
Heterogeneous Relational Databases for a Grid-enabled Analysis 

Environment 

Arshad Ali1, Ashiq Anjum1,4, Tahir Azim1, Julian Bunn2, Saima Iqbal2,4, Richard McClatchey4,
Harvey Newman2, S. Yousaf Shah1, Tony Solomonides4, Conrad Steenberg2, Michael Thomas2,

Frank van Lingen2, Ian Willers3

1
National University of Sciences & Technology, Rawalpindi, Pakistan 

Email: {arshad.ali, ashiq.anjum, tahir, yousaf.shah}@niit.edu.pk 
2
California Institute of Technology, Pasadena, USA 

Email: {Julian.Bunn, fvlingen}@caltech.edu, {newman, conrad, thomas}@hep.caltech.edu 
3
European Organization for Nuclear Research, Geneva, Switzerland 

Email: {Ian.Willers, Saima.Iqbal}@cern.ch 
4
University of the West of England, Bristol, UK 

Email: {Richard.McClatchey, Tony.Solomonides}@uwe.ac.uk

Abstract 

Grid based systems require a database access 

mechanism that can provide seamless homogeneous 

access to the requested data through a virtual data 
access system, i.e. a system which can take care of 

tracking the data that is stored in geographically 

distributed heterogeneous databases. This system 

should provide an integrated view of the data that is 

stored in the different repositories by using a virtual 

data access mechanism, i.e. a mechanism which can 
hide the heterogeneity of the backend databases from 

the client applications. 

This paper focuses on accessing data stored in 

disparate relational databases through a web service 

interface, and exploits the features of a Data 

Warehouse and Data Marts. We present a middleware 
that enables applications to access data stored in 

geographically distributed relational databases 

without being aware of their physical locations and 

underlying schema. A web service interface is provided 

to enable applications to access this middleware in a 
language and platform independent way. A prototype 

implementation was created based on Clarens [4], 

Unity [7] and POOL [8]. This ability to access the 

data stored in the distributed relational databases 

transparently is likely to be a very powerful one for 

Grid users, especially the scientific community wishing 
to collate and analyze data distributed over the Grid.  

1. Introduction 

In a geographically distributed environment like the 
Grid, database resources can be very diverse because 
they are developed by different vendors, run on 
different operating systems, support different query 
languages, possess different database schemas and use 
different technologies to store the same type of data. 
Furthermore, this data is accessed by applications 
developed for different platforms in varying 
development environments. Currently our Grid 
environment is using two major formats for the storage 
of data: file-based data and relational databases. 
Sophisticated systems are in place to track and manage 
files containing data and replicated at multiple storage 
sites. These systems generally rely on cataloging 
services to map file names with their physical storage 
locations and access mechanism. By finding out the 
physical location of a file and its access protocol from 
the catalog, the user can easily gain access to the data 
stored in the file. Examples of cataloging services in 
use for this purpose are the Replica Location Service 
(European DataGrid (EDG) [1] and Globus [2]), and 
the POOL File Catalog [3]. 

However, besides file-based data, significant 
amounts of data are also stored in relational databases. 
This is especially true in the case of life sciences data, 
astronomy data, and to a lesser extent, high-energy 
physics data. Therefore, a system that provides access 
to multiple databases can greatly facilitate scientists 
and users in utilizing such data resources. 

Proceedings of  the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE 



Software for providing virtualized access to the 
data, in a similar way to files, is only beginning to 
appear. Most data grids currently do not incorporate 
much support for data stored in multiple, distributed 
databases. As a result, users have to send queries for 
data to each of the databases individually, and then 
manually integrate the returned data. This integration 
of data is essential in order to obtain a consistent result 
of a query submitted against the databases. 

In this paper, we present a system that has been 
developed to provide Grid users efficient access to 
globally distributed, relational databases. In our 
prototype, the crucial issue of integration of data is 
addressed in three stages: initially data is integrated at 
the data warehouse level where data is extracted from 
the normalized schema of the databases, and loaded 
into the denormalized schema of the data warehouse. 
Secondly, materialized views of the data are replicated 
from the data warehouse and stored in data marts. 
Finally, data generated from the distributed queries, 
which run over the data marts, is integrated and these 
integrated results are presented to the clients. A 
Clarens [4] based web service interface is provided in 
order to enable all kinds of (simple and) complex 
clients to use this prototype over the web conveniently. 
Furthermore, in order to avoid the performance issue of 
centralized registration of data marts and their 
respective schema information, the Replica Location 
Service (RLS) is used. 

The paper is organized as follows. In Section 2, we 
briefly describe the background of the issue addressed, 
and describe the requirements in detail.  In Section 3, 
we give a brief overview of previous related work in 
this direction, before plunging into a full description of 
the architecture and design of the system in Section 4. 
Performance statistics are presented in Section 5, and 
the current status of the work and possible extensions 
for the future are mentioned in Section 6. We finally 
conclude our discussion in Section 7. 

2. Background 

The Large Hadron Collider (LHC) [5], being 
constructed at the European Organization for Nuclear 
Research (CERN) [6], is scheduled to go online in 
2007. In order to cater for the large amounts of data to 
be generated by this enormous accelerator, a Grid-
based architecture has been proposed which aims to 
distribute the generated data to storage and processing 
sites. The data generated is stored both in the form of 
files (event data) and relational databases (non-event 
data).  Non-event data includes data such as a 
detector’s calibration data and conditions data. 

While sophisticated systems are already in place for 
accessing the data stored in distributed files, software 
for managing databases in a similar way is only 
beginning to be developed. In this paper, we propose a 
web service based middleware for locating and 
accessing data that is stored in data marts. A prototype 
was developed based on this proposed middleware. 
This prototype provides an integrated view of the data 
stored in distributed heterogeneous relational databases 
through the Online Transaction Processing (OLTP) 
system of a data warehouse. Furthermore, this 
prototype provides the facility to distribute an SQL 
query through a data abstraction layer into multiple 
sub-queries aimed at the data marts containing the 
requested tables, and to combine the outcome of the 
individual sub-queries into a single consistent result. 

The non-event data from the LHC will be generated 
at CERN and, like event data, will be distributed in 
multiple locations at sites around the world. Most of 
the data will be stored at the Tier-0 site at CERN, and 
at the seven Tier-1 sites. Smaller subsets of this data 
will be replicated to Tier-2 and Tier-3 sites when 
requested by scientists for analysis.  Moreover, the 
database technologies used at the different tiers are 
also different. Oracle, for instance, is the most popular 
RDBMS system used at the Tier-0 and Tier-1 sites. On 
the other hand, MySQL and Microsoft SQL Server is 
the more common technology used at Tier-2 and Tier-3 
sites. SQLite is the database favored by users who wish 
to do analysis while remaining disconnected over long 
periods of time (laptop users, for instance).  

In order to manage these replicated sets of data, a 
system is required that can track the locations of the 
various databases, and provide efficient, transparent 
access to these datasets when queries are submitted to 
it by end users. In addition, with the growing linkages 
of Grid computing and Web service technologies, it is 
desirable to provide a Web service interface to the 
system so that client applications at every tier can 
access these services conveniently over the Web. 

3. Related Work 

The Grid is considered as a data-intensive 
infrastructure. Users expect the Grid to provide 
efficient and transparent access to enormous quantities 
of data scattered in globally distributed, heterogeneous 
databases. For this reason, integration of data retrieved 
from these databases becomes a major research issue. 
Efforts have been made to solve this issue but 
performance bottlenecks still exist. 

One of the projects targeting database integration is 
the Unity project [7] at the University of Iowa research 
labs. This project provides a JDBC driver, which uses 

Proceedings of  the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE 



XML specification files for integrating the databases. 
Then using the metadata information from the XML 
specification files, connections are established to the 
appropriate databases. The data is thus accessed 
without previous knowledge of the physical location of 
the data. Unity, however, does not do any load 
distribution, which causes some delays in query 
processing. As a result, if there is a lot of data to be 
fetched for a query, the memory becomes overloaded. 
In addition, it does not handle joins that span tables in 
multiple databases. In our work, we have used the 
Unity driver as the baseline for development. For our 
prototype, we have enhanced the driver with several 
features that are described in detail in Section 4.  

Another project called the POOL Relational 
Abstraction Layer (POOL-RAL) [8], being pursued at 
CERN, provides a relational abstraction layer for 
relational databases and follows a vendor-neutral 
approach to database access. However, POOL provides 
access to tables within one database at a time, which 
puts a limit on the query and does not allow parallel 
execution of a query on multiple databases.  

OGSA Distributed Query Processing (DQP) [9] is 
another project for distributed query processing on 
Grid-based databases. It distributes join operations on 
multiple nodes within a grid to take full advantage of 
the grid’s distributed processing capabilities. However, 
OGSA-DQP is strongly dependent on the Globus 
Toolkit 3.2, which limits it to Globus only and makes it 
platform dependent. 

IBM’s Discovery Link [10] is another project aimed 
at carrying out integration of relational databases and 
other types of data sources for life sciences, genetics 
and bio-chemical data sources. However, due to the 
domain specific nature of this project, it cannot be used 
directly for HEP databases. ALDAP and SkyQuery are 
two other similar projects with the same basic 
objectives, but aimed at Astronomy databases. 

4. System Architecture and Design 

The distributed architecture of our system consists 
of the basic components described in the following 
discussion. Figure 1 shows an architectural diagram of 
the developed prototype. 

The architecture consists of two main parts: The 
first part (the lower half of the diagram) retrieves data 

from various underlying databases, integrates it into a 
data warehouse, and replicates data from the data 
warehouse to the data marts, which are locally 
accessible by the client applications through the web-
service interface. The second part (the upper half of the 
diagram) provides lightweight Clarens clients web 
service-based access to the data stored in the data 
marts. 

4.1. Data Sources 

The developed prototype supports Oracle and 
MySQL relational source databases. A normalized 
schema was developed for these source databases to 
store HBOOK [11] Ntuples data. The following 
example can help to understand the meaning of the 
Ntuples. Suppose that a dataset contains 10000 events 
and each event consists of many variables (say 
NVAR=200), then an Ntuple is like a table where these 
200 variables are the columns and each event is a row. 
Furthermore, these databases were distributed over a 
Tier-1 center at CERN and a Tier-2 center at 
CALTECH. 

4.2. Data Warehouse 

The currently available approaches, as mentioned in 
section 3, provide different implementations to access 
data from distributed heterogeneous relational 
databases. Each approach provides a different 
implementation based on different driver requirements, 
connection requirements and database schema 
requirements of the databases. It means that for ‘N’ 
number of database technologies with ‘S’ number of 
database schemas, current approaches require ‘NxS’ 
number of implementations to be provided, in order to 
access data from globally distributed, heterogeneous 
databases. Furthermore, ‘NxS’ implementations also 
create a performance issue because each time access to 
data from these databases is requested, all the related 
meta-data information i.e. database schema, connection 
and vendor specific information, has to be parsed in 
order to return a reliable and consistent result of the 
query. In order to resolve this performance issue, we 
propose the use of a data warehouse. 

Proceedings of  the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE 



Figure 1. Architectural Diagram. 

A data warehouse is a repository, which stores data 
that is integrated from heterogeneous data sources, for 
efficient querying, analysis and decision-making. Data 
warehouse technology is very successfully 
implemented in various commercial projects and is 
highly supported by vendors like ORACLE.  

For the developed prototype, a denormalized star 
schema was developed in the ORACLE database. An 
Extraction, Transformation, Transportation and 
Loading (ETL) process was used to populate the data 
warehouse. In this ETL process, data was initially 
extracted from the distributed relational data sources, 
then integrated and transformed according to the 
denormalized database schema of the data warehouse. 
In this prototype, data streaming technology was used 

to perform the ETL process. Finally, this transformed 
data is loaded into the warehouse. In this prototype, we 
created views on the data stored in the warehouse to 
provide read-only access for scientific analysis. 

4.3. Data Marts 

A remote centralized data warehouse cannot be 
considered a good solution for an environment like the 
Grid, which is seen as a pool of distributed resources. 
In the context of databases, efficient accessibility of 
distributed databases can be achieved by making the 
required data available locally to the applications. 
Thus, in order to utilize the features of the data 
warehouse successfully in a Grid environment without 

POOL-RAL 

Clarens Client

JClarens Server 

Oracle
Database
(Data Mart) 

SQLite  
Database
(Data Mart with 
replicated data) 

SQL Query 
Vector of Results 

ResultsSQL Query 

JNI Wrapper for 

POOL 

Data Access Service (based on Unity)

POOL Service

RLS Implementation 

Database not registered 
locally—lookup RLS  

Oracle@Tier-0
(Data Warehouse with
Denormalized database schema) 

Oracle
Database@Tier-1 
(Data Source with 
Normalized database schema) 

MySQL  
Database@Tier-2 
(Data Source with 
Normalized database schema) 

Data extracted, transformed and loaded into 
the denormalized database schema of the 
data warehouse 

Views on data warehouse  
Data materialized into the data mart 

JDBC driver

MsSQL 
Server  
(Data Mart with 
replicated data) 

MySQL 
Server (Data Mart 
with replicated 
data) 

This part of the architecture provide integrated 
data from heterogeneous data sources through 
data warehouse 

This part of the architecture 
provides local access to the data 
stored in the distributed 
heterogeneous databases as data 
marts by using Data Access 
Service Layer and JClarens Server. 

Proceedings of  the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE 



creating a centralized performance bottleneck, views 
are created on the integrated data of the data 
warehouse, and materialized on a new set of databases, 
which are made available locally to the applications. 
These databases are termed as data marts. Data marts 
are databases that store subsets of replicated data from 
the centralized data warehouse.  

For the developed prototype, we create data marts, 
which are supported by MySQL, MS-SQL, ORACLE 
and SQLite. These databases are accessed using either 
through the POOL-RAL interface or using JDBC 
drivers, depending on whether or not they are 
supported by the POOL-RAL libraries. 

4.4. XSpec Files 

XSpec stands for “XML Specifications” files. These 
files are generated from the data sources using tools 
provided by the Unity project. Each database has its 
own XSpec file, which contains information about the 
schema of the database, including the tables, columns 
and relationships within the database. These logical 
names form a kind of data dictionary for the database, 
and this data dictionary is used for determining which 
database to access to fulfill a client’s request. The 
client does not need to know the exact name of a 
database, tables in the database or names of the 
columns in the table. The client is provided this data 
dictionary of logical names, and he uses these logical 
names without any knowledge of the physical location 
of the data and their actual names. The query 
processing mechanism automatically maps logical 
names to physical names and divides the query to be 
executed among the individual databases.  

These XSpec files are of two types: 
4.4.1. Lower Level XSpec. The Lower Level XSpec 
refers to each individual database’s XSpec file, which 
is generated from the original data source and contains 
the schema and all the other information mentioned 
above.
4.4.2. Upper Level XSpec. The Upper Level XSpec 
file is generated manually using the Lower Level 
XSpec files. This file just contains the URL for each 
database, the driver that each database is using and the 
name of the Lower Level XSpec for each database. 
There is only one Upper-Level XSpec file, whereas the 
number of lower-Level XSpec depends on the number 
of data sources. 

Figure 2. Hierarchy of XSpec files 

4.5. Data Access Layer 

This layer processes the queries for data sent by the 
clients containing joins of different tables from 
different databases (data marts), and divides them into 
sub-queries, which are then distributed on to the 
underlying databases.  

The data access layer looks for the tables from 
which data is requested by the client. If the tables are 
locally registered with the JClarens server, the data 
access layer decides which of the two modules (POOL-
RAL module or Unity driver) to forward the query to 
by finding out which databases are to be queried. If a 
database is supported by the POOL-RAL, the query is 
forwarded to the POOL RAL layer; otherwise, the 
query is forwarded to the JDBC driver. If the tables 
requested are not registered with the JClarens server, 
the Replica Location Service (RLS) is used to lookup 
the physical locations (hosting servers) of the tables. 
The RLS server provides the URL of the remote 
JClarens server with which the tables are registered. 
The queries are then forwarded to the remote servers, 
which perform the query processing, and send the 
retrieved data back to the original server, where the 
queries were submitted.  

4.6. Unity Driver 

As mentioned in Section 2 (Related Work) above, 
the Unity driver enables access to and integration of 
data from multiple databases. We have further 
enhanced this driver to be able to apply joins on rows 
extracted from multiple databases.  

While accessing the underlying databases, the sub-
queries meant for unsupported databases are accessed 
using the Unity driver, whereas the sub-queries 
concerned with POOL-supported databases are 
processed through the POOL RAL. The data retrieved 
through each of the sub-queries is finally merged into a 
single 2-D vector, and returned to the client. 

XML with metadata 
about the Lower-Level 
XSpec. files

XSpec of 
MySQL 

database 

XSpec of 
SQLServer 
database 

XSpec of 
Oracle 
database 

MySQL MS.SQL 
Server 

Oracle 

XSpec of 
SQLite 
database 

SQLite 

Upper Level XSpec 

Proceedings of  the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE 



4.7. POOL RAL Wrapper 

The databases not supported by the POOL-RAL are 
handled by the JDBC driver. On the other hand, 
queries to databases supported by the POOL-RAL are 
forwarded through a wrapper layer to the POOL RAL 
libraries for execution. 

The POOL RAL is implemented in C++ whereas 
JClarens and its services are implemented in Java. 
Therefore, to make the POOL libraries work with the 
JClarens based service, a JNI (Java Native Interface) 
wrapper was developed which exposes two methods: 

1. One method initializes a service handler for a 
new database using a connection string, a username 
and a password and adds it to a list of previously 
initialized handles. 

2. The other method takes as input a connection 
string, an array of select fields, an array of table names, 
and a ‘where’ clause string, and returns a 2D array 
containing the results of the query execution on the 
database represented by the connection string. 

4.8. Replica Location Module 

The Replica Location module is included in the 
project to distribute the load and reduce the query 
processing time, by enabling multiple instances of the 
database service to host smaller subsets from the entire 
collection of databases, and then collaborating with 
each other to provide access to one or more of those 
databases. In this way, load can be distributed over as 
many servers as required, instead of putting it entirely 
on just one server registering all the databases. This 
can also potentially enable us to achieve a hierarchical 
database hosting service in parallel with the tiered 
topology of the LHC Computing Model.  

 Figure 3. Publishing table locations to the 
RLS 

This module uses a central RLS Server that contains 
the mapping of table names with replica servers’ 
URLs. Each service instance publishes information 
about the databases and the tables it is hosting to the 
central RLS server. This central RLS server is 

contacted when the data access layer does not find a 
locally registered table. 

4.9. Tracking Changes in Schema  

The system is also able to track changes made to the 
schema of any database in the system. This feature 
enables the system to update itself according to 
changes in the schema of any of the databases. 

The algorithm works as follows. After a fixed 
interval of time, a thread is run against the back-end 
databases to generate a new XSpec for each database. 
The size of the newly created XSpec is compared 
against the size of the older XSpec file. If the sizes are 
equal, the files are compared using their md5 sums. If 
there is any change in the size or md5 sum of the file, 
the older version of the XSpec is replaced by the new 
one. The JClarens server then uses the new XSpec file 
to update the schema it is using for that database.  

4.10. Plug-in Databases 

This feature enables databases to be added at 
runtime to the system. The server is provided the URL 
of the databases’ XSpec file, the database driver name, 
and the database location. The server then downloads 
the file, parses it, and retrieves the metadata about the 
database. Using this metadata, the server establishes a 
connection with the database using the appropriate 
JDBC driver. When the connection is established, the 
server updates itself with the information about the 
tables contained in that database.   

5. Performance Results 

The developed prototype was tested in three stages: 
Stage 1: Data is extracted from the source 

databases, transformed according to the denormalized 
schema requirements of the data warehouse, and then 
streamed into the data warehouse. 

Stage 2: Data is extracted from the views, which 
were created on the data stored in the data warehouse, 
and materialized from the views (through data 
streaming) into the local databases i.e. data marts. 

Stage 3: Response time of the distributed query, 
which runs through a JClarens based web interface, is 
measured against the locally available data marts.   

5.1. Stage 1 and 2 results: 

Central RLS Server 

JClarens
Instance-1 

JClarens
Instance-2 

JClarens
Instance-n 

R
em

o
te R

ep
lica S

erv
ers

Publish Information with 
Central RLS Server

Proceedings of  the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE 



Performance of data extraction and loading by 

streaming

0.00

5.00

10.00

15.00

20.00

0.3
97

4.9
28

8.2
17

9.4
86

12.
721

67.
480

113
.4

14

207
.8

66

Size of file (kB)

 DATA
EXTRACTION

TIME (s)

DATA
LOADING

TIME (s)

 Figure 4: Data extracted from source 
databases and loaded into the data 

warehouse.  

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80

Size of File in KB

D
a
ta

 E
x
tr

a
c
ti

o
n

 &
 L

o
a
d

in
g

 T
im

e
 

in
 s

e
c

DATA
EXTRACTION
TIME  in
Seconds

DATA
LOADING
TIME  in
Seconds

Figure 5. Views extracted from the data 
warehouse and materialized into data marts.  

Stage 1 and 2 tests were carried out by streaming 
data of different sizes from data sources to the data 
warehouse and from data warehouse to the data marts 
respectively. The tests were carried out over a 100 
Mbps Ethernet LAN. The respective data transfer time 
was plotted against the size of the transferred data. 
These plots, shown in figure 4 and 5, show the average 
data transfer time i.e. average of observations taken on 
different days at different time to measure the data 
transfer rate with different network traffic load. This 
time includes the time taken by a class to connect with 
the respective databases and, to open and close the 
stream for the respective SQL statements. 

Each of the graphs shown in figure 4 and 5 are 
comprised of two plots, because in our prototype  
every time data was retrieved from a database it was 
first placed into a temporary file (data extraction) and 
then from this temporary file, data was stored into the 
other databases (data loading). In Figure 4, the lower 
line of the graph was plotted for the data extracted 
from the normalized data sources, transformed 
according to the denormalized schema of the data 
warehouse, and imported into a temporary file. The 
upper line shows the time taken to transfer data from 
the above generated temporary files to the data 
warehouse. Similarly, in Figure 5 the lower line of the 
graph shows the data retrieved from views, which were 

created on the data warehouse. The upper line shows 
the time taken to transfer the data from the generated 
temporary files and materialized into the data marts. Of 
course, the use of the temporary staging file during the 
process is a performance bottleneck, and we are 
working on a cleaner way of loading the warehouse 
directly from the normalized databases. 

5.2. Stage 3 results: 

We present here two aspects of the performance of 
the service. First, we measure the time the system takes 
to respond to a set of queries, each of which requires 
the involvement of a different number of Clarens 
servers and different number of databases. Secondly, 
we determine how the system throughput changes with 
different numbers of requested rows.  

The tests were carried out on a 100 Mbps Ethernet 
LAN over two single-processor Intel Pentium IV (1.8 
and 2.4 GHz) machines, with 512 MB and 1 GB of 
RAM respectively. The operating system on each 
machine was Redhat Linux 7.3. A Clarens server (with 
the data access service installed) was installed on each 
of the machines. The two servers were configured to 
host a total of 6 databases, with a total of nearly 80,000 
rows and 1700 tables. The databases were equally 
shared between a Microsoft SQL Server on Windows 
2000, and a MySQL database server. 

Table 1: Query Response Time 
Number of 

Clarens 

servers 

accessed 

Query 

Distributed 

(Yes/No) 

Response 

Time  

Number 

of tables 

accessed 

1 No 38 ms 1 

1 Yes 487.5 ms 2 

2 Yes 594 ms 4 

Table 1 (Query response time) shows the time in 
which the system responds to the client’s queries. The 
column “Number of Clarens servers” shows the 
number of Clarens servers that had to be accessed in 
order to retrieve the requested rows of data. The 
“Query Distributed (Yes/No)” columns shows whether 
or not the query had to fetch data from multiple 
databases. The “Number of tables accessed” field 
represents the number of tables that were requested in 
that query. Although the response time for queries 
executing over multiple databases and servers are more 
than 10 times slower, it is inevitable because it 
involves determining which server to connect to using 
RLS, connecting and authenticating with several 
databases or servers, and integrating the results. 

Proceedings of  the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE 



0

100

200

300

400

500

600

700

800

900

2
1

5
1

3
0

1

4
5

1

7
0

0

8
0

1

9
0

1

1
7

0
1

1
7

5
1

2
2

5
1

2
4

5
1

2
5

5
1

Number of rows requested

Response

time (ms)

 Figure 6. Response time versus number of 
rows requested 

We also collected performance statistics to 
determine how the system scales with increasing 
number of rows requested by clients. For this purpose, 
we selected a number of queries to be run against the 
ntuple data in our databases, each of which was to 
return different number of rows. We determined the 
number of rows returned for each query, and measured 
the response time for each query to execute. The graph 
depicting the response time of the queries versus the 
number of rows returned is shown in Figure 6. 

The graph shows that there is a linear increase in the 
response time of the system as a result of an increase in 
the number of requested rows. Increasing the number 
of rows from 21 to 2551 only increases the response 
time from about 300 to 700 ms. This shows that the 
system is scalable to support large queries. In addition, 
it is comparable to the performance reported by the 
OGSA-DAI project [12]. However, we are working on 
further improving the algorithms and implementation, 
to enable even better performance for very large 
queries. 

6. Current Status and Future Work 

A prototype has been developed, which is 
installable as an RPM on Redhat 7.3-based systems. 
The prototype possesses all of the features described 
above. However, some of the features such as joins 
spanning multiple databases have not been tested yet 
for all possible scenarios. Unit tests have been written 
for the system to check the integrity of the system. A 
plug-in for the Java Analysis Studio (JAS) [13] was 
also developed to submit queries for accessing the data 
and visualizing the results as histograms 

Future directions will be to ensure the efficiency of 
the system and enhance the performance. In addition, 
we will be testing the system for query distribution on 
geographically distributed databases in order to 
measure its performance over wide area networks. We 
are also working on the design of a system that could 
decide the closest available database (in terms of 
network connectivity) from a set of replicated 

databases. Another interesting extension to the project 
could be the study of how tables from databases can be 
integrated with respect to their semantic similarity.  

7. Conclusion 

We have presented a system that enables 
heterogeneous databases distributed over the N-tiered 
architecture of the LHC experiment to present a single, 
simplified view to the user. With a single query, users 
can request and retrieve data from a number of 
databases simultaneously. This makes the (potentially) 
large number of databases at the backend transparent to 
the user while continuing to give them satisfactory 
performance. 

8. References 

[1] DataGrid Project. http://eu-datagrid.web.cern.ch/eu-
datagrid/ss
[2] Globus Replica Location Service. 
http://www.globus.org/rls
[3] D. Düllmann, M. Frank, G. Govi, I. Papadopoulos, S. 
Roiser. “The POOL Data Storage, Cache and Conversion 
Mechanism”. Computing in High Energy and Nuclear 
Physics 2003, San Diego, paper MOKT008. 
[4] C. Steenberg, H.Newman, F. van Lingen et. al. “Clarens 
Client and Server Applications”. Computing in High Energy 
and Nuclear Physics 2003, San Diego, paper TUCT005. 
[5] The Large Hadron Collider Homepage. http://lhc-new-
homepage.web.cern.ch/lhc-new-homepage/
[6] European Organization for Nuclear Research (CERN), 
Switzerland, http://public.web.cern.ch/Public/Welcome.html
[7] Ramon Lawrence, Ken Barker. “Unity - A Database 
Integration Tool”. TRLabs Emerging Technology Bulletin, 
December, 2000.  
[8] POOL Persistency Framework. http://pool.cern.ch.
[9] M. N. Alpdemir, A. Mukherjee, N.W. Paton, et. al. 
“Service Based Distributed Query Processing on the Grid”. 
Proceedings of the First International Conference on Service 

Oriented Computing, pages 467-482. Springer, 15-18 
December 2003.  
 [10] IBM Discovery Link Project: 
http://www.research.ibm.com/journal/sj/402/haas.html
[11] R Brun, M Goossens. “HBOOK-Statistical Analysis and 
Histogramming”. CERN Program Library Long Write-Ups 
Y250, CERN Geneva, Switzerland.   
[12] M. Jackson, M. Antonioletti, N.C. Hong, et. al. 
“Performance Analysis of the OGSA-DAI software”. OGSA-
DAI mini-workshop, UK e-Science All Hands Meeting, 
Nottingham,  September 2004.  
[13] Java Analysis Studio. http://jas.freehep.org

Proceedings of  the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE 


