formats, and need
to be processed within a deadline. We therefore consider a
semi-real time video sequence analysis – compared to “batch”
analysis, where a video sequence is first archived and subse-
quently analysed in an off-line manner. Two aspects of video
stream processing (consisting of a sequence of image frames
submitted from a camera) can be considered: (i) the stream
is viewed and stored for archiving – generally requiring the
captured data to be transmitted over a network infrastructure
for viewing/archiving purposes; (ii) the stream is processed
(and annotated) using pre-defined filters (to support object
detection & colour-based classification, template matching,
etc). Operations associated with (i) are often seen as a pre-
cursor to those for (ii). Video analytics also involves a user
identifying features/ events of interest to be considered in
the video sequence – such as detecting objects of interest,
size/ colour-based classification, potential area of interest
(spatially), and an estimated duration associated with such
events. Figure 1 presents the high level stream processing
workflow. Video sequences can be encoded using a variety of
different formats (Full HD, QCIF, CIF/4CIF/D1, H.264, etc).
Each encoding (generally at 25 frames/sec) leads to different
storage requirements and number of pixels per frame. The
level of automation involved in analysing the video stream

can also vary. From full automation, where a user defines an
“analysis request” and does not require further interaction
with the system, to an interactive request, where a user is
able to see partial results at each stage of analysis and able
to interact and modify analysis parameters. In sections 2.1
and 2.2 we describe how (partial) video analysis can be
carried out at the capture site and at in-transit nodes (located
between the capture source and a Cloud-based data centre).
The base line scenario (for comparison) is that all data is
migrated from capture source to the datacenter for analysis.
Figure 2 illustrates the baseline scenario.

Extract
Video
Frame

Store
Results

Stream
to

Chunks

Detect Objects
&

Classification

Decode Analysis

Fig. 1: High Level Stream Processing Workflow

Fig. 2: Video Analytics Scenario – adapted from [2]

2.1 Scenario 1: Processing at Capture Node (Edge)
In this scenario, all data captured at the source is pre-
processed at the source, prior to transmission across a net-
work. Co-located hardware enables the captured data to be
analysed before sending the processed results to the data
centre. Processing at capture site can include: (i) data com-
pression (at the camera) & buffering; (ii) data sampling – also
as a means to support data size reduction; (iii) tagging of
video frames prior to transmission. It may also be useful to
combine data feeds from multiple cameras, to support cor-
relation across multiple capture sites. Such aggregation and
analysis would be useful at the first hop network component
from the capture site.

2.2 Scenario 2: Processing at In-transit Nodes
In this scenario, data captured at the source is channeled
through a number of intermediate “network data centres”,
prior to arrival at a video processing data centre. Each in-
termediate network data centre processes the data enroute –
depending on the computational capability available. Subse-
quently, the data is archived and processed at the data centre,
expected to have a much greater computational capability.
The capability made available at the network data centre can
vary over time, influenced by the other data streams that are
being channeled through it at any time.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 3

To make more effective use of the entire computational
infrastructure, we propose that rather than sending all un-
processed data to a centralized location for processing, it is
more efficient to initiate data processing at the edge of the
infrastructure. Such an infrastructure includes data capture
and generation devices, and the network path to its desti-
nation – e.g. using IoT gateways or devices, SDN switches,
network data center, and clouds. In this way, we can incre-
mentally augment the relevant information contained in the
data, potentially reducing its size, while the data is being
moved from source to destination. Additionally, this approach
enables computational resource sharing, which not only im-
proves resource utilization and throughput, but also increases
the resilience to failures. Such an approach can also reduce
latency and processing times resulting from unpredictable
data (generation) sizes.

3 Resource Federation Model for Video Analytics
We extend our federation model [19] to expose in-transit
and edge capabilities to participant sites of the federation.
Figure 3 shows our architecture. We include a service, called
Controller, that is aware of the network topology, using SDN
technology, and it also has information about the available
computational capabilities of each network data center. Each
data center has an SDN router that is managed by the Con-
troller and a set of resources to process tasks. The Controller
can be consulted by the sites to optimize workload scheduling
using the strategies proposed in Section 5.

M

W

W

SE-Space R

M

W W

SE-Space R

M

W

CometCloud
Master

CometCloud
Worker SDN router

M

W W

SE-Space

R

Site 1

Site 2 Site 3

R

R
R

R

R

R

In-transit
resources

Controller

R

E

E
Edge
resources

R
CometCloud

Federation Space

M

E
M

Fig. 3: Federated architecture that exposes edge and in-transit
resources.

This federation model is built using the CometCloud
framework [5]. CometCloud is an autonomic framework for
enabling real-world applications on software-defined feder-
ated cyberinfrastructure, including hybrid infrastructures in-
tegrating public and private Clouds, data-centers and Grids.
The CometCloud federation is created dynamically and col-
laboratively, where resources/sites can join or leave at any
point, identify themselves (using security mechanisms such as
public/private keys), negotiate terms of federation, discover
available resources, and advertise their own resources and
capabilities [6].

Our federation model is coordinated using
CometSpaces [13] at two levels. CometSpaces provide a
tuple-space like abstraction for coordination and messaging
in the federation model – internally it implements a
publish/subscribe messaging layer and an information lookup
system built on a content-based distributed hash-table
(DHT) based on a structured peer-to-peer overlay. First, a
single management space (CometCloud Federation Space)

spans across all resource sites creating and orchestrating the
federation. This space is used to exchange any operational
messages for discovering resources, announcing changes at
a site, or routing users’ request to the appropriate site(s).
Second, multiple shared execution spaces (SE-Space) are
created on-demand during application workflow executions to
satisfy computational or data needs. Execution spaces can be
created within a single resource site, or can burst to others,
such as public clouds or external HPC systems.

Computational resources of our federation support at least
a CometCloud Master, which acts as an agent or broker
between local resources and the rest of the federation. It is also
responsible for accepting computational requests from users
and edge devices that want to access the federation. Comet-
Cloud Masters interact with the rest of the federation though
the federation management space in a publish/subscribe fash-
ion. Each CometCloud Master publishes information about
the status of its resources, the services they offer, or computa-
tional needs of its users. Additionally, a CometCloud Master
creates subscriptions to be notified when there is some event
of interest, such as a request for computation. A CometCloud
Master evaluates each request and decides if it can process it
within the given QoS requirements, in which case it temporar-
ily reserves the resources and answers the request with various
details defining the Service Level Agreement (SLA), such as
completion time and cost. If the client agrees to the SLA, then
the computation proceeds, otherwise resource reservation is
eliminated. In order to process a request, a CometCloud
Master might create a SE-Space where it inserts the tasks and
deploy CometCloudWorkers to actually compute the tasks. In
Edge and In-transit resources there are memory limitations,
hence the SE-Space is not deployed and tasks are consumed
as a stream by the CometCloud Workers.

As illustrated in figure 3, data captured at an edge resource
(labelled E) is either directly submitted to a first hop gate-
way/router R, or pre-processed prior to transmission. Each E
supports a CometCloud Master M. The first hop router can
also aggregate data streams from multiple edge resources.
This data is subsequently forwarded across a chain of in-
transit resources (labelled as R) to a data center (labelled
Site i). Each in-transit resource, similar to a data centre or
edge device, must support a CometCloud Master – but with
varying resource capability. At the data center, the Master
also communicates with a number of Workers W. In this way,
our resource federation can be logically seen as a collection of
CometCloud Master nodes, which interact with each other to
achieve the optimisation objectives outlined in section 4.

4 Problem Formulation
Let us consider a set of surveillance cameras C : {c1, ..., cn},
each of which generates a video stream that needs to be pro-
cessed in a timely manner. A video stream can be partitioned
into a sequence of m chunks, where each chunk contains a
number of image frames. Processing each of these chunks is
considered a computational job in our system – hence a given
camera cu is going to generate a set of jobs Ju : {Ju1, ..., Jum}.
These jobs are introduced in the system periodically, as a
sequence, i.e. if we consider 12 second chunks, then every
12 seconds a new job enters the system. Any given job Jux

is processed by a sequence of stages {s1, ..., sz}, forming a
workflow as described in Section 2, Figure 1. Each stage is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 4

composed of t tasks {j1, ..., jt}. The number of tasks depend
on the size of the video chunks (e.g. in the classification stage
we can have a task per frame and there are 25 frames in
a second of video). The location of a camera is defined as
source s. At the camera controller or aggregator, we need to
decide which part is computed locally, in-transit, and/ or at
the cloud. We consider that clouds are located at multiple
network hops from the data source, at the core of the infras-
tructure. We consider that the video chunk and/or processed
results need to be sent to a specific data center for storage
and potentially additional offline processing with older data.
This data center is defined as destination d in our system.
The service level agreement (SLA) of a job Jux includes: a
deadline (Deadline(Jux)) by which results have to be placed
at the destination – this is typically determined by the size
of the video chunk; and a budget (Budget(Jux)) that sets the
maximum amount available to the user to spend on computing
job Jux.

Central to our approach is the concept of value associated
with the processing of data – a subjective criterion identified
by a user. We define the value of data (i.e. a video chunk in
our example application) as the significance a user associates
with processing of particular data items within a deadline
(captured as a subjective probability), in preference to other
data items. For instance, in a surveillance scenario, the value
associated with processing a video sequence (to detect/clas-
sify objects) would be higher if there was a public event in
progress. Therefore, in our approach we pay attention to the
value parameter to prioritize the processing of video streams
by, for example, allocating high value workload closer to the
data source and allocating low value workload to cheaper
resources or rejecting low value workload when there are
insufficient resources available.

We define three types of computational resources forming
our federated infrastructure, namely edge devices (local to the
data capture site), network data centers (in-transit resources),
and computational data centers (cloud resource providers or
sites). Formally, we define these resources as a set R with
q resources {r1, ..., rq}. We assume that SDN components
are present in our infrastructure to ensure dynamic control
over the network and provide QoS guarantees. The following
symbols are used to characterise the problem:
• P (ri) is the average number of tasks that resource ri

completes per unit of time.
• E(Jux, ri) is the time job Jux spent computing at

resource ri.
• BaseCost(ri) is the cost per unit of time for using

resource ri for computation.
• T (ri, rk) is the time spent transferring data between

resources ri and rk.
• BaseCostNet(ri, rk) is the cost of reserving a network

channel per unit of time, between resources ri and rk.
• V alue(Jux) is the value obtained from processing any

given job Jux.
The overall time needed to process a job Jux is defined as:

CompTime(Jux) =
q∑
i

E(Jux, ri) + Transfer(Jux) (1)

where Transfer(Jux) is the sum of the time spent transferring
data between resources (ri ∈ R), where the first resource is

located at the source of the data s and the last one is the
destination d.

Transfer(Jux) =
q∑
i

q∑
k 6=i,k

T (ri, rk) (2)

The overall cost of computing job Jux, Cost(Jux), is
defined as:

Cost(Jux) = CostExec + CostNet (3)

where the computational cost (CostExec) is defined as:

CostExec =
q∑
i

[CE(ri) ∗ E(Jux, ri)] (4)

CE(ri) = BaseCost(ri) ∗ (1 + 1
Ratioi

) (5)

Ratioi = Capacityi∑q
j=1 Capacityj

(6)

The cost of a resource ri is defined by CE(ri) in Equa-
tion 5. This cost varies depending on the ratio between the
capacity of ri (Capacityi) and the total capacity of the set
R of resources (

∑q
i Capacityi). This ratio is represented by

Ratioi. The larger the capacity of a site, the lower the cost
and the other way around.

The cost of transferring data associated with a job
(CostNet) is defined as:

CostNet =
q∑
i

q∑
k 6=i,k

[T (ri, rk) ∗BaseCostNet(ri, rk)] (7)

subject to E(rk) 6= 0.
In this work, our objective, from the infrastructure’s per-

spective, is twofold. On the one hand, we want to maximize
the throughput of our infrastructure, defined as maximizing
the overall number of jobs processed by the system – as
described in Equation 8. On the other hand, we want to
maximize the overall value obtained from the processed data
– as described in Equation 9.

max
n∑
u

m∑
x

q∑
i

P (ri) ∗ E(Jux, ri) (8)

max
n∑
u

m∑
x

V alue(Jux) (9)

where the overall objective considers all cameras (n ∈ C) and
all jobs m ∈ Ju generated by each camera cu are inserted
into the system. These objectives are subject to ensuring the
QoS requirements of each processed job, which is detailed in
Section 5, Equations 13 and 14.

It is important to clarify that we do not associate partic-
ular operations (job executions) with particular resources in
our system, i.e. it is not necessary for all collected data to be
pre-processed at edge devices prior to their transmission to
network or the data center resources. Data pre-processing, for
instance, could be carried out on any resource depending on
their capability, capacity and cost. The proposed architecture
would be most effective if similar types of operations could
be executed across all the devices in the system (with varying
QoS profiles, depending on device type). In the limiting case,
it may become necessary to carry out all such analysis at
the data center, with edge and network devices primarily

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 5

enabling data capture and transmission. However, the aim of
the optimization process is to push some of these operations to
the edge of the network, whilst not violating some of the other
constraints associated with application execution deadline or
cost.

5 Scheduling Optimization Strategy
To achieve the previously described objectives, we add an
additional stage to the workflow described in Figure 1. This
stage is used to estimate the expected value of a video chunk,
which represents the likelihood of finding relevant information
within this chunk. This value is used to perform a systematic
sampling that reduces the size of data without affecting its
content. In practice, the expected value can be estimated
using historical information combined with the current status
of the recorded area.

Extract
Video
Frame

Store
Results

Stream
to

Chunks

Detect Objects
&

Classification
Sampling

Decode Analysis

Fig. 4: Customized High Level Stream Processing Workflow

The semantics of value can change for different uses of
video analysis. We consider two main aspects that influence
this parameter: (i) static: these include characteristics such as
the importance of a particular video source (e.g. position/geo-
location of a particular camera), the video sequence captured
during a particular event within a particular time window
(e.g. a football event), etc. These characteristics are there-
fore known apriori, i.e. before the analysis is carried out;
(ii) dynamic: these include characteristics that are derived
after a part of the video sequence has been analysed – e.g.
detection or classification associated with particular types of
objects, with such object(s) not being known before analy-
sis commences. Such dynamic aspects generally require an
interactive analysis of a video sequence. In this work, we
primarily focus on (i), although the workflow we propose could
also be extended to (ii), but would require human/operator
assessment during the workflow.

Figure 4 shows the workflow considered in this work, with
the extra stage to assess value. We define high value (HV) and
low value (LV) video chunks as follows:

V alue(Jux)

{
[0.5, 1]→ High Value (HV)
[0, 0.5)→ Low Value (LV)

(10)

The value of a video chunk, V alue(Jux), is used to decide
how much data of this chunk we keep. Specifically, we perform
a systematic sampling that reduces the size of the data. This
sampling interval k is calculated by N

y , where N is the total
number of frames and y is the sample size. The sample size y
is calculated as follows:

V alue(Jux)

{
[0.5, 1]→ y = bV alue(Jux) ∗Nc
[0, 0.5)→ y = b0.5 ∗Nc

(11)

Moreover, the value of a video chunk is also used to decide
how a job should be scheduled. Currently, we consider two
strategies: (i) minimizing the computational time required to

process a job; and (ii) minimizing the cost of computing the
job.

V alue(Jux)

{
[0.5, 1]→ (i) min (CompTime(Jux))
[0, 0.5)→ (ii) min (Cost(Jux))

(12)

both scheduling strategies are subject to performing computa-
tion within the given deadline (13), and keeping costs within
the given budget (14).

CompTime(Jux) ≤ Deadline(Jux) (13)
Cost(Jux) ≤ Budget(Jux) (14)

In fact, our admission control strategy enforces Equa-
tions 13 and 14 by only accepting those jobs that can be
completed while satisfying these constraints.

6 Configuration of Testbed
We configured a testbed using our previously proposed multi-
layer computational model. In this model, we have three
different kinds of computing resources: (i) Edge resources,
close to data source; (ii) In-transit resources, close to data
in movement; and (iii) Core data centers or sites, located
deep into the infrastructure and far from data sources. We
have used AWS EC2 cloud platform to emulate an actual
scenario where resources are virtual machines and the network
is controlled using Mininet [29] and Linux traffic control.
Specifically, we used a total of 11 VM instances that emu-
lated different geographically distributed sites, as described in
Figure 5. Two VMs represented camera aggregators, located
at the edge of the infrastructure, named Source1 and Source2.
Another VM represented the datacenter where results are ulti-
mately stored, named destination. The other eight VMs were
in-transit resources: Mid1 through Mid8 – located between
sources and destination, see Figure 5. Specifically, four in-
transit resources (Mid1, Mid2, Mid5 and Mid6) were located
along the path from Source1 to the Destination, and the other
four (Mid3, Mid4, Mid7 and Mid8) were located along the
path from Source2 to the Destination.

Fig. 5: Infrastructure. Solid lines indicate network links of
20MB of bandwidth.We assume each SDN router is co-located
with computational resources.

Our deployment emulated an actual geographically dis-
tributed infrastructure by configuring network bandwidths

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 6

connecting the sites and the performance of the computational
resources according to experimentally obtained information
(between Rutgers and AWS East region). Table 1 summarizes
the characteristics of the resources at each level of our in-
frastructure. We considered each worker had the performance
of an Amazon EC2 c4.xlarge instance, with a base price of
$0.21. The hardware characteristics of this instance match
the one used to characterize the workload [2]. The price
was calculated using the cost model defined in Equation 5.
Equation 5 assumes that computational resources are limited
and adjust the price based on the total capacity of each type of
resource, the fewer resources, the more expensive is to reserve
them and vice versa.

TABLE 1: Computational Resource Properties.

Resource # Workers per Site # Sites Price ($/Hour)

Edge 1 2 4.83
In-transit 2 8 2.52
Core site 4 1 1.365

All instances were deployed with Mininet [29] and the
network between them was configured to emulate a SDN
environment among these 11 mininet instances. Each VM
had one mininet host and one mininet switch. Switches were
connected to each other using Generic Routing Encapsulation
(GRE) tunneling[28]. Bandwidth allocation for data links
was implemented in the hosts using a token bucket filter.
Routing tables and connections were controlled by a POX
SDN controller (POX is a python based SDN controller). We
had an additional VM designated as the controller of the
network. The controller managed network connections using
two types of connections: (i) UDP was used for gathering
information; and (ii) TCP was used for regular communica-
tion and establishing data paths. TCP rules for each switch
were installed in a proactive manner. That is, every time a
switch connected to the controller (i.e. when switch starts),
the controller would install rules (as described below).

We implemented our in-transit optimization approach,
described in Section 5, as follows. We defined our protocol
for communication between the controller and hosts using
UDP packets. We established that switches would forward all
UDP packets to the controller unless a specific destination
was included in the packets. We used this rule to enable
communication between client and controller. Specifically,
when the source site (i.e. client) wanted to communicate with
the controller, it would send a UDP packet without destina-
tion field instantiated. This packet would be automatically
forwarded to the Controller. Upon receipt of this packet, the
controller would send UDP packets to all in-transit resources
(hosts) asking for their status and capabilities information.
Since those UDP packets would have a specific destination,
switches knew where to send them (i.e. in-transit resources).
Then, the controller would gather all replies, analyze their
information, and create a plan. This plan was returned to the
client and included a data transfer path as well as information
about the allocated in-transit computation.

For example, in the case of the video processing environ-
ment, each camera aggregator collects video from the cameras
and decides where the workload is computed according to
the established policies and resource availability. Using the

network configuration defined above (in this section), camera
aggregators can transparently contact SDN controllers (with-
out knowing their location or address) to obtain a view of the
infrastructure and take operational decisions. This is achieved
by simply sending a UDP message without destination. Using
this approach, the use of SDN does not involve complex
changes in the client and data producers.

7 Evaluation
In this work, we considered that each camera aggregator
(Source) had three cameras capturing and sending video to
them. Specifically, at each camera aggregator we had one
camera capturing video with QCIF quality, another with CIF
quality, and another one with 4CIF quality. We considered
that the video feeds were sent in chunks of 48 seconds, hence
each camera generated a new video processing job every 48
seconds. A second of video had 25 frames, where all of these
video frames were independent of each other, from an object
detection perspective. Table 2 summarizes the application
characteristics in terms of execution and data size for different
quality of video – the application was characterized by Anjum
et al. in [2]. We used the execution time and data size to
assign a deadline to each type of video to ensure timely
delivery of results. We performed two sets of experiments
using different deadlines to observe the behavior of the system
and to understand the capacity of the infrastructure when
processing our use case application. Additionally, we validated
our model against results obtained from experiments and
analytically studied the effect of changing various parameters
in the system. In order to evaluate the model analytically, we
implemented the mathematical model and the optimization
strategy proposed in Sections 4 and 5 into a custom made
Python simulation.

TABLE 2: Video Stream Analysis Time and Characteristics
obtained from [2]

Format Decode Analysis Size

QCIF 0.4 4 s 80 MB
CIF 2 s 12 s 320 MB
4CIF 4 s 40 s 1200 MB

Each experiment lasted around 30 minutes. During this
time, each camera sent a total of 39 video processing jobs.
As each camera was generating data with different encoding
formats, the computational jobs were also heterogeneous in
both computational and data transfer needs. Once a job
was generated, the camera aggregator had to decide where
to execute the job, if possible. The camera aggregator also
estimated the expected value of each job. This value can be
estimated using historical information or current status of
the recorded areas. In our experiments, we used a random
distribution to assign an expected value to each job. Figure 6
shows the value distribution for each type of job.

We evaluated three different scenarios:
Cloud (C): This scenario considered a traditional approach
where all data was transfered to a large central data center for
processing. Thus, every time a job was generated the camera
aggregator asked the data center whether it was possible to
complete the job to meet the pre-established SLA guarantees.
If the job was accepted, then its data was transferred to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 7

 0

 0.2

 0.4

 0.6

 0.8

 1

QCIF CIF 4CIF

V
al

ue

Fig. 6: Value Distribution for Each Job Type.

the data center for processing. The scheduling policy of this
scenario was to minimize cost while meeting the deadline.
In-Transit plus Cloud (I+C): In this scenario we added a
layer of computational resources to help the central data cen-
ter process the workload. In this case, the camera aggregator
asked the SDN controller to optimize the route from source
to destination and determine the most efficient job execution
(e.g., part of the job can be processed at one or more in-transit
sites and part at the destination data center). The scheduling
policy of this scenario was to minimize the cost of low value
jobs by sending them to the core cloud data center, and to
minimize the completion time of high value jobs by using
in-transit resource(s) whenever possible. As before, jobs that
could not be completed within the deadline were rejected.
Edge plus In-Transit plus Cloud (E+I+C): In this
scenario, we added one more layer of processing to enable
computation at the edge of the infrastructure (i.e. the camera
aggregators). Specifically, we implemented the optimization
strategy proposed in Section 5 to perform (some limited) com-
putation at the edge. This computation involved performing
a systematic sampling to reduce the size of the job (i.e. drop-
ping frames). Sampling is a popular approximate computing
technique for image processing, and it has shown to be very
effective in accelerating computation while keeping the error
of the solution within acceptable margins [15]. Next, jobs were
scheduled across in-transit and cloud resources minimizing the
cost for low value jobs and minimizing the completion time for
high value jobs.

Due to capacity constraints, we considered that edge de-
vices were not able to queue jobs and therefore had to push
jobs to the next hop resource (an in-transit resource). On the
other hand, we considered that cloud and in-transit resources
had more capacity and therefore were able to queue jobs for
processing.

The remaining subsections describe our experimental re-
sults for each of these scenarios.

7.1 Experiment 1 – Deadline based on completion time
In the first set of experiments we used a deadline for each type
of job that is 50% higher than its minimum completion time
(execution plus data transfer) in the cloud scenario. Thus, the
deadline for QCIF is 12 seconds, for CIF is 45 seconds, and
for 4CIF is 156 seconds. These experiments were executed in
a deployment of our CometCloud framework in Amazon EC2,
as described in Section 6. Figure 7 illustrates the results.

Figure 7a compares the job acceptance ratio, represented
as the percentage of jobs accepted for processing compared
to the total number of jobs submitted. We can observe that
the traditional approach of sending all data to a central data

center located at the core of the infrastructure (labeled as
C) was only able to process a small number of the required
jobs. However, by adding an additional layer of processing
to use resources located along the data path from source
to destination (in-transit resources), the infrastructure was
able to significantly increase the number of accepted jobs –
especially smaller jobs (results labeled as I+C). This was not
only due to the additional computational resources, but also
to the fact that data was being processed earlier and its size
was reduced. This contributes to reducing large waiting times,
which allowed the acceptance of small jobs (QCIF and CIF)
that in the first scenario had to be rejected due to potential
violation of their deadlines. The last experiment introduced
edge resources (E+I+C) and the possibility of doing some
computation in-situ (where data was being generated). In this
case, we observe that the infrastructure was able to further
increase the number of completed jobs – only rejecting around
20% of the QCIF jobs.

As part of our optimization strategy, we wanted to increase
the number of high value jobs processed by the infrastructure,
as they were expected to provide us with more relevant
information. Thus, Figure 7b compares results showing the
value associated with accepted and rejected jobs. We observe
that by simply using a different scheduling policy depending
on the value parameter, we were able to prioritize high value
jobs. In the I+C (In-transit plus Cloud), we accepted all
high value jobs and only rejected 30% of the low value jobs.
Additionally, in the E+I+C (Edge plus In-transit plus Cloud)
we were able to accept all high value jobs, rejecting less than
17% of the low value jobs. In general, we can conclude that
adding additional layers of computation closer to the data,
improves the performance of the infrastructure and minimizes
the network bottlenecks.

Figure 7c compares the completion time of all jobs in the
system, calculated as the time since a job was inserted until
it was processed. Figure 7c show how different scenarios influ-
ence the average completion time of jobs. It is worth noting the
impact of our scheduling approach, depending on the value of
the data, in I+C scenario. In this scenario we did not have
any filtering of the video frames. However, the value of a job
was used to decide the way such a job was scheduled, which
in practice prioritized high value jobs. As a consequence, the
average completion time of high value jobs was up to a 7%
lower than the average completion time of low value jobs.
Alternatively, in the E+I+C, we observe that the average
completion time of high value jobs was 60% higher than low
value jobs. The main reason was that during the sampling
phase, high value jobs had twice as much data as lower value
jobs and therefore the execution took longer. However, we
observe that the completion time was significantly reduced
when compared with the C and I+C scenarios (up to a 50%).
In general, we observe that by adding edge and in-transit
resources, we were able to reduce the completion time of all
jobs compared with the approach of using only cloud resources
(the C scenario) at the core of the infrastructure.

The completion time of a job was composed of three
components, namely waiting time, execution time, and data
transfer time. The waiting time or queue time, is defined as
the time that a job spends waiting to be executed. Since our
infrastructure is a multi-queue system, a single job may have
to wait in more than one queue. Thus, the waiting time of a job

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 8

 0

 20

 40

 60

 80

 100

C I+C E+I+C

A
cc

ep
ta

nc
e

R
at

io
 (%

)

Scenario

QCIF CIF 4CIF

(a) Job Acceptance Ratio

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

LV HV LV HV LV HV

N
um

be
r o

f J
ob

s
A

cc
ep

te
d

Scenario

Accepted
Rejected

E+I+CI+CC

(b) Value of Accepted Jobs

 0

 20

 40

 60

 80

 100

 120

 140

 160

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
om

pl
et

io
n

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(c) Job Completion Time

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
os

t (
$)

Scenario

LV
HV

E+I+CI+CC

(d) Cost per Job

 0

 10

 20

 30

 40

 50

 60

 70

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF 4CIF

E
xe

cu
tio

n
Ti

m
e

(s
)

Scenario

LV
HV

E+I+CI+CC

(e) Execution Time

 0

 10

 20

 30

 40

 50

 60

 70

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF 4CIF

W
ai

tin
g

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(f) Waiting Time

 0

 10

 20

 30

 40

 50

 60

 70

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF 4CIF

Tr
an

sf
er

 T
im

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(g) Data Transfer Time

Fig. 7: Summary of experimental results. Deadlines are: QCIF = 12s, CIF = 42s, 4CIF = 150s. HV and LV correspond to high
value and low value videos processing jobs, respectively – as defined in Equation 10.

was calculated as the sum of its waiting time in every queue
it was scheduled. Figure 7f collects the waiting time (queue
time) of the jobs. As we can observe, in the I+C and E+I+C
scenarios, the average waiting time of the high value jobs was
up to an 77% lower than the waiting time of low value ones.
In the C scenario (cloud), only the large jobs 4CIF, which had
a large enough deadline, were able to wait in the queue, while
small jobs (QCIF and CIF) were penalized and rejected due
to having a very short deadline in comparison with the large
jobs.

Next we analyzed the impact of the in-transit and edge
resources on the execution time of the video processing jobs.
Figure 7e demonstrates how our strategy of performing sam-
pling and preprocessing of jobs at the edge helped to reduce
the amount of execution needed for video processing jobs.
Similarly, we observe in Figure 7g that the average amount
of time spent transferring data between source and the place
of computation was, in average, between 18% and 64% lower
when using edge computation. As we can observe the network
had a strong influence on the completion time of jobs, being
at times larger than the execution time.

Finally, we also analyzed the impact of the scenarios on the
total cost of the jobs. Table 1 collects the price of each resource
per unit of time. In our model, the fewer resources a site have,
the higher its price. In this way, performing computation at
the edge is much more expensive that performing the same
computation in a core cloud data center (composed by a
large number of resources). Figure 7d collects the results. We
observe that, in the I+C and E+I+C scenarios, low value jobs
(scheduled aiming at minimizing cost) were typically com-
puted at the destination (core cloud data center). However,
high value jobs (scheduled aiming at minimizing completion
time) chose to compute using edge and in-transit resources
when they were available, which increased the price of com-
putation. We also observed that in the E+I+C scenario, the

average cost of the jobs was lower than in the I+C scenario.
These savings were caused by the use of a sampling technique
at the edge, which reduced the amount of data to be processed.

7.2 Experiment 2 – Deadline based on video size
In this experiment, we increased the deadline of the jobs of
type QCIF and CIF to 48 seconds, which matches the size
of the video to be processed, and in practice means near-
real time processing of video feeds. Whereas in Experiment
1, we mapped deadline to minimum completion time, in this
experiment we relate deadline to the size of the video to be
processed. At the same time, we set the deadline of 4CIF job
type to 120 seconds to reduce the significant waiting time
observed earlier. Large waiting times for this type of jobs
prevented us from accepting more small jobs (QCIF and CIF)
as their deadline could not afford the wait. This experiment
was executed in a deployment of our CometCloud framework
in Amazon EC2, as described in Section 6 Figure 8 compares
the results.

Figures 8a and 8b compares the results of admission
control mechanism used in the infrastructure. We observe that
by increasing the deadline of the smaller jobs, and specially
reducing the deadline of the large jobs (4CIF), the Cloud
scenario (labeled C) was able to increase the number of
accepted jobs, resulting in a 45% acceptance ratio. On the
other hand, the I+C scenario (In-transit plus Cloud) rejected
27% of low value jobs, while E+I+C scenario (Edge plus In-
transit plus Cloud) only rejected 1.5% of the low value jobs.
In both cases, all high value jobs were accepted.

Figure 8c compares the completion time for this experi-
ment. We can observe that, despite increasing the deadline
to the QCIF and CIF job types, their average completion
time was similar to the one observed in Figure 7c. In fact, we
observe in Figure 8f that the extra deadline was mainly used
by the system to accommodate more jobs by increase waiting

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 9

 0

 20

 40

 60

 80

 100

C I+C E+I+C

A
cc

ep
ta

nc
e

R
at

io
 (%

)

Scenario

QCIF CIF 4CIF

(a) Job Acceptance Ratio

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

LV HV LV HV LV HV

N
um

be
r o

f J
ob

s
A

cc
ep

te
d

Scenario

Accepted
Rejected

E+I+CI+CC

(b) Value of Accepted Jobs

 0

 20

 40

 60

 80

 100

 120

 140

 160

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
om

pl
et

io
n

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(c) Job Completion Time

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
os

t (
$)

Scenario

LV
HV

E+I+CI+CC

(d) Cost per Job

 0

 10

 20

 30

 40

 50

 60

 70

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF 4CIF

E
xe

cu
tio

n
Ti

m
e

(s
)

Scenario

LV
HV

E+I+CI+CC

(e) Execution Time

 0

 10

 20

 30

 40

 50

 60

 70

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF 4CIF

W
ai

tin
g

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(f) Waiting Time

 0

 10

 20

 30

 40

 50

 60

 70

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF 4CIF

Tr
an

sf
er

 T
im

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(g) Data Transfer Time

Fig. 8: Summary of experimental results. Deadlines are: QCIF = 48s, CIF = 48s, 4CIF = 120s. HV and LV correspond to high
value and low value videos processing jobs, respectively – as defined in Equation 10.

times. Moreover, we observe that the waiting time of the 4CIF
jobs was reduced to enforce the new deadline. Therefore, we
can conclude that the system is able to adaptively change job
allocation to not only enforce the required QoS, but also to
maximize the amount of jobs processed in the system.

Since the execution time and data transfer times were
similar to those in the previous experiment, we observe in
Figure 8d that the total cost for processing each type of job
was also similar.

7.3 Experiment 3. Validation of the Model
In this Section, we validate our mathematical model by com-
paring the experimentally obtained results in Sections 7.1
and 7.2 against those obtained analytically using the model
proposed in Section 4 and 5. This model has been imple-
mented using a custom made Python simulator. Figure 9
collects the results of each experiment organized by columns.

Columns (a) and (b) of Figure 9 compare the results of the
real experiment and the model for the experiment described
in Section 7.1, respectively. Top and middle rows show the
acceptance ratio per type of job and per value. We observe
that there was no difference regarding to the number and type
of jobs accepted. The bottom row shows the completion time
of the jobs. In this case, we observe small differences between
the model and the real experiment. The biggest differences
were found in the smallest type of jobs (QCIF), where we
had up to a 46% difference in the average completion time in
the scenario including edge computing (E+I+C) – from 7.8
seconds in the real experiment to 4.2 seconds in the model.
However, the other type of jobs showed less than 10% of
difference. These differences, more noticeable in small jobs,
were due to unaccounted overheads of the real infrastructure.
The real experiment was executed in Amazon EC2, where
the network performance was not guaranteed. Moreover, the
orchestration and decision making operations could have also
affected the completion times – e.g., interacting with the

controller, deciding how to schedule the workload. These
decision making overheads were hard to estimate to include
in the model.

Columns (c) and (d) of Figure 9 compare the results
of the real experiment and the model for the experiment
described in Section 7.2, respectively. In this case, we observe
in Figure 9c and 9d middle row a small difference in the
number of accepted jobs. In particular in the real experiment
two low value jobs were rejected in the E+I+C scenario,
while the model considered that those jobs should have been
accepted. Regarding the completion time, we observe also
some differences in the type QCIF and scenarios named I+C
and E+I+C. In this case the difference is up to a 33% for the
QCIF jobs, and less than 10% difference for the rest of the
cases.

We observed that the results obtained with the model
were within a small error margin of the experimental results.
Therefore, we consider to be proven that the model can
reliably represent our experimental environment. Next, we
continue the evaluation of our approach using our model,
which allows us to easily introduce variations to the execution
environment (i.e. infrastructure).

7.4 Experiment 4. Analytical Evaluation
In this Section, we performed an analytical evaluation of our
use case using our model. We changed different parameters of
the infrastructure to observe their effect in the workload. We
used the deadlines set in our first experiment (Section 7.1),
as they had more room for improvement. The deadlines were
QCIF = 12s, CIF = 42s, 4CIF = 150s. These experiments
were analytically simulated using our mathematical model
described in Section 4 and 5, and validated in Section 7.3.

Previously, we observed that the network had a strong
influence on the completion time of our jobs. Hence, we
first analyzed how the number of accepted jobs and their
completion times were affected by changes in the network

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 10

 0

 20

 40

 60

 80

 100

C I+C E+I+C

A
cc

ep
ta

nc
e

R
at

io
 (%

)

Scenario

QCIF CIF 4CIF

 0

 20

 40

 60

 80

 100

C I+C E+I+C

A
cc

ep
ta

nc
e

R
at

io
 (%

)

Scenario

QCIF CIF 4CIF

 0

 20

 40

 60

 80

 100

C I+C E+I+C

A
cc

ep
ta

nc
e

R
at

io
 (%

)

Scenario

QCIF CIF 4CIF

 0

 20

 40

 60

 80

 100

C I+C E+I+C

A
cc

ep
ta

nc
e

R
at

io
 (%

)

Scenario

QCIF CIF 4CIF

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

LV HV LV HV LV HV

N
um

be
r o

f J
ob

s
A

cc
ep

te
d

Scenario

Accepted
Rejected

E+I+CI+CC

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

LV HV LV HV LV HV

N
um

be
r o

f J
ob

s
A

cc
ep

te
d

Scenario

Accepted
Rejected

E+I+CI+CC

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

LV HV LV HV LV HV

N
um

be
r o

f J
ob

s
A

cc
ep

te
d

Scenario

Accepted
Rejected

E+I+CI+CC

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

LV HV LV HV LV HV

N
um

be
r o

f J
ob

s
A

cc
ep

te
d

Scenario

Accepted
Rejected

E+I+CI+CC

 0

 20

 40

 60

 80

 100

 120

 140

 160

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
om

pl
et

io
n

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(a) 12-42-150. Real

 0

 20

 40

 60

 80

 100

 120

 140

 160

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
om

pl
et

io
n

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(b) 12-42-150. Model

 0

 20

 40

 60

 80

 100

 120

 140

 160

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
om

pl
et

io
n

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(c) 48-48-120. Real

 0

 20

 40

 60

 80

 100

 120

 140

 160

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
om

pl
et

io
n

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(d) 48-48-120. Model

Fig. 9: Summary of model validation results. HV and LV correspond to high value and low value videos processing jobs,
respectively – as defined in Equation 10. Each column represents a set of experiments, where Real means experimentally
obtained and Model means analytically obtained.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

LV HV LV HV LV HV

N
um

be
r o

f J
ob

s
A

cc
ep

te
d

Scenario

Accepted
Rejected

E+I+CI+CC

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

LV HV LV HV LV HV

N
um

be
r o

f J
ob

s
A

cc
ep

te
d

Scenario

Accepted
Rejected

E+I+CI+CC

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

LV HV LV HV LV HV

N
um

be
r o

f J
ob

s
A

cc
ep

te
d

Scenario

Accepted
Rejected

E+I+CI+CC

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

LV HV LV HV LV HV

N
um

be
r o

f J
ob

s
A

cc
ep

te
d

Scenario

Accepted
Rejected

E+I+CI+CC

 0

 20

 40

 60

 80

 100

 120

 140

 160

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
om

pl
et

io
n

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(a) Baseline – Bandwidth 20MB

 0

 20

 40

 60

 80

 100

 120

 140

 160

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
om

pl
et

io
n

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(b) Bandwidth 30MB

 0

 20

 40

 60

 80

 100

 120

 140

 160

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
om

pl
et

io
n

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(c) Bandwidth 40MB

 0

 20

 40

 60

 80

 100

 120

 140

 160

QCIF
CIF4CIF

QCIF
CIF4CIF

QCIF
CIF4CIF

C
om

pl
et

io
n

Ti
m

e
(s

)

Scenario

LV
HV

E+I+CI+CC

(d) Bandwidth 60MB

Fig. 10: Summary of experimental results – Modifying Bandwidth. Deadlines are: QCIF = 12s, CIF = 42s, 4CIF = 150s. HV
and LV correspond to high value and low value videos processing jobs, respectively – as defined in Equation 10.

bandwidth. Figure 10 collects the results – each column
represents a different experiment. Column (a) of Figure 10 was
our baseline scenario with a bandwidth of 20MB, which shows
the results of the real experiments performed in Section 7.1.
Columns (b), (c), and (d) of Figure 10 show results for an
increasing bandwidth of network links, that is, 30MB, 40MB,

and 60MB, respectively.

We can clearly observe how the bandwidth positively
affected the acceptance rate and the completion time. We can
observe in the bottom row of Figure 10, that in all cases the
completion time of jobs was significantly reduced, between
20% to 50%, when increasing the network bandwidth. This

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 11

was the expected behaviour as our use case was highly data-
intensive. We can also observe in the top row of Figure 10
that by reducing the completion time, the acceptance ratio
increased. The scenario that most benefited from this increase
was the Cloud deployment (labeled as C), as it is the one that
required a larger amount of data to be transferred from source
to the core of the infrastructure. Although we observed that
from 20MB to 30MB we had a strong increase in the number
of accepted jobs, between a 40% and 64%, this tendency
slowed down in subsequent increases in bandwidth. It required
increasing the network bandwidth by 200% to achieve 100%
of job acceptance in the Cloud scenario. On the contrary, the
other approaches also benefited from bandwidth increases and
quickly reached 100% completion ratio for high value jobs. In
the edge computing scenario (labeled as E+I+C), the system
was able to accept all jobs, including low value ones, starting
with 30MB network links. We can conclude that the proposed
approach showed a lower dependency on the performance of
the network (although the network capacity will influence
the number of jobs submitted to the in-transit and cloud
resources), primarily due to better use of the resources closer
to the edge of the infrastructure, which allowed a lower use of
the network links close to the core.

7.4.1 Number of Workers
In this Section we evaluated the effect that increasing the
number of workers at different layers of the infrastructure
has on the acceptance ratio of jobs. We also used differ-
ent bandwidths to understand the relationship between the
bandwidth and the number of workers. Table 3 collects the
number of accepted jobs for each experiment. We use the first
column named BW (bandwidth) to group experiments based
on the network bandwidth used (i.e. 20, 30, and 40 MB).
Within each network bandwidth group, we have experiments
for the different scenarios considered in this paper, namely
cloud (C), in-transit plus cloud (I+C), edge plus in-transit
plus cloud (E+I+C). The four most right columns identify
the number of workers used by each experiment. We have the
Baseline column, which used the number of workers described
in Table 1. Next we have the 2x C column, which doubled the
number of workers in the cloud site; the 2x I column, which
doubled the number of workers at each In-transit site; and the
2x C&I column, which doubled the number of workers in both,
the cloud and the in-transit sites.

Looking at the Table 3 from left to right, we can observe
that changing the number of workers did not affect the accep-
tance ratio for any of the performed experiments. The main
reason is that there was a small number of jobs waiting idle to
be computed, as described in Figure 7f. Thus, the only changes
observed in Table 3 were due to changes in the network link
bandwidth – the effect of the bandwidth in the acceptance of
jobs was studied in the previous section. Therefore, we can
conclude that for data intensive applications, increasing the
number of workers may not affect the number of accepted
jobs.

7.4.2 Performance
Lastly, we studied the effect that the performance of the
workers has on the acceptance ratio. We also used different
bandwidths to make sure that the bandwidth did not impact
the results. Table 4 collects the number of accepted jobs

TABLE 3: Number of accepted jobs – Modifying Number of
Workers. 2x C means we doubled the number of workers in
the cloud site; 2x I means we doubled the number of workers
in the in-transit sites; and 2x C&I means we doubled the
number of workers in both, the cloud and the in-transit sites.
Deadlines are: QCIF = 12s, CIF = 42s, 4CIF = 150s. HV and
LV correspond to high value and low value videos processing
jobs, respectively – as defined in Equation 10.

Modifying Number of Workers
BW Scenario Value Baseline 2x C 2x I 2x C&I

20 MB

C LV 26 26 26 26
HV 42 42 42 42

I+C LV 82 82 82 82
HV 116 116 116 116

E+I+C LV 102 102 102 102
HV 116 116 116 116

30 MB

C LV 75 75 75 75
HV 65 65 65 65

I+C LV 102 102 102 102
HV 116 116 116 116

E+I+C LV 118 118 118 118
HV 116 116 116 116

40 MB

C LV 83 83 83 83
HV 75 75 75 75

I+C LV 102 102 102 102
HV 116 116 116 116

E+I+C LV 118 118 118 118
HV 116 116 116 116

for each experiment. We use the first column named BW
(bandwidth) to group experiments based on the network
bandwidth used (i.e. 20, 30, and 40 MB). Within each network
bandwidth group, we have experiments for the different sce-
narios considered in this paper, namely cloud (C), in-transit
plus cloud (I+C), edge plus in-transit plus cloud (E+I+C).
The four most right columns identify the number of workers
used by each experiment. We have the Baseline column, where
the performance of workers was as described in Table 1; in
the 2x C column, we doubled the performance of the workers
located at the cloud site; in the 2x I column, we doubled the
performance of the workers located at each In-transit site;
and in the 2x C&I column, we doubled the performance of the
workers located at both Cloud site and In-transit sites.

Looking at the Table 4 from left to right, we observe
limited changes when modifying the performance of the work-
ers, we marked those cases where the number of accepted
jobs was different from the baseline. Table 4 shows that the
performance of the workers had a limited effect in the number
of accepted jobs for the Cloud scenario (labeled as C). For this
scenario we observed that when the bandwidth was 20MB, the
system was able to accept one additional low value (LV) job,
although it rejected a high value (HV) job – in this scenario
the scheduler did not differentiate between LV and HV jobs;
for a bandwidth of 30MB, we observed an improvement of
8% for the HV jobs when increasing the performance; and
for a bandwidth of 40MB, we observed no improvement at
all. On the other hand, for the I+C (In-transit plus Cloud)
and E+I+C (Edge plus In-transit plus Cloud), we observed
no improvement in any of the cases. On the contrary, we

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 12

TABLE 4: Number of accepted jobs – Modifying Performance
of Workers. 2x C means we doubled the performance of
workers in the cloud site; 2x I means we doubled the per-
formance of workers in the in-transit sites; and 2x C&I means
we doubled the performance of workers in both, the cloud
and the in-transit sites. Deadlines are: QCIF = 12s, CIF =
42s, 4CIF = 150s. HV and LV correspond to high value and
low value videos processing jobs, respectively – as defined in
Equation 10.

Modifying Performance of Workers
BW Scenario Value Baseline 2x C 2x I 2x C&I

20 MB

C LV 26 27 26 27
HV 42 41 42 41

I+C LV 82 49 82 82
HV 116 116 116 116

E+I+C LV 102 91 102 102
HV 116 116 116 116

30 MB

C LV 75 71 75 71
HV 65 71 65 71

I+C LV 102 82 102 102
HV 116 116 116 116

E+I+C LV 118 106 118 118
HV 116 116 116 116

40 MB

C LV 83 83 83 83
HV 75 75 75 75

I+C LV 102 83 102 102
HV 116 116 116 116

E+I+C LV 118 103 118 118
HV 116 116 116 116

observed that when increasing the performance of the Cloud
workers, columns 2x C and 2x C&I, the number of accepted
low value (LV) jobs decreased. The reason for this was that
the scheduler, that used to prioritize allocating high value
jobs among In-Transit resources to minimize completion time,
decided to move some of the high value workload towards the
Cloud due to its increased performance. This decision affected
low value jobs as our scheduling policy tried to minimize the
cost of low value jobs by allocating them in the Cloud. In
general, we can conclude that, when the bandwidth limits the
workload we can accept, increasing the performance of the
resources in the federation have a limited effect in the ability
of the system for increasing the number of accepted jobs.

8 Related Works
Our model proposes to have an infrastructure that com-
bines edge computing and SDN/NFV architectures. On the
one hand, edge computing is focused on migrating data
processing from the core of the infrastructure towards the
logical extremes of the network – which enables analytics
and knowledge generation to occur close to the source of
the data. For example, a practical architecture has been
proposed by the European Telecommunications Standards
Institute (ETSI) [7]. On the other hand, SDN/NFV archi-
tectures enable unprecedented control over the network, and
for general purpose computation to be supported on network
components. A practical architecture that combines SDN and
NFV can be found in the SELFNET European project [16].
Using this type of architecture, we are able to leverage the

SDN and NFV technologies to incorporate general purpose
computation within the network data centers. Hence, we
propose to extend the network controller capabilities to incor-
porate knowledge about the type of computation each network
data center can perform.

IoT infrastructures identify the following components
[4], [25]: (a) sensors, actuators and embedded communication
hardware (b) on demand storage and computing tools for
data analytics and (c) visualization and interpretation tools
which can be widely accessed on different platforms and
which can be designed for different applications. Based on
these components a number of IoT applications such as smart
grid and smart metering [27], video analytics are developed
to efficiently optimize workflows and increased performances.
For example, efficient energy consumption can be achieved by
continuously monitoring sensors located within a house and
using this information to impose how electricity is consumed.
This information at the city scale is used for maintaining the
load balance within the grid ensuring high quality of service.

On the other hand, video based IoT [1] combines image
processing with computer vision and networking frameworks
to enable surveillance, the most widely used camera net-
work applications, track targets, identify suspicious activities,
detect left luggage and monitor unauthorized access. The
challenge is to impose automatic behavior analysis and event
detection (as part of sophisticated video analytics) and on the
other hand reduce costs and improve time-of-response.

In the area of video analytics in the cloud, systems usually
identify hundreds or even thousands number of cameras cov-
ering over wide areas. The video streams derived are captured
and processed at the local processing server and are later
transferred to a cloud based storage infrastructure for a wide
scale analysis. Such application identifies a complex workflow
where an increasing amount of computation is required to
process and analyze the video streams, an application where
high performance and scalable computational is necessary for
obtaining high throughputs. Video stream processing in the
clouds represents an application case that can evolve into a
area of research where high speed computation at scale, preci-
sion and efficiency become mandatory. Related video content
retrieval have been proposed over time using Hadoop [23],
encoding/decoding [26], distribution of video streams and on
load balancing of computing resources for on-demand video
streaming systems using cloud computing platforms [27].

The DISCOVERY project [10], [11] aims to design, imple-
ment, demonstrate and promote a unified system in charge
of turning a complex, extremely large-scale and widely dis-
tributed infrastructure into a collection of abstracted com-
puting resources which is efficient, reliable, secure and friendly
to operate and use. The project looks at revising the Open-
Stack solution leveraging P2P mechanisms to address the
architecture complexity of such systems and the velocity of
open-source initiatives. In the same field of study, there are
many related studies that have implemented SDN oriented
solutions in order to ease the communication between differ-
ent networking domains or to optimize various performance
parameters within a complex system. Nunes et al. [17] have
described the concept of SDN and the various layers involved
in such system. Others have described security challenges
faced by SDN [21, 22]. The most recognized protocol to
enable a server (SDN controller) to control the switches is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 13

OpenFlow [14]. In relation to SDNs, the SWITCH project[30]
addresses a number of existing industrial requirements for
developing and executing time critical applications in Clouds.
SWITCH provides an interactive environment for developing
applications and controlling their execution, a real-time in-
frastructure planner for deploying applications in Clouds, and
an autonomous system adaptation platform for monitoring
and adapting system behavior.

In the field of active networking, communication patterns
are used for addressing specific user requirements [24]. An
active network refers to a specific capability to execute tasks
within the network over active elements such as switches that
have processing capability. Lefevre et al. [12] developed an
active network architecture (A-Grid) to support QoS-related
metrics for Grid data transport services in addition to other
data transport services such as reliable multicast and dynamic
service deployment. The architecture employs QoS manage-
ment at intermediate active routers, and in principal, it is
similar to the in-transit processing employed in our approach.

Another emerging research topic is the availability of
network resource reservation systems such as ESNET’s OS-
CARS [8] and UltraScience Net [20]. These types of systems
can provide on-demand dedicated bandwidth channels to user
applications. The main idea in resource reservation systems
is that a virtual single-switch abstraction is added on top
of networks facilitating both a bandwidth reservation system
and SDN processing.

This paper primarily focuses on edge and in-transit video
processing and shares commonalities with [3] where tasks
are distributed across multiple data centers (with varying
types of capability), which are hierarchically organized, has
implications on how users’ data and processing are managed
to improve service quality as well as reduce costs. In our
research, we look at combining edge processing (at data
capture site) with analysis carried out while data is enroute
from the capture site to a data center and different processing
models, and unlike mentioned papers our target is not only
considering networking resource but also dealing with other
computational and storage resources through the use of an
SDN controller.

9 Discussion
The results presented in this paper show the limitations that
traditional approaches, consisting on transferring all data
from its source (data capture site) to the core of the infrastruc-
ture, face when applied to data-intensive applications with
time constraints (such as video surveillance, smart Grid, and
other IoT scenarios). In our experiments, we show how the
network links can quickly become a bottleneck that slow down
workload processing. This can lead to a number of jobs being
rejected, as processing times will not be able to meet required
QoS constraints (e.g., deadline).

We observed how our approach was able to overcome the
limitations of a traditional approach by leveraging compu-
tational resources at the edge of the infrastructure (camera
aggregators) and within the network data centers, through
the use of SDN technology. The results show that by using our
in-network computational model and the proposed scheduling
strategy, the system was able to accept up to a 70% more
workload. In our approach we used edge computing to perform

a systematic sampling of the data, which in practice reduced
computational requirements without affecting the key infor-
mation derived from its content. Other applications could use
edge computing to filter out invalid or out-of-range param-
eters, or perform similar operations that can help in using
limited resources more effectively and increase the obtained
value of the data. Nevertheless, the results show that even
in cases where edge computing was not possible, leveraging
SDN and NFV technologies to perform in-transit computation
within the network data centers had a significant impact on
the size of workload processed. In particular, we observed up
to a 60% improvement in the job acceptance ratio.

We also discuss additional scenarios using our mathemati-
cal model to modify different parameters of the infrastructure
that could affect the size of workload that the system was able
to process. These experiments confirmed that the network was
the single main factor limiting the amount of workload that
the system was able to compute given certain deadline con-
straints. We observed that increasing the number of workers
had no effect on the number of jobs accepted and increasing
the performance of the workers had a very limited effect,
less than 10%. Horizontal and vertical scaling of machines
within a data center is certainly significant for data intensive
applications, however, distributed data-intensive applications
can benefit significantly from geographically distributed in-
transit (computational) resources, as proposed in this paper.

10 Conclusions
In this paper we proposed a new in-network computational
model that leverages resources distributed across the net-
work, including edge devices and network data centers. We
described how integrating SDN capability into our federated
infrastructure can enable the use of resources located at the
network data centers to perform in-transit computation of
data that is being transferred. Moreover, we also proposed a
strategy that leverages edge devices to prioritize the workload
processing depending on the estimated value of the data. In
this way, we could increase the amount of data processed to
increase the overall value of the obtained results. We used a
video surveillance application as use case, and tested several
scenarios to show the feasibility and benefits of our proposed
computational model by making use of edge and in-transit
data analysis.

Currently, we are working to extend our model to incorpo-
rate dynamic bandwidth allocation that can help us further
improve the use of the infrastructure while obtaining the max-
imum value out of the data. Moreover, we are exploring how to
define multiple types of operations that can be performed at
different levels of the infrastructure, and create a portfolio of
operations that allows the infrastructure to dynamically take
just-in-time decisions to meet a user’s QoS requirements.

Acknowledgements: This work is supported in part by NSF
via grants numbers ACI 1339036, ACI 1441376. The research
at Rutgers was conducted as part of the Rutgers Discovery
Informatics Institute (RDI2).

References
[1] I. F. Akyildiz, T.Melodia, andK. R. Chowdhury. A survey on wireless

multimedia sensor networks. Comput. Netw., 51(4):921–960, Mar.
2007.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2653116, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, APRIL 2016 14

[2] A. Anjum, T. Abdullah, M. F. Tariq, Y. Baltaci, and N. Antonopou-
los. Video stream analysis in clouds: An object detection and clas-
sification framework for high performance video analytics. IEEE
Transactions on Cloud Computing, 1(1):1–14, 2016.

[3] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana. Towards
virtual machine migration in fog computing. In 10th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing,
to appear, Krakov, Poland, June 2016.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging {IT} platforms: Vision, hype, and reality for
delivering computing as the 5th utility. FutureGeneration Computer
Systems, 25(6):599 – 616, 2009.

[5] J. Diaz-Montes, M. AbdelBaky, M. Zou, and M. Parashar. Comet-
cloud: Enabling software-defined federations for end-to-end applica-
tion workflows. IEEE Internet Computing, 19(1):69–73, 2015.

[6] J. Diaz-Montes, Y. Xie, I. Rodero, et al. Federated computing for
the masses - aggregating resources to tackle large-scale engineering
problems. CiSE Magazine, 16(4):62–72, 2014.

[7] ETSI. Mobile-edge computing - introductory technical white paper.
Technical report, ETSI, 2014.

[8] C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney, and
W. Johnston. Intra and interdomain circuit provisioning using the
oscars reservation system. In Intl. Conf. on Broadband Communica-
tions, Networks and Systems, Oct 2006.

[9] S. Jain, A. Kumar, S. Mandal, et al. B4: Experience with a globally-
deployed software defined wan. In ACM SIGCOMM 2013, SIG-
COMM ’13, pages 3–14, 2013.

[10] A. Lebre, J. Pastor, and T. D. consortium. In inria research report.
In The DISCOVERY Initiative - Overcoming Major Limitations
of Traditional Server-Centric Clouds by Operating Massively Dis-
tributed IaaS Facilitiese, France, Sept 2015.

[11] A. Lebre, A. Simonet, and A.-C. Orgerie. Ieee intl. workshop on cloud
computing interclouds, multiclouds, federations, and interoperabil-
ity. In Deploying Distributed Cloud Infrastructures: Who and at
What Cost?, Berlin, Germany, June 2016.

[12] L. Lefevre, C.-d. Pham, P. Primet, B. Tourancheau, B. Gaidioz, J.-P.
Gelas, and M. Maimour1. Active networking support for the grid. In
I. Marshall, S. Nettles, and N. Wakamiya, editors, Active Networks,
pages 16–33. 2001.

[13] Z. Li and M. Parashar. Comet: A scalable coordination space for
decentralized distributed environments. In Intl. Workshop on Hot
Topics in Peer-to-Peer Systems, 2005.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM Computer Com-
munication Review, 38(2):69–74, 2008.

[15] S. Mittal. A survey of techniques for approximate computing. ACM
Comput. Surv., 48(4):62:1–62:33, Mar. 2016.

[16] P. Neves, R. Calé, M. R. Costa, et al. The selfnet approach for
autonomic management in an nfv/sdn networking paradigm. Inter-
national Journal of Distributed Sensor Networks, pages 1–17, 2016.

[17] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti.
A survey of software-defined networking: Past, present, and future of
programmable networks. 2014.

[18] OpenCloud. Nfaas - network function as a service, 2014.
[19] I. Petri, M. Zou, A. Zamani, J. Diaz-Montes, O. F. Rana, and

M. Parashar. Integrating software defined networks within a cloud
federation. In CCGrid 2015, 2015.

[20] N. Rao, W. Wing, S. Carter, and Q. Wu. Ultrascience net: network
testbed for large-scale science applications. Communications Maga-
zine, IEEE, 43(11):S12–S17, Nov 2005.

[21] S. Scott-Hayward, G. O’Callaghan, and S. Sezer. Sdn security: A
survey. In IEEE SDN for Future Networks and Services, 2013.

[22] S. Shin and G. Gu. Attacking software-defined networks: A first
feasibility study. In ACM SIGCOMM workshop on Hot topics in
software defined networking, pages 165–166, 2013.

[23] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST),
MSST ’10, pages 1–10, Washington, DC, USA, 2010.

[24] D. L. Tennenhouse and D. J. Wetherall. Towards an active network
architecture. SIGCOMM Comput. Commun. Rev., 37(5):81–94,
Oct. 2007.

[25] M. Tory and T. Moller. Rethinking visualization: A high-level taxon-
omy. In IEEE Symposium on Information Visualization, INFOVIS
’04, pages 151–158, Washington, DC, USA, 2004. IEEE Computer
Society.

[26] Y. Wu, C. Wu, B. Li, X. Qiu, and F. C. M. Lau. Cloudmedia: When
cloud on demand meets video on demand. In Distributed Computing
Systems (ICDCS), 2011 31st International Conference on, pages
268–277, June 2011.

[27] M. Yun and B. Yuxin. Research on the architecture and key technol-
ogy of internet of things (iot) applied on smart grid. In Intl. Conf.
Advances in Energy Engineering, pages 69–72, June 2010.

[28] GRE Tunneling. http://lartc.org/howto/lartc.tunnel.gre.html, Last
accessed on Nov. 2016.

[29] Mininet project. http://mininet.org, Last accessed on Nov. 2016.

[30] SWITCH project. http://www.switchproject.eu, Last accessed on
Nov. 2016.

Ali Reza Zamani is currently a PhD student in Com-
puter Science department at Rutgers University. Also he
is a member of the Rutgers Discovery Informatics Insti-
tute (RDI2). He received his M.Sc. degree in Computer
Science from Rutgers University. He received his B.Sc.
from Sharif University of Technology, Iran. His research
interests are in the areas of Software Defined Network-
ing(SDN), Network Functions Virtualization(NFV) and
apply them in order to improve the performance of cloud
federation systems.

Mengsong Zou is currently a PhD student in Com-
puter Science at Rutgers University, and a member of
the Rutgers Discovery Informatics Institute (RDI2). He
received both of his Bachelor and Master degrees in
Computer Science from Huazhong University of Science
and Technology, China. His current research interest lies
in parallel and distributed computing, cloud computing
and scientific workflow management.

Javier Diaz-Montes is Assistant Research Professor at
Rutgers University and a member of the Rutgers Discov-
ery Informatics Institute (RDI2). He received his PhD
degree in Computer Science from the Universidad de
Castilla-La Mancha, Spain (“Doctor Europeus”, 2010).
Before joining Rutgers, he was Postdoctoral Fellow at
Indiana University. His research interests are in the
area of parallel and distributed computing and include
autonomic computing, cloud computing, virtualization,
and scheduling.

Ioan Petri is a Research Associate in School of Com-
puter Science & Informatics at Cardiff University. He
holds a PhD in ’Cybernetics and Statistics’ and has
worked in industry, as a software developer at Cybercom
Plenware. His research interests are cloud computing,
peer-to-peer economics and information communica-
tion technologies.

Omer F. Rana is a Professor of Performance Engineer-
ing in School of Computer Science & Informatics at
Cardiff University & a member of Cardiff University’s
“Data Innovation Institute". He holds a Ph.D. in ”Neu-
ral Computing and Parallel Architectures” from Imperial
College (University of London). His research interests
include distributed systems and scalable data analysis.

Ashiq Anjum is a professor at the University of Derby.
He completed his PhD from UWE Bristol. His research
interests include big data, cloud computing and analyt-
ics.

Manish Parashar is Distinguished Professor of Com-
puter Science at Rutgers University. He is also the
founding Director of the Rutgers Discovery Informatics
Institute (RDI2). His research interests are in the broad
areas of Parallel and Distributed Computing and Com-
putational and Data-Enabled Science and Engineering.
Manish serves on the editorial boards and organizing
committees of a large number of journals and inter-
national conferences and workshops, and has deployed
several software systems that are widely used. He has
also received a number of awards and is Fellow of AAAS,

Fellow of IEEE/IEEE Computer Society and ACM Distinguished Scientist.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2017.2653116

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

