
Journal of Physics: Conference Series

Data analysis with the DIANA meta-scheduling
approach
To cite this article: A Anjum et al 2008 J. Phys.: Conf. Ser. 119 072004

View the article online for updates and enhancements.

Related content
CMS distributed data analysis with CRAB3
M Mascheroni, J Balcas, S Belforte et al.

-

Big Data Analysis of Manufacturing
Processes
Stefan Windmann, Alexander Maier, Oliver
Niggemann et al.

-

Data management on the fusion
computational pipeline
S Klasky, M Beck, V Bhat et al.

-

This content was downloaded from IP address 195.194.178.30 on 26/01/2018 at 16:07

https://doi.org/10.1088/1742-6596/119/7/072004
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062038
http://iopscience.iop.org/article/10.1088/1742-6596/659/1/012055
http://iopscience.iop.org/article/10.1088/1742-6596/659/1/012055
http://iopscience.iop.org/article/10.1088/1742-6596/16/1/070
http://iopscience.iop.org/article/10.1088/1742-6596/16/1/070

Data Analysis with the DIANA Meta-Scheduling Approach

Ashiq Anjum
1
, Richard McClatchey

1
and Ian Willers

2

1
CCS Research Center, UWE Bristol

2
CERN, Geneva Switzerland

E-mail: {ashiq.anjum; richard.mcclatchey; ian.willers}@cern.ch

Abstract. The concepts, design and evaluation of the Data Intensive and Network Aware

(DIANA) meta-scheduling approach for solving the challenges of data analysis being faced by

CERN experiments are discussed in this paper. Our results suggest that data analysis can be

made robust by employing fault tolerant and decentralized meta-scheduling algorithms

supported in our DIANA meta-scheduler. The DIANA meta-scheduler supports data intensive

bulk scheduling, is network aware and follows a policy centric meta-scheduling. In this paper,

we demonstrate that a decentralized and dynamic meta-scheduling approach is an effective

strategy to cope with increasing numbers of users, jobs and datasets. We present "quality of

service" related statistics for physics analysis through the application of a policy centric fair-

share scheduling model. The DIANA meta-schedulers create a peer-to-peer hierarchy of

schedulers to accomplish resource management that changes with evolving loads and is

dynamic and adapts to the volatile nature of the resources.

1. Introduction
Data collection and data storage rates are growing at an exponential pace in high energy physics

analysis. For example, the LHC experiments will need to store, access and analyze around 10

Petabytes per year which will require the use of around 200 Teraflop/s of processing power. By 2015,
particle physicists will be using Exabytes of storage and Petaflop/s of computation [1]. If the current

trends continue, such an explosion of data would clearly outstrip our ability to make meaningful use of

it. With the unstoppable growth in data collection, meta-scheduling can play an important role in the
way massive data sets are analyzed.

Future decision making systems will require quicker and more reliable algorithms, architectures and

models for job scheduling to enable efficient discovery and analysis. Current approaches for job

scheduling strongly depend on a single instance of a scheduler and cannot provide scalable solutions
for bulk scheduling. The efficient utilization of a Grid infrastructure (around 200 sites in the LCG

Grid) and data/results is not a trivial exercise if the scheduler is unable to submit jobs to a site which

cannot process them quickly. There should be a scheduling mechanism that can help users in the rapid
analysis of their jobs by selecting optimal sites and that can support „chaotic„ analysis where

thousands of users submit millions of jobs and various schedulers should cooperate to handle the tasks

which cannot be managed by a single scheduler. There should also be a mechanism to reduce the data
transfer between sites since replication cost is too high for data intensive applications and jobs should

be submitted to sites which have the best chance of executing them as soon as is practical. There

should also be a mechanism whereby the scheduler should not have jobs lingering in queues for an

unlimited time; these jobs should get a fair chance of execution at the earliest and each job and user

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 072004 doi:10.1088/1742-6596/119/7/072004

c© 2008 IOP Publishing Ltd 1

should get an optimum quality of service from the scheduling and resource management system. The

DIANA Scheduling objective is that by using novel data scheduling algorithms and architectures, the

information in a range of distributed datasets should be extracted quickly and efficiently with the same

or a reduced set of resources. This should not only reduce the data transfer and event finding time
(which can currently take days) but will also make significant savings in system resources.

2. The DIANA Scheduling Approach
We analyzed the scheduling problem in hand and tried to investigate the issues which are major

sources of sub-optimal performance for the scheduling systems. We realized that existing scheduling

systems build on the client-server model and are not fault tolerant. There is no mechanism that can

help different meta-schedulers to intercommunicate and withstand the jobs pressure at a single site.
There is no mechanism which can offload the job load on a site to remote peers and collaboratively

work with other sites. Schedulers may be subject to failure or may not perform efficient scheduling

when they are exposed to millions of jobs requiring different quality of service needs and different
scheduling. They may not be able to re-organize or export scheduled jobs which could result in large

job queues and long execution delays. What is required is a decentralized scheduling system which not

only automatically exports jobs to its peers under potentially severe load conditions (such as with bulk
jobs), but at the same time it manages its own scheduling policies, whilst queuing jobs and monitoring

network conditions such as bandwidth, throughput and latency.

We also realized that the queuing mechanism that is required to improve such a scheduling problem

should follow a carefully planned queuing scheme. In existing scheduling systems, most queuing
approaches are based on a First-In-First-Out policy and other similar considerations which can lead to

a poor quality of service and jobs hanging for days. Such approaches are absolutely not feasible where

users want immediate response to their jobs or the jobs are critical and can not wait more than a
predefined time. There should be a mechanism to associate priorities to each job inside the queue,

depending on the user profile and job requirements with the scheduler servicing high priority jobs

preferentially to improve the quality of service provision to users. There should also be a mechanism

for exporting jobs to least loaded sites and for scheduling „out of turn‟ high priority jobs. There should
also be a mechanism to provide optimal utilization of all resources to avoid resource starvation. An

efficient queuing approach is one of the most important considerations for ensuring quality of service

and smooth functioning of the Grid operations for a diverse range of users and applications.
We also found that the best match between jobs and resources is central to optimizing the

matchmaking process. We therefore need to embed the network information into the scheduling

algorithm to improve the efficiency and the utilization of a Grid system. The overall goal is to
minimize the computing time for applications which involve large-scale data. Hence, the centralized

scheduling algorithms that focus only on maximizing processor utilization by mapping jobs to idle

processors, and disregarding network costs, queue times, job priorities and costs associated with

accessing remote data are unlikely to be efficient [2]. Similarly, the scheduling decisions which always
force the job movement towards the data without taking the Grid “weather”, the network load and the

data size and location into consideration can lead to significant inefficiencies in performance and can

be responsible for large job queues and processing delays.
Considering the effects of and then compensating for network characteristics can avoid making these

less-than-ideal scheduling decisions. Our big challenge thus becomes finding means to express these

requirements in a format that the meta-scheduler engine can understand. This engine should use
mathematical techniques to make decisions and generate the overall behaviour of the system based on

the global network characteristics. The basic job scheduling algorithm at each site should be driven by

some weighting value calculated for each potential target location which is a function of the available

network characteristics, the processing cycles, job priorities, queue length and input and output
“sandboxes” of data and the one having least cost should be given priority. The DIANA (Data

Intensive and Network Aware) scheduling approach builds upon three considerations as outlined in the

following sections.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 072004 doi:10.1088/1742-6596/119/7/072004

2

2.1. Architectural considerations for the DIANA Meta-Scheduler

A meta-scheduler coordinates the communication between multiple heterogeneous local schedulers
that typically manage clusters in a LAN environment. These local and meta-schedulers form a

hierarchy and individual schedulers sit at different levels in the hierarchy as discussed by Mausolf in

[3]. Each local scheduler can cooperate and communicate with its siblings through a meta-scheduler,
however, each meta-scheduler cannot communicate with other meta-schedulers of other sites or Grids.

Communication is only possible between local schedulers and the meta-scheduler. In the P2P

approach, a meta-scheduler and a local-scheduler make a hierarchy at each site where global decisions
are managed by the meta-scheduler whereas local control and allocations are made by the local

scheduler. The meta-scheduler on each site has access to global information and all meta-scheduler

instances communicate with each other to share the cost and load information. Meta-schedulers do not

take global decisions at a single central point; rather many sites can participate in the scheduling
decisions through sharing the information in their cost matrices. Each site can have information on

load, queue size etc., can monitor its processing nodes and then propagate this information to other

peers. Local and certain global policies are managed at the site level instead of a central hierarchical
management.

Figure 1: P2P Communication between Schedulers

In the absence of this mechanism, it is possible that some of the jobs might be lost by the scheduler
due to timeouts before they get an execution slot, insufficient space in the queue to hold the jobs or the

fact that the frequency of submission cannot be handled by the central scheduling site. DIANA is a

Data Intensive and Network Aware meta-scheduler which performs global meta-scheduling in a local
environment and different meta-schedulers work in a P2P manner. Each site has a meta-scheduler that

can communicate with all other meta-schedulers on other sites as shown in Figure 1. The scheduler is

able to discover other schedulers with the help of a discovery mechanism. We do not replace the local
schedulers in this architecture rather we have added a layer over each local scheduler so that site meta-

schedulers can talk directly to each other instead of getting directions from a central meta-scheduler.

2.2. Algorithmic considerations for Job placement

In the proposed scheduling algorithm, we want to maximize CPU utilization and throughput and
minimize turnaround time, waiting and response time. A scheduling algorithm is created which forms
an important element of the matchmaking process. The following are the targeted metrics within the

scheduling process by which the optimization level of the scheduling system needs to be gauged:

 Queue and waiting time

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 072004 doi:10.1088/1742-6596/119/7/072004

3

 Processing and execution time

 Input data transfer time

 Executable transfer time

 Results transfer time

The total time to execute a job in a Grid environment will be the sum of all of these times. There are

three major cost estimates which need to be calculated for the scheduling algorithm: the network,

computation and data transfer costs and scheduling optimization will be based on these estimates.

These estimates further depend on the parameters discussed in the following sections. The importance
of each cost function can be adjusted by allocating weights to these parameters. These weights are

dynamically assigned and their allocation procedure is discussed in the following sections.

2.2.1 Network Cost

By far the most important factor affecting the data intensive scheduling process is that of network cost.
The load, capacity and availability of network links used during data transfers may heavily affect the

Grid application performance. In order to provide the right quality of service (QoS) to Grid

applications and hence to optimize scheduling, it is important to first understand how the network is

performing and to determine the level of quality of service that currently exists in the network.
TCP throughput can be obtained by combining the losses and the Round Trip Times (RTTs) using

Mathis‟s formula [4] for deriving the maximum TCP throughput. Given the historical measurements

of the packet loss and the RTT, we can calculate the maximum TCP bandwidth for a certain amount of
time for various groups of sites. Mathis‟s formula describes a useful formula for the upper bound on

the transfer rate:

Rate <)
loss

()
RTT

MSS
(

1


Equation 1: TCP throughput calculation

Where rate is the TCP transfer rate, MSS is the maximum segment size (fixed for each Internet path,
typically 1460 bytes), RTT is the round trip time (as measured by TCP) and loss is the probability of

packet loss. We assign weights to each value depending upon the importance of the parameters to

calculate an aggregate value of the network cost (NetCost):

JitterW2lossRTT=Losses

where

Bandwidth

Losses
NetCost





Equation 2: Calculation of the Network Cost

Where W is the weight assigned to each parameter depending upon the importance of a parameter. On
the Internet, the network partitions a message into parts, called packets, with a certain size in bytes. A

typical packet contains perhaps 1,000 or 1,500 bytes. Therefore loss is measured in bytes per second,

RTT is measured in milliseconds and jitter is a number. Bandwidth is measured in bits per second and

therefore network cost is in seconds. In extreme circumstances, it can be in hours if the network is
performing poorly. All weights are assigned subject to a cost and a higher cost will lead to a higher

weight. We can manipulate these weights to prioritize certain parameters in the algorithm.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 072004 doi:10.1088/1742-6596/119/7/072004

4

2.2.2 Computation Cost

The second important cost which needs to be part of the scheduling algorithm is the computation cost.
Jin et al. describe a mathematical formula [5] to compute the processing time of a job:

Computation Cost= W7SiteLoad+W6
P

Q
+W5

P

Q

ii

i 

Equation 3: Formula for the Computation Cost

Where Q is the total number of waiting jobs on all the sites, Qi is the length of the waiting queue on

site i, Pi is the computing capability of the site i (the total number of processors at site i) and SiteLoad
is the current load on that site. SiteLoad is calculated by dividing the number of jobs running by the

processing power of that site. The Qi/Pi ratio computes the processing time of the job. The unit of the

computation cost is time (minutes or hours).

2.2.3 Data Transfer Cost

The third most important cost aspect in data intensive scheduling is the Data Transfer Cost (DTC)
which includes input data, output data and executables. Park and Kim describe a mathematical

technique [6] to calculate the aggregate data transfer time which includes all three parameters. Here

we do not use bandwidth only to calculate the data transfer cost, rather we use the Network Cost (NC),
as calculated in Section 2.2.1. A higher network cost will lead to a longer data transfer time and

therefore a higher data transfer cost. Similarly a larger data size will take more time to transfer and

therefore the cost required to transfer this data will be higher. From this discussion, we can deduce that
the network cost and data transfer cost are proportional to each other and therefore:

 DTC = NCDataW8  ……… (I)

We can further expand the equation I into the following expression:

Data Transfer Cost (DTC) = Input DTC + Output DTC + Executables transfer cost

DTC = NC)(InputData + NC)(OuputData + NC)e(executabl 

Equation 4: Data Transfer Cost

In this equation, we consider three elements for data transfer. All data transfer costs are basically the
time consumed in transferring the data, therefore the units balance on both sides of the equation.
Executables mentioned in the data transfer cost are application data and user code which will be

submitted for execution.

2.2.4 Total Cost

Once we have calculated the cost of each stake holder, the total cost is simply a combination of these
individual costs as calculated in Sections 2.2.1, 2.2.2 and 2.2.3 thus:

Total Cost C = Network Cost + Computation Cost + Data transfer Cost

The main optimization problem that we want to solve is to calculate the cost of data transfers betweens

sites (DTC), to minimize the network traffic cost between the sites (NTC) and also to minimize the
computation cost of a job within a site. So, for any particular job we calculate the data transfer costs

across all sites and choose the one with the minimum network, data transfer and compute cost.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 072004 doi:10.1088/1742-6596/119/7/072004

5

2.3. Queue Management for the DIANA Meta-scheduler

In conventional client-server scheduling architectures, local schedulers handle their queues at the site
level whereas a meta-scheduler has a global queue. However, in the DIANA architecture, there is one

DIANA meta-scheduler at each site, i.e. the DIANA P2P meta-scheduler layer sits on top of one or

many local schedulers at each site. This leads to a scalable and self-organizing meta-scheduling
behaviour which was previously missing in some of the conventional client-server scheduling

architectures. Each meta-scheduler has a queue management mechanism where it can queue the

incoming jobs in a Scheduler Queue as shown in Figure 2, and the meta-scheduler assigns priorities to
the incoming jobs.

At each site there are two queues. One is the meta-scheduler queue and the other is the queue of the

local scheduler. The meta-scheduler queue deals with the global jobs and takes into account the Grid

information whereas the local queue is site specific. Jobs cannot be migrated if the meta-scheduler has
scheduled them to any local scheduler and they will have to wait in the local scheduler queue until

they get the execution slot. Only the jobs from the DIANA meta-scheduler queue are exported to other

sites. In contrast, once a job is allocated to a local scheduler at a site, it is never exported and waits in
the local queue until assigned to a processor. All the prioritization of jobs, policy enforcement,

migration and job steering issues are handled at the DIANA P2P level whereas the local scheduler

works exactly in the same fashion as before once the job has been allocated to it.

Figure 2: Queue Management in DIANA P2P Scheduler

The re-prioritization algorithm may result in the migration of jobs from low priority to high priority

queues or vice versa. The reprioritization technique militates against aging since the jobs are assigned
new priorities on the arrival of each new job and each job gets its appropriate place in the queues

according to the new circumstances. In the case of congestion in the queues, the algorithm will migrate

the jobs to some remote site where there are fewer jobs waiting in the queues.

3. Results and Discussion

3.1 Architecture related results

We present here the results of the scalability tests for the DIANA scheduling approach. These are

simulation results since it was not feasible to deploy the complete DIANA system on such a large
number of sites. In these tests, we assumed that there was a meta-scheduler on each node (here, a node

corresponds to a site), and all the nodes worked in a P2P manner. As shown in figure 3, the number of

nodes and the number of jobs scheduled to the Grid were increased gradually to test which algorithm
gave the steepest increase in time taken. In this test, jobs of a processing requirement of 3 MFLOP and

a bandwidth load of 1 MB were launched to the Grid. The Round Robin algorithm has a steep linear

curve showing that it is the most non-scalable of the candidates. The FLOP (Floating point Operations

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 072004 doi:10.1088/1742-6596/119/7/072004

6

Per Second) shows too much variation in this case, although, on the whole, it clearly is more scalable

than Round Robin. The DIANA approach has the best performance; it shows a nearly linear increase,

and hence it is very scalable. This also indicates that DIANA is a suitable approach for large scale

Grids since it can support increasing numbers of nodes.

Figure 3: Scalability Test for DIANA

3.2 Algorithm related results

We first submitted jobs on the GILDA Testbed without the DIANA Scheduler and measured the
queue, execution and data transfer times. After this, jobs were re-submitted following the algorithm
employed in the DIANA Scheduler which includes the measurement of queue, execution and data

transfer times. We took a particular computationally intensive job from the CMS experiments which

produced a very large amount of data. We selected this job because its execution time is of the order of
minutes, in order to minimise the effect of varying network characteristics. Tests are performed by

submitting jobs through GILDA's user interface. The client machine had a Pentium based 2.4 GHz

processor and 1 GB RAM. The network card was of 100 Mbps capacity.

The DIANA Scheduling is equally applicable to short and long duration jobs. For the longer jobs it is
the execution time which will vary and accordingly queue times will also increase. The execution cost

will remain the same with time since, once a job is submitted, whether it is a long or a short job, it will

not be pre-empted until it completes its execution (and therefore it is not time dependant). The same is
the case for the data transfer cost which should remain the same whether a longer job is being

executed or a shorter job is being scheduled. The only variable which can change with time is the

network cost. Although the network cost can influence the data transfer cost it does not affect the
execution time since jobs do not communicate with each other during execution. The data transfer cost

is the replication cost and is equally important for the longer and shorter jobs as far as their execution

times are concerned.

Firstly we submitted 25 jobs on the GILDA Testbed and observed their queue and execution times.
The GILDA Testbed employed the gLite workload management system (WMS) as a meta-scheduler

and therefore the submitted jobs followed either eager or lazy scheduling with resources being

allocated on a FCFS basis. Figure 4 and 5 show the queue and execution times of WMS against which
we are comparing the DIANA meta-scheduler. Secondly, we submitted the same number of jobs three

times and re-measured the queue and execution times. Then we increased the number of jobs to 500

and then gradually to 1000, so that we could check the capability of the existing scheduling system.

We can see that with an increasing number of jobs the execution performance increases which

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 072004 doi:10.1088/1742-6596/119/7/072004

7

indicates the effect of the DIANA scheduling approach. Here we note that the effect of DIANA

became more significant as the number of jobs increased since DIANA identifies only those sites for

job executions which are least loaded and which preferably have the required data, since this will

reduce any transfer times. As shown in Figures 5, the DIANA Scheduler with its multi-queue priority
mechanism had an improved execution. Multi-queuing not only enabled the short job first execution

but also managed the queues on a priority basis and significantly reduced the total execution times.

Queue Time vs Number of Jobs

0

200

400

600

800

1000

50 100 200 500 1000

Number of Jobs

Q
u

e
u

e
 T

im
e
s
 (

M
in

u
te

s
)

Without DIANA

With DIANA

Figure 4: Queue time versus number of jobs

Job Execution Time comparison between three techniques

0

20

40

60

80

100

120

140

100 250 500 700 1000

No of Jobs

Jo
b

 E
xe

cu
ti

o
n

 T
im

e

(m
in

)

With Priority

Calculation

With SJF

With Simple

Scheduler

Figure 5: Execution time comparison

Figure 6 demonstrates the results related to network issues which have a high impact on the execution

of the data intensive jobs. In this experiment, we submitted the same number of jobs to different sites

with different network conditions. The bandwidth varied from 10MB/s to 1000MB/s to enable us to

gauge its effect on the job execution time. We used Iperf [7] to generate the extra network traffic and
to saturate the network so that available bandwidth could vary from 10 to 1000 Mbps. In these tests we

showed the effect of bandwidth on the execution time of the jobs. The data size was the same for all

the jobs. Here the execution time included the time required to schedule and execute the job to one of
the „best sites‟ plus the time required in sending the data and job to that remote site and the time

elapsed in queuing on that remote site. We used different networks to check the influence of the

network parameters on the data transfer cost. From the comparison graph in Figure 6, we note that the
network plays a vital role in scheduling decisions.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 072004 doi:10.1088/1742-6596/119/7/072004

8

Effect of Bandwidth over Execution Time

0

500

1000

1500

2000

2500

3000

3500

10 61 90 150 250 500 10000

Bandwidth in (Mbps)

J
o

b
 E

x
e

c
u

ti
o

n
 T

im
e

 (
m

in
s

)

100 Jobs

200 Jobs

300 Jobs

500 Jobs

600 Jobs

1000 Jobs

s

 Figure 6: Execution times vs. bandwidth.

3.3 Queue related results

Effect of Different Number of Jobs on Job Priority

in Queue

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1

29
5

58
9

88
3

11
77

14
71

17
65

20
59

23
53

26
47

29
41

32
35

35
29

38
23

No of Jobs

Jo
b

 P
ri

o
ri

ty User1

User3

User5

User7

Figure 7. Number of Jobs and Priority

The results suggest that job priority decreases gradually when a user keeps sending jobs in the

scheduler queue. Thus, in the case when a user bombards a site with hundreds of jobs, the scheduler

decreases the priority of the jobs of that particular user. Figure 7 shows that at the outset, when a user

starts sending his jobs in the queue its priority was high however, if he bombard the site with jobs, the
priority decreased gradually with an increasing number of jobs. The results suggest that a large

number of jobs from a user lead to a lower job priority. Thus the algorithm makes best use of the

available resources to schedule the short jobs before the resources are allocated to the large jobs. It
helps the scheduler to prevent resource starvation since shorter jobs will have to wait for a very long

time if long jobs are scheduled first. Similarly, a higher number of jobs from a user will lead to a

lower priority for his/her jobs so that no user can prevent other users in using resources by submitting

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 072004 doi:10.1088/1742-6596/119/7/072004

9

bursts of jobs. The priority mechanism will prevent the users and jobs from manipulating Grid

resources and will provide a fair-share utilization of resources for all users and applications.

4. Conclusions and Future Direction

We have demonstrated that a cost-based approach can improve the scheduling process if each job is
submitted and executed after taking into consideration certain associated costs. Our results

demonstrate that a P2P meta-scheduler is better suited to Data Intensive And Network Aware

(DIANA) scheduling than a single, centralized meta-scheduler. A multi-queue, priority-driven
feedback based bulk scheduling algorithm is proposed and the results suggest that it can significantly

improve the Grid scheduling and execution process.

In future, we plan to explore the data characteristics and train the algorithms which can minimize the
analysis and discovery time by running them on distributed resources and using new matchmaking and

knowledge discovery techniques. There are a number of questions which need to be investigated in

this research area. For example, how can we scale the algorithms as the number of records or

observations, attributes and the demand for interactivity and real-time response increases? How can
we automatically (instead of manually) find the patterns and clusters of particles in the (physics) data

distributed across the world using scalable algorithms by mining large, massive and high dimensional

data sets and how can we predict the future trends using the past behaviour of the particles? Similarly,
we also need to find how we can minimize the replication and data transfer using some abnormality

and outlier detection techniques.

5. References

[1] Tony Hey and Anne Trefethen, Grid Computing – Making the Global Infrastructure a Reality,

Wiley, January 2003
[2] Kavitha Ranganathan ,Ian Foster, Decoupling Computation and Data Scheduling in Distributed

Data-Intensive Applications , HPDC 2002.

[3] Jeff Mausolf, IBM, Grid Computing Initiative Grid in action: Managing the resource managers,
developerWorks, 2005 http://www-128.ibm.com/developerworks/Grid/library/gr- metasched/

[4] Mathis, Semke, Mahdavi & Ott, The macroscopic behaviour of the TCP congestion avoidance

algorithm, Computer Communication Review, 27(3), July 1997.

[5] H. Jin, X. Shi et al. An adaptive Meta-Scheduler for data-intensive applications, International
Journal of Grid and Utility Computing 2005 - Vol. 1, No.1 pp. 32 - 37

[6] S. Park, and J. Kim, Chameleon: a resource scheduler in a data Grid environment, Proceedings

of the 3rd IEEE/ACM Symposium on Cluster Computing and the Grid, Tokyo, 2003
[7] Iperf Bandwidth measurement tool, http://dast.nlanr.net/Projects/Iperf/

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 072004 doi:10.1088/1742-6596/119/7/072004

10

