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Abstract. The concepts, design and evaluation of the Data Intensive and Network Aware 

(DIANA) meta-scheduling approach for solving the challenges of data analysis being faced by 

CERN experiments are discussed in this paper. Our results suggest that data analysis can be 

made robust by employing fault tolerant and decentralized meta-scheduling algorithms 

supported in our DIANA meta-scheduler. The DIANA meta-scheduler supports data intensive 

bulk scheduling, is network aware and follows a policy centric meta-scheduling. In this paper, 

we demonstrate that a decentralized and dynamic meta-scheduling approach is an effective 

strategy to cope with increasing numbers of users, jobs and datasets. We present "quality of 

service" related statistics for physics analysis through the application of a policy centric fair-

share scheduling model. The DIANA meta-schedulers create a peer-to-peer hierarchy of 

schedulers to accomplish resource management that changes with evolving loads and is 

dynamic and adapts to the volatile nature of the resources. 

1.  Introduction 
Data collection and data storage rates are growing at an exponential pace in high energy physics 

analysis. For example, the LHC experiments will need to store, access and analyze around 10 

Petabytes per year which will require the use of around 200 Teraflop/s of processing power. By 2015, 
particle physicists will be using Exabytes of storage and Petaflop/s of computation [1]. If the current 

trends continue, such an explosion of data would clearly outstrip our ability to make meaningful use of 

it. With the unstoppable growth in data collection, meta-scheduling can play an important role in the 
way massive data sets are analyzed.  

Future decision making systems will require quicker and more reliable algorithms, architectures and 

models for job scheduling to enable efficient discovery and analysis. Current approaches for job 

scheduling strongly depend on a single instance of a scheduler and cannot provide scalable solutions 
for bulk scheduling. The efficient utilization of a Grid infrastructure (around 200 sites in the LCG 

Grid) and data/results is not a trivial exercise if the scheduler is unable to submit jobs to a site which 

cannot process them quickly. There should be a scheduling mechanism that can help users in the rapid 
analysis of their jobs by selecting optimal sites and that can support „chaotic„ analysis where 

thousands of users submit millions of jobs and various schedulers should cooperate to handle the tasks 

which cannot be managed by a single scheduler. There should also be a mechanism to reduce the data 
transfer between sites since replication cost is too high for data intensive applications and jobs should 

be submitted to sites which have the best chance of executing them as soon as is practical. There 

should also be a mechanism whereby the scheduler should not have jobs lingering in queues for an 

unlimited time; these jobs should get a fair chance of execution at the earliest and each job and user 
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should get an optimum quality of service from the scheduling and resource management system. The 

DIANA Scheduling objective is that by using novel data scheduling algorithms and architectures, the 

information in a range of distributed datasets should be extracted quickly and efficiently with the same 

or a reduced set of resources. This should not only reduce the data transfer and event finding time 
(which can currently take days) but will also make significant savings in system resources.  

 

2. The DIANA  Scheduling Approach 
We analyzed the scheduling problem in hand and tried to investigate the issues which are major 

sources of sub-optimal performance for the scheduling systems.  We realized that existing scheduling 

systems build on the client-server model and are not fault tolerant. There is no mechanism that can 

help different meta-schedulers to intercommunicate and withstand the jobs pressure at a single site. 
There is no mechanism which can offload the job load on a site to remote peers and collaboratively 

work with other sites. Schedulers may be subject to failure or may not perform efficient scheduling 

when they are exposed to millions of jobs requiring different quality of service needs and different 
scheduling. They may not be able to re-organize or export scheduled jobs which could result in large 

job queues and long execution delays. What is required is a decentralized scheduling system which not 

only automatically exports jobs to its peers under potentially severe load conditions (such as with bulk 
jobs), but at the same time it manages its own scheduling policies, whilst queuing jobs and monitoring 

network conditions such as bandwidth, throughput and latency.  

We also realized that the queuing mechanism that is required to improve such a scheduling problem 

should follow a carefully planned queuing scheme. In existing scheduling systems, most queuing 
approaches are based on a First-In-First-Out policy and other similar considerations which can lead to 

a poor quality of service and jobs hanging for days. Such approaches are absolutely not feasible where 

users want immediate response to their jobs or the jobs are critical and can not wait more than a 
predefined time. There should be a mechanism to associate priorities to each job inside the queue, 

depending on the user profile and job requirements with the scheduler servicing high priority jobs 

preferentially to improve the quality of service provision to users. There should also be a mechanism 

for exporting jobs to least loaded sites and for scheduling „out of turn‟ high priority jobs. There should 
also be a mechanism to provide optimal utilization of all resources to avoid resource starvation. An 

efficient queuing approach is one of the most important considerations for ensuring quality of service 

and smooth functioning of the Grid operations for a diverse range of users and applications. 
We also found that the best match between jobs and resources is central to optimizing the 

matchmaking process. We therefore need to embed the network information into the scheduling 

algorithm to improve the efficiency and the utilization of a Grid system. The overall goal is to 
minimize the computing time for applications which involve large-scale data. Hence, the centralized 

scheduling algorithms that focus only on maximizing processor utilization by mapping jobs to idle 

processors, and disregarding network costs, queue times, job priorities and costs associated with 

accessing remote data are unlikely to be efficient [2]. Similarly, the scheduling decisions which always 
force the job movement towards the data without taking the Grid “weather”, the network load and the 

data size and location into consideration can lead to significant inefficiencies in performance and can 

be responsible for large job queues and processing delays.  
Considering the effects of and then compensating for network characteristics can avoid making these 

less-than-ideal scheduling decisions. Our big challenge thus becomes finding means to express these 

requirements in a format that the meta-scheduler engine can understand. This engine should use 
mathematical techniques to make decisions and generate the overall behaviour of the system based on 

the global network characteristics. The basic job scheduling algorithm at each site should be driven by 

some weighting value calculated for each potential target location which is a function of the available 

network characteristics, the processing cycles, job priorities, queue length and input and output 
“sandboxes” of data and the one having least cost should be given priority. The DIANA (Data 

Intensive and Network Aware) scheduling approach builds upon three considerations as outlined in the 

following sections.  
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2.1. Architectural considerations for the DIANA Meta-Scheduler 

A meta-scheduler coordinates the communication between multiple heterogeneous local schedulers 
that typically manage clusters in a LAN environment. These local and meta-schedulers form a 

hierarchy and individual schedulers sit at different levels in the hierarchy as discussed by Mausolf in 

[3]. Each local scheduler can cooperate and communicate with its siblings through a meta-scheduler, 
however, each meta-scheduler cannot communicate with other meta-schedulers of other sites or Grids. 

Communication is only possible between local schedulers and the meta-scheduler. In the P2P 

approach, a meta-scheduler and a local-scheduler make a hierarchy at each site where global decisions 
are managed by the meta-scheduler whereas local control and allocations are made by the local 

scheduler. The meta-scheduler on each site has access to global information and all meta-scheduler 

instances communicate with each other to share the cost and load information. Meta-schedulers do not 

take global decisions at a single central point; rather many sites can participate in the scheduling 
decisions through sharing the information in their cost matrices. Each site can have information on 

load, queue size etc., can monitor its processing nodes and then propagate this information to other 

peers. Local and certain global policies are managed at the site level instead of a central hierarchical 
management.   

 

Figure 1: P2P Communication between Schedulers 

In the absence of this mechanism, it is possible that some of the jobs might be lost by the scheduler 
due to timeouts before they get an execution slot, insufficient space in the queue to hold the jobs or the 

fact that the frequency of submission cannot be handled by the central scheduling site. DIANA is a 

Data Intensive and Network Aware meta-scheduler which performs global meta-scheduling in a local 
environment and different meta-schedulers work in a P2P manner. Each site has a meta-scheduler that 

can communicate with all other meta-schedulers on other sites as shown in Figure 1. The scheduler is 

able to discover other schedulers with the help of a discovery mechanism. We do not replace the local 
schedulers in this architecture rather we have added a layer over each local scheduler so that site meta-

schedulers can talk directly to each other instead of getting directions from a central meta-scheduler. 

2.2. Algorithmic considerations for Job placement 

In the proposed scheduling algorithm, we want to maximize CPU utilization and throughput and 
minimize turnaround time, waiting and response time. A scheduling algorithm is created which forms 
an important element of the matchmaking process. The following are the targeted metrics within the 

scheduling process by which the optimization level of the scheduling system needs to be gauged: 

 Queue and waiting time  
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 Processing and execution  time 

 Input data transfer time  

 Executable transfer time  

 Results transfer time  

The total time to execute a job in a Grid environment will be the sum of all of these times. There are 

three major cost estimates which need to be calculated for the scheduling algorithm: the network, 

computation and data transfer costs and scheduling optimization will be based on these estimates. 

These estimates further depend on the parameters discussed in the following sections. The importance 
of each cost function can be adjusted by allocating weights to these parameters. These weights are 

dynamically assigned and their allocation procedure is discussed in the following sections. 

2.2.1 Network Cost   

By far the most important factor affecting the data intensive scheduling process is that of network cost. 
The load, capacity and availability of network links used during data transfers may heavily affect the 

Grid application performance. In order to provide the right quality of service (QoS) to Grid 

applications and hence to optimize scheduling, it is important to first understand how the network is 

performing and to determine the level of quality of service that currently exists in the network.  
TCP throughput can be obtained by combining the losses and the Round Trip Times (RTTs) using 

Mathis‟s formula [4] for deriving the maximum TCP throughput. Given the historical measurements 

of the packet loss and the RTT, we can calculate the maximum TCP bandwidth for a certain amount of 
time for various groups of sites. Mathis‟s formula describes a useful formula for the upper bound on 

the transfer rate:  

Rate <  )
loss

()
RTT

MSS
(

1
  

Equation 1:  TCP throughput calculation 

Where rate is the TCP transfer rate, MSS is the maximum segment size (fixed for each Internet path, 
typically 1460 bytes), RTT is the round trip time (as measured by TCP) and loss is the probability of 

packet loss. We assign weights to each value depending upon the importance of the parameters to 

calculate an aggregate value of the network cost (NetCost): 

 

JitterW2lossRTT=Losses

where

Bandwidth

Losses
NetCost





 

Equation 2: Calculation of the Network Cost 

Where W is the weight assigned to each parameter depending upon the importance of a parameter. On 
the Internet, the network partitions a message into parts, called packets, with a certain size in bytes. A 

typical packet contains perhaps 1,000 or 1,500 bytes. Therefore loss is measured in bytes per second, 

RTT is measured in milliseconds and jitter is a number. Bandwidth is measured in bits per second and 

therefore network cost is in seconds. In extreme circumstances, it can be in hours if the network is 
performing poorly. All weights are assigned subject to a cost and a higher cost will lead to a higher 

weight. We can manipulate these weights to prioritize certain parameters in the algorithm.  
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2.2.2 Computation Cost 

The second important cost which needs to be part of the scheduling algorithm is the computation cost. 
Jin et al. describe a mathematical formula [5] to compute the processing time of a job: 

Computation Cost= W7SiteLoad+W6
P

Q
+W5

P

Q

ii

i   

Equation 3: Formula for the Computation Cost 

Where Q is the total number of waiting jobs on all the sites, Qi is the length of the waiting queue on 

site i, Pi is the computing capability of the site i (the total number of processors at site i) and SiteLoad 
is the current load on that site. SiteLoad is calculated by dividing the number of jobs running by the 

processing power of that site. The Qi/Pi ratio computes the processing time of the job. The unit of the 

computation cost is time (minutes or hours).  

2.2.3 Data Transfer Cost   

The third most important cost aspect in data intensive scheduling is the Data Transfer Cost (DTC) 
which includes input data, output data and executables. Park and Kim describe a mathematical 

technique [6] to calculate the aggregate data transfer time which includes all three parameters. Here 

we do not use bandwidth only to calculate the data transfer cost, rather we use the Network Cost (NC), 
as calculated in Section 2.2.1. A higher network cost will lead to a longer data transfer time and 

therefore a higher data transfer cost. Similarly a larger data size will take more time to transfer and 

therefore the cost required to transfer this data will be higher. From this discussion, we can deduce that 
the network cost and data transfer cost are proportional to each other and therefore:  

                             DTC = NCDataW8         ……… (I)         

We can further expand the equation I into the following expression: 

Data Transfer Cost (DTC) = Input DTC + Output DTC + Executables transfer cost  

DTC = NC)(InputData + NC)(OuputData + NC)e(executabl   

Equation 4: Data Transfer Cost 

In this equation, we consider three elements for data transfer. All data transfer costs are basically the 
time consumed in transferring the data, therefore the units balance on both sides of the equation. 
Executables mentioned in the data transfer cost are application data and user code which will be 

submitted for execution.  

2.2.4 Total Cost 

Once we have calculated the cost of each stake holder, the total cost is simply a combination of these 
individual costs as calculated in Sections 2.2.1, 2.2.2 and 2.2.3 thus: 

Total Cost C = Network Cost + Computation Cost + Data transfer Cost 

The main optimization problem that we want to solve is to calculate the cost of data transfers betweens 

sites (DTC), to minimize the network traffic cost between the sites (NTC) and also to minimize the 
computation cost of a job within a site. So, for any particular job we calculate the data transfer costs 

across all sites and choose the one with the minimum network, data transfer and compute cost.  
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2.3. Queue Management for the DIANA Meta-scheduler 

In conventional client-server scheduling architectures, local schedulers handle their queues at the site 
level whereas a meta-scheduler has a global queue.  However, in the DIANA architecture, there is one 

DIANA meta-scheduler at each site, i.e. the DIANA P2P meta-scheduler layer sits on top of one or 

many local schedulers at each site. This leads to a scalable and self-organizing meta-scheduling 
behaviour which was previously missing in some of the conventional client-server scheduling 

architectures. Each meta-scheduler has a queue management mechanism where it can queue the 

incoming jobs in a Scheduler Queue as shown in Figure 2, and the meta-scheduler assigns priorities to 
the incoming jobs.  

At each site there are two queues. One is the meta-scheduler queue and the other is the queue of the 

local scheduler. The meta-scheduler queue deals with the global jobs and takes into account the Grid 

information whereas the local queue is site specific. Jobs cannot be migrated if the meta-scheduler has 
scheduled them to any local scheduler and they will have to wait in the local scheduler queue until 

they get the execution slot. Only the jobs from the DIANA meta-scheduler queue are exported to other 

sites. In contrast, once a job is allocated to a local scheduler at a site, it is never exported and waits in 
the local queue until assigned to a processor. All the prioritization of jobs, policy enforcement, 

migration and job steering issues are handled at the DIANA P2P level whereas the local scheduler 

works exactly in the same fashion as before once the job has been allocated to it.  

 

Figure 2: Queue Management in DIANA P2P Scheduler 

The re-prioritization algorithm may result in the migration of jobs from low priority to high priority 

queues or vice versa. The reprioritization technique militates against aging since the jobs are assigned 
new priorities on the arrival of each new job and each job gets its appropriate place in the queues 

according to the new circumstances. In the case of congestion in the queues, the algorithm will migrate 

the jobs to some remote site where there are fewer jobs waiting in the queues.  
 

3.  Results and Discussion 

3.1 Architecture related results 

We present here the results of the scalability tests for the DIANA scheduling approach. These are 

simulation results since it was not feasible to deploy the complete DIANA system on such a large 
number of sites. In these tests, we assumed that there was a meta-scheduler on each node (here, a node 

corresponds to a site), and all the nodes worked in a P2P manner. As shown in figure 3, the number of 

nodes and the number of jobs scheduled to the Grid were increased gradually to test which algorithm 
gave the steepest increase in time taken. In this test, jobs of a processing requirement of 3 MFLOP and 

a bandwidth load of 1 MB were launched to the Grid. The Round Robin algorithm has a steep linear 

curve showing that it is the most non-scalable of the candidates. The FLOP (Floating point Operations 
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Per Second) shows too much variation in this case, although, on the whole, it clearly is more scalable 

than Round Robin. The DIANA approach has the best performance; it shows a nearly linear increase, 

and hence it is very scalable. This also indicates that DIANA is a suitable approach for large scale 

Grids since it can support increasing numbers of nodes. 

 

Figure 3: Scalability Test for DIANA 

3.2 Algorithm related results 

We first submitted jobs on the GILDA Testbed without the DIANA Scheduler and measured the 
queue, execution and data transfer times. After this, jobs were re-submitted following the algorithm 
employed in the DIANA Scheduler which includes the measurement of queue, execution and data 

transfer times. We took a particular computationally intensive job from the CMS experiments which 

produced a very large amount of data. We selected this job because its execution time is of the order of 
minutes, in order to minimise the effect of varying network characteristics. Tests are performed by 

submitting jobs through GILDA's user interface. The client machine had a Pentium based 2.4 GHz 

processor and 1 GB RAM. The network card was of 100 Mbps capacity.  

The DIANA Scheduling is equally applicable to short and long duration jobs. For the longer jobs it is 
the execution time which will vary and accordingly queue times will also increase. The execution cost 

will remain the same with time since, once a job is submitted, whether it is a long or a short job, it will 

not be pre-empted until it completes its execution (and therefore it is not time dependant). The same is 
the case for the data transfer cost which should remain the same whether a longer job is being 

executed or a shorter job is being scheduled. The only variable which can change with time is the 

network cost. Although the network cost can influence the data transfer cost it does not affect the 
execution time since jobs do not communicate with each other during execution. The data transfer cost 

is the replication cost and is equally important for the longer and shorter jobs as far as their execution 

times are concerned.  

Firstly we submitted 25 jobs on the GILDA Testbed and observed their queue and execution times. 
The GILDA Testbed employed the gLite workload management system (WMS) as a meta-scheduler 

and therefore the submitted jobs followed either eager or lazy scheduling with resources being 

allocated on a FCFS basis. Figure 4 and 5 show the queue and execution times of WMS against which 
we are comparing the DIANA meta-scheduler. Secondly, we submitted the same number of jobs three 

times and re-measured the queue and execution times. Then we increased the number of jobs to 500 

and then gradually to 1000, so that we could check the capability of the existing scheduling system. 

We can see that with an increasing number of jobs the execution performance increases which 
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indicates the effect of the DIANA scheduling approach. Here we note that the effect of DIANA 

became more significant as the number of jobs increased since DIANA identifies only those sites for 

job executions which are least loaded and which preferably have the required data, since this will 

reduce any transfer times. As shown in Figures 5, the DIANA Scheduler with its multi-queue priority 
mechanism had an improved execution.  Multi-queuing not only enabled the short job first execution 

but also managed the queues on a priority basis and significantly reduced the total execution times. 

Queue Time vs Number of Jobs
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Figure 4:  Queue time versus number of jobs 

Job Execution Time comparison between three techniques

0

20

40

60

80

100

120

140

100 250 500 700 1000

No of Jobs

Jo
b

 E
xe

cu
ti

o
n

 T
im

e 

(m
in

)

With Priority

Calculation

With SJF

With Simple

Scheduler

                                            
Figure 5: Execution time comparison 

Figure 6 demonstrates the results related to network issues which have a high impact on the execution 

of the data intensive jobs. In this experiment, we submitted the same number of jobs to different sites 

with different network conditions. The bandwidth varied from 10MB/s to 1000MB/s to enable us to 

gauge its effect on the job execution time. We used Iperf [7] to generate the extra network traffic and 
to saturate the network so that available bandwidth could vary from 10 to 1000 Mbps. In these tests we 

showed the effect of bandwidth on the execution time of the jobs. The data size was the same for all 

the jobs. Here the execution time included the time required to schedule and execute the job to one of 
the „best sites‟ plus the time required in sending the data and job to that remote site and the time 

elapsed in queuing on that remote site. We used different networks to check the influence of the 

network parameters on the data transfer cost.  From the comparison graph in Figure 6, we note that the 
network plays a vital role in scheduling decisions.  
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Effect of Bandwidth over Execution Time
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  Figure 6: Execution times vs. bandwidth. 

3.3 Queue related results 
 

Effect of Different Number of Jobs on Job Priority 
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Figure 7. Number of Jobs and Priority 

 
The results suggest that job priority decreases gradually when a user keeps sending jobs in the 

scheduler queue. Thus, in the case when a user bombards a site with hundreds of jobs, the scheduler 

decreases the priority of the jobs of that particular user. Figure 7 shows that at the outset, when a user 

starts sending his jobs in the queue its priority was high however, if he bombard the site with jobs, the 
priority decreased gradually with an increasing number of jobs. The results suggest that a large 

number of jobs from a user lead to a lower job priority. Thus the algorithm makes best use of the 

available resources to schedule the short jobs before the resources are allocated to the large jobs. It 
helps the scheduler to prevent resource starvation since shorter jobs will have to wait for a very long 

time if long jobs are scheduled first. Similarly, a higher number of jobs from a user will lead to a 

lower priority for his/her jobs so that no user can prevent other users in using resources by submitting 
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bursts of jobs. The priority mechanism will prevent the users and jobs from manipulating Grid 

resources and will provide a fair-share utilization of resources for all users and applications. 
 

4. Conclusions and Future Direction 

We have demonstrated that a cost-based approach can improve the scheduling process if each job is 
submitted and executed after taking into consideration certain associated costs. Our results 

demonstrate that a P2P meta-scheduler is better suited to Data Intensive And Network Aware 

(DIANA) scheduling than a single, centralized meta-scheduler. A multi-queue, priority-driven 
feedback based bulk scheduling algorithm is proposed and the results suggest that it can significantly 

improve the Grid scheduling and execution process. 

In future, we plan to explore the data characteristics and train the algorithms which can minimize the 
analysis and discovery time by running them on distributed resources and using new matchmaking and 

knowledge discovery techniques. There are a number of questions which need to be investigated in 

this research area. For example, how can we scale the algorithms as the number of records or 

observations, attributes and the demand for interactivity and real-time response increases? How can 
we automatically (instead of manually) find the patterns and clusters of particles in the (physics) data 

distributed across the world using scalable algorithms by mining large, massive and high dimensional 

data sets and how can we predict the future trends using the past behaviour of the particles? Similarly, 
we also need to find how we can minimize the replication and data transfer using some abnormality 

and outlier detection techniques. 
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