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ABSTRACT 
Data intensive computing requires fast access to the input data. 

Currently in an HPC environment, the computation part is 

managed by the job scheduler, whereas data access is unmanaged 

and reply completely on the underlying file system. The job 

scheduler tracks system parameters such as RAM, CPU and 

utilize this for efficient computation. However, it is the 

responsibility of the developer to take care of the data related 

attributes and their traffic over the network. To solve this issue , 

we suggest data models for genomics data which can be used to 

guide the computation engine from data management perspective 

in addition to the usual system and computation parameters – We 

will demonstrated that enabling the job scheduler with info about 

the data is an important steps towards efficient fully automated 

data analysis. 

CCS Concepts 

•  Information systems ➝ Data management systems ➝ 
Information integration ➝ Mediators and data integration. 
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1. INTRODUCTION 

1.1 Next Generation Sequences 
Genomics based medicine, which is, usually referred to as 

personalized or precision medicine, became an integral 

component in the healthcare system [21]. This is due to recent 

advancements in next generation sequencing (NGS) technology. 

This technology can reduced the cost and time of reading the 

genome. NGS is currently used in the clinic to find variants 

(mutations) related to the disease to improve the diagnosis, 

prognosis, or to find optimized treatment plans. 

The wide use of NGS in the clinic has introduced new 

computational challenges. The Genomics grade data analysis 

requires optimized algorithms to reach reliable results. To reach a 

list of variants with the necessary information for the clinical 

practice, a sophisticated computational workflow of many 

software tools should be used. The number of these reads depends 

on the technology and the model of the NGS instrument. For Ion 

technology, one expects around 80 million reads per run. 

Processing such huge number of reads entails huge I/O operations, 

especially when a workflow of multiple independent programs is 

used. 

 
Figure 1: NGS Data analysis pipeline 

Figure 1 describes the steps involved in NGS and consists on 

following steps: 

1. The Primary analysis which mentioned in Step-1 consists on 

platform dependent procedures and occurred in the wet lab via 
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sequence instruments. The result produced in Step-1 is usually 

a FastQ file which process in subsequent step. 

2. The Step-2 which is also called Secondary analysis requires 

high performance cluster and often accumulate parallel and 

distributed computing technologies, it also leverages massive 

large scale storage as show in (2) Figure 1 . 

The secondary analysis is repetitive, which means various 

researchers and scientist use the same data-sets with different 

analytical[19] techniques and execute different workflows over it. 

For this reason large scale storage are required including some 

sort of cluster management system which should allow parallel 

execution of different tasks/jobs. 

Our research problem deal with this secondary analysis step and 

tried to answer different challenges involved around it to optimize 

the performance and complexity. 

1.2 Current HPC Cluster and How It Works 
HPC stands for high performance computing it enables this via 

use of multiple physical compute nodes[20] inter-connected 

through shared network and access to share file system . Job 

scheduler as mentioned in figure 2 manages compute nodes with 

their parameters and attributes such as available RAM, storage, 

Network and Current CPU Load. These attributes taken into 

consideration with scheduler for selecting appropriate compute 

nodes for execution job. 

Often these attributes are dynamic such as available RAM or 

CPU , which requires job schedule to continuously monitor 

compute nodes and store these values in database for further query 

and job schedule algorithm . 

1. From Step-1 in Figure 2 users prepare the jobs as executable 

templates which than submitted to job scheduler 

2. in step-2 . The job scheduler using the scheduling algorithm 

assign the suitable compute node for the job and further submit 

them in step-3 . 

For data I/O the HPC Cluster [18] requires a shared network file-

system which could be like NFS, Lustre, GPFS etc [19[]]. This 

file-system shared among all compute nodes and store the data 

require as input to job and data produced from job as output. 

Few of the scheduler also benefit from local disk associated with 

the compute node but the job in this case do-not start until the data 

loaded into local disk completely , this delays the execution and 

overall performance . 

Furthermore, as the job scheduler manages compute nodes and 

execution jobs, the data associated with it are adhoc and 

unmanaged. Following figure 3 depicts the data adhoc movement 

which is the pain area[1] for HPC cluster performance and which 

this paper tried to investigate. 

As mentioned in figure 3 the data moved without preplanned 

routes or methods, often same data copied twice between different 

compute nodes and central storage since another job needs it, this 

cause network congestion and delays. 

 
Figure 2: Traditional HPC scheduler 

Question arises why the data movement cannot managed and 

preplanned ? The investigation of one aspect will be discussed in 

this paper. 

2. PROBLEM 

2.1 Data as black-box, The blind-sight for 

Scheduler 
Computational jobs link the data with its location that is mostly 

contains folder/filenames . For job scheduler perspective the data 

appears as a black-box, It has no knowledge about its contents 

neither about any meta data associated with it. Below is the 

snippet of an execution job template: 

Listing 1: Sample job 

In above code listing 1 at line (4) the data is mentioned as file 

location. The Job itself does not know the data attributes which 

appears as black box to the execution tasks. 
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Figure 3: Adhoc Data movement between compute nodes and 

central storage 

Furthermore, even the basic attributes of data such as its size is 

not considered although it is already stored in operating system. 

This is why we mentioned that data appears to the scheduler as 

black box[17], means it has no knowledge about it except 

location . 

Like the saying goes , if you cannot measure , you cant improve , 

we goes one step backwards and say that if you don’t model 

something you would not know it and in result could not measure 

and improve it. 

In addition, if the same data mentioned in other piece of code the 

tasks are not able to co-relate them , for them it appear to be just 

another data to be processed . Neither the scheduler (see above 

section) knows that it is same data used earlier by another job. We 

named this blind-sight problem. 

2.2 Random Data Movement 
Chaos is the absence of management and this occurs because the 

data attributes are neither monitored , nor stored and not 

considered . Data moves haphazardly without planned routes , and 

even if same data mentioned X times by Job it will treated as fresh 

request X time, this cause network congestion and increase of IO 

load with latency to storage servers. Furthermore, in environments 

which are time critical and also data intensive, that data 

congestion cost performance delays. 

3. PROPOSED MODEL 
We proposed to model the data movement [2] but before that we 

have to adapt the mathematical notations of data itself. The data 

attributes are depend on the research domain for e.g. in Genomics 

next generation sequence domains we concluded the data model 

mentioned in Table: 1. 

In terms of graphs it can be represented as in figure 4: 

Some of the data attributes from Table : 1 are static such as guid, 

name, PI and Location and other are dynamic like Temperature 

and State . The static data attributes require to be filled before 

actual execution start and the dynamic ones should be updated on 

run time. Which means that data scheduler is the integral part of 

whole execution cycle[11]. As described in previous section that 

without storing the data attributes in its model the execution 

engine relies blindly on underlying file system . To improve this 

situation the data scheduler works side by side with computational 

scheduler and often governed it to select the best data route and to 

get the optimized computational platform [4]. 

The data scheduler works in two modes: Initially it works 

background for modelling existing data set with static attributes 

and in second mode which is more active and foreground is to 

model the data as it passes through the execution cycle. 

For active mode it has to be integrate with existing compute 

scheduler and optimize its scheduling algorithms for best route to 

data and selection of optimum compute platform. 

As we stated previously this optimum data movement all depends 

on data model and its characterization , without doing so would 

lead scheduling in an adhoc and random data patterns. 

Table 1: Data model for NGS 

Guid unique id 

Name Free textual name 

Location Path to data 

PI Principal investigator name 

Project Projects it is belong to 

Size Size in Mega Byte (MB) 

Temperature 1-60 fast-medium based on usage 

State In fast storage/hot medium 

Created at Time when it was created 

Last accessed Time when last used 

Last edited Time when last edited 

Jobs list List of Jobs it is used for 

Related with Any relation with other data 

 

Figure 4: Data model in graph 
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4. GENERATION AND EXPERIMENT 
From 1 some of these attributes are static and some are dynamic, 

The static attributes such as Guid , Location, PI , Project are set 

when the data is actually created , further more some of those 

attributes can be set automatically like created at, Last accessed, 

Last edited or storage system can be configured to do this task , 

rest of attributes are dynamic[12] such as Jobs List, Related with, 

access read, storage type and we need to investigate how to 

populate them on runtime [3][22]. 

Below tables depicted these types : 

Table 2: Data model’s attribute Types 

Name Type How to generate 

Guid static creation time by storage system 

Name static set by LIMS 

Location static storage system on creation time 

PI static set by LIMS 

Project static set by LIMS 

Size static storage system on creation time 

Temperature dynamic need to investigate 

State dynamic need to investigate 

Created static storage system on creation time 

Last accessed dynamic storage system 

Last edited dynamic storage system 

Jobs list dynamic need to investigate 

Related with dynamic need to investigate 

 

Those mentioned as italics in Table:2 are out of scope of this 

paper and will be addressed in future , we did the experiment to 

generate rest of model and following pseudocode used to generate 

that. 

Data: folder/project/patient/data Result: 

How to generate attribute of data 

initialization; 

while files exist in Data folder do 

read current; if file present then 

size = sizeof (current); name = 

filename; project= getproject (current); 

location = getpath (current); PI = 

principle-investigator (current); 

created = creation-data (current); 

else 
store attributes of current in database; 

go to another folder; end 

end 

Algorithm 1: Pseudo code for generating model of 

data 

4.1 Using iRods for Storing Data Model 
iRods [7] and [8] stands for integrated rules oriented data systems. 

It is software middle-ware that manages a highly controlled 

collection of distributed[5] digital objects, while enforcing user-

defined Management Policies across multiple storage locations. 

iRODS system is generic software infrastructure that can be tuned 

to implement any desired data management application, ranging 

from a Data Grid for sharing data across collaborations, to a 

digital library for publishing data, to a preservation environment 

for long-term data retention, to a data processing pipeline, to a 

system for federating real-time sensor data streams. 

In this paper we used iRods for storing data model generated from 

Algorithm 1 and store them as meta-data attributes. [21described 

that how iRODS[6] has been implemented and works as the 

production system for the sequencing pipeline of the Welcome 

Trust Sanger Institute. Other studies [Hedges et al. 2007] found 

that how iRODS can be used to preservation of research data. This 

is quite interesting to us as well since the modelling of data also 

enables and assist in proactive preservation for disaster recovery 

situations. Not only life sciences but NASA Center for Climate[13] 

Simulation are using the Integrated RuleOriented Data System 

(iRODS) to combine disparate data collections into a federated 

platform upon which various data services can be implemented 

[14]. 

Modelling of data[10] is also the pivot stone for Machine learning 

based Artificial intelligence which can further enhanced the 

applications for automated behaviour. [16] showed how this can 

be achieved with using meta-data. 

Another life science domain such as Brain imaging also benefited 

use of data modelling with iRODS since the Brain image datasets 

pose a problem for data storage, access, and analysis due to their 

large and complex structure. To manage metadata associated with 

brain image collections iRODS proven to be stable and assisted in 

large scale analysis [Deitrich et al. 2018]. 

5. RESULTS 
With above modeling parameters we were able to fix the black 

box and now know the data modelling. this is an initial step to 

improve the data movement pattern. Generating from above 

algorithm 1 and storing them in [15] enabled the removal of chaos 

in data movement. Following experiments are done on scheduler 

side to investigate if the meta-data inserted are visible from 

scheduler level. 

Earlier the data model was unknown which caused the blind-sight 

problem to schedule and resulted a chaos and delay in data 

movement. 

6. CONCLUSION AND FUTURE WORK 
We have introduced a data model to be used by the computation 

engine for optimizing the analysis of genomics data. Our data 

model takes different data attributes into account, including size, 

location in the system, storage type and IO speed, among others. 

This meta data enables the engine to perform extra optimization 

beyond usage of CPU and RAM[24]. We have shown that iRods 

can be used to maintain the meta data and facilitate access to the 

data, especially in a system with distributed and heterogeneous 

storage units. 

Our data model avoid random access to the data, reduce network 

congestion, and lead to better execution time. 
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