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Abstract—Genome variant analysis is performed on
Variant Call Format (VCF) files. It can take days
to process these files for genome analytics due to
challenges such as loading the files for each user query
and processing them to answer questions of interest.
As data sizes grow, timely processing of this data
is putting enormous pressure on the computational
resources, leading to significant processing delays and
may jeopardise the ultimate goal of bringing the ge-
nomic discoveries to masses. We believe this problem
will not be solved until the underlying data struc-
ture to organise and process these files undergoes a
transformation. To overcome this problem, we have
proposed a graph based system to represent the data
in VCF files. This allows the data to be loaded once
in a graph model which is then subsequently queried
and processed numerous times without any additional
computational and data access penalties. This helps
reduce data access time by giving a constant time
access to any node and addresses performance and
scalability challenges that have been a limiting factor
for the mass scale adoption of genome analytics. It
takes only 2ms to access any data node in our graph
model and remains constant for any number of nodes.

Keywords-VCF; genome; variant analysis; graph
model;

I. Introduction

Latest advancements in DNA sequencing technology
have made it possible to sequence the human genome
quickly and cheaply, generating exabytes of data. The
variations or differences between the genomes of dif-
ferent individuals are known as variants. These are
obtained from the process of Variant Calling and are
stored in text files called Variant Call Format (VCF).
The variant information from the VCFs are used for
interpretation of different things such as diagnosing
genetic disorders, population studies and personalised
medicine etc. by running the variations through a series
of analysis, along with clinical annotations, to bring out
meaningful insights [1] [15].

VCF files are not easy to understand which is why
existing variant analysis tools and pipelines have been
developed for ease-of-use. However, the biggest drawback
with these is the processing of large amounts of data.

For example, a VCF file from Phase 3 of the 1000
Genomes Project1 containing 84.4 million variants from
2504 individuals is over hundred gigabyte in size. Doing
data analysis on this size means discovering differences,
patterns and hidden information within the genome
ranging from single nucleotide sites to large nucleotide
changes. The data in the VCF files is repeatedly accessed
and processes are run on them iteratively. Therefore,
the main challenge is to overcome the Input/Output
bottleneck, CPU and memory limitations as well as
decreasing the computation time.

Here, we aim to introduce a graph model which maps
the human genome variations (from VCF) onto a human
Reference Genome. The proposed graph model is flexible
enough to represent different categories of variations
such as insertions and deletions. It also allows data to
be quickly browsed, which helps speed up the analysis
process significantly using intelligent data analysis and
system optimisation approaches [20], [21].

This paper describes the contents of the VCF file
in Section II, and then explains in Section III why
using graphs is a better option than VCF files. It then
describes the graph model for VCF in Section IV, and
how different variations are represented on this model
in Section V. It then talks about implementation and
results in Sections VI and VII respectively. In the end,
Section VIII concludes this paper and gives future direc-
tions for this work.

II. The VCF File and Variant Analysis
VCF2 is a standard and well-defined text file for

storing variations in the genome and allows for rich
annotations [2] [3]. The maintenance and expansion of
the standardised format is currently with the “Global
Alliance for Genomics and Health Data Working group
file format team”3.

VCF consists of two parts - the header and the body.
The header carries meta-data about variant fields. The

1http://www.internationalgenome.org
2http://samtools.github.io/hts-specs/VCFv4.2.pdf
3https://genomicsandhealth.org/working-groups/our-work/
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Figure 1. The VCF File data format. The header contains meta
information about variants. The body has 8 mandatory fields
(columns) and each row is a separate record.

body is in a tabular form with eight mandatory fields
and can represent small-scale variations such as Single
Nucleotide Polymorphisms (SNPs), insertion and dele-
tions (indels) as well as other types of variations includ-
ing variations observed in a population and structural
variations. Each column within the body separates the
fields and each row contains information about a single
variation and is called a VCF record. Figure 1 shows the
arrangement of the data within the VCF file. The VCF
eliminates redundancy by not storing those portions
of the genome which are the same as the Reference
Genome.

In order to interpret called variants for downstream
analysis, the VCF first undergoes pre-processing. It is
then loaded, browsed, annotated, filtered and stored by
variant analysis tools and pipelines to get meaningful
insights.

Different tools have been developed to address the
different challenges at the different stages of VCF analy-
sis. BrowseVCF [2] and GEMINI [4] address the loading
problem. Commercially available Ingenuity4, Alamut5,
GoldenHelix SNP6 and VariantStudio7 as well as open
source tools, such as, SNVerGUI [5], database.bio [6],
gNOME [7], BrowseVCF [2] and VCFloci [8] aim towards
providing a user-friendly interface to make data access
easy while providing efficient ways to browse the data.
Annotation can be added to variants in the VCFs using
GEMINI [4], snpEff [9], Annovar [10] and VEP [11] [35]
and Vcfanno [12]. Filtering of variants can be done using
Vcffilter in vcflib8 , Jvarkit9 , GATK [13] and VCF-Miner
[14]. Storage challenges are addressed by GEMINI [4].

The distributed analysis of large scale VCF data which
is distributed geographically could be performed using

4http://www.ingenuity.com/
5http://www.interactive-biosoftware.com/alamut-visual
6http://goldenhelix.com/SNP Variation/index.html
7http://www.illumina.com/informatics/research/

biological-data-interpretation/variantstudio.html
8https://github.com/vcflib
9http://lindenb.github.io/jvarkit

HPC, grid and cloud-based approaches [16], [17], [18],
[19].

III. Why graphs
A graph is an arrangement of data in the form of nodes

and edges. The nodes represent the data properties and
attributes, whereas the edges represent the relationships
between the nodes. We have used Directed Graphs to
create our graph model because the relationships be-
tween the data properties can be defined in different
directions. Our graph model is made to reside inside a
native graph database. Once the graph model is created
and loaded to a native graph database, the data can be
browsed quickly and iteratively due to the nature of the
database.

On the other hand, the existing tools and pipelines
browse the VCF files repeatedly to reach the different
locations of interest within the files. This creates an
I/O bottleneck because the files have to parsed from
the top for every query. When represented as a graph,
the required data node can be reached directly without
having to parse through other parts of the data. This
makes browsing and querying the graph easier than
querying a VCF file.

IV. VCF Graph Model
In order to address the challenges associated with

VCF discussed previously, we present an alternative data
model which will allow for quick, efficient and iterative
data analysis.

Figure 2. Graph Model of the Reference Genome: This models
the nucleotides at any given locus in the Reference Genome.

The first step to create a graph model is to represent
the human reference genome as a directed graph. In
doing so, each nucleotide is marked where it resides on
the genome by associating it with a locus. The locus
can be described as the address of a nucleotide by
marking the position and chromosome number. Having
this address makes it easy to attach variations later.

The human Reference Genome data is read from a
FASTA file which contains the chromosomes and the
nucleotides at those chromosomes. In order to translate
the Reference Genome to our graph model, two types of
nodes are created using Algorithm 1: the chromosome
node and the position node (as can be seen in Figure 2).

Each position is made into a node and holds the value
“nucleotide base” taken from the same position within



the FASTA file. Each chromosome node holds the value
“chromosome number”. Each position node is connected
to a subsequent node as well as a chromosome node
(using directed edges) indicating the position of that
nucleotide on the given chromosome.

Algorithm 1: FASTA to Reference Genome Graph
Model
Input: FASTA file
Output: Nodes and edges in Graph Query
Language

create chromosome node c;
foreach char m in FASTA file do

find position p;
create position node n;
add attributes position p, nucleotide m to node
n;
create edge from n to c;
if n + 1 is not last node then

create edge from n to n + 1;

Position and Chromosome nodes share the relation
“at” and the two nodes can be traversed to and from
each other. This allows for reading positions at any
chromosome as well as reading chromosome numbers
from any position. The position nodes can be only
traversed in the forward direction from start to end. The
relation between one position node and the next position
node is “followed by”.

Figure 3. Variation Graph Model: The nodes and edges with bold
lines are from the VCF file, where as the rest of the nodes and edges
are from the Reference Genome FASTA file.

In order to map the variations from VCF to the
Reference Genome, additional nodes are added to the
Reference Genome graph model, using Algorithm 2, to
get a Genome Variation graph model (Figure 3) to
include the VCF variation records. The updated graph
model now has:

• Chromosome Node: containing the Chromosome
Number,

• Position-Reference Node: containing the Position
Number of a nucleotide base on the chromosome
and the Reference Nucleotide,

• Alternate Node: containing the alternate nucleotide
at the given position within the chromosome from
the VCF file,

• VCF Record: containing information about the vari-
ation from the VCF file,

• Header Node: linking the VCF Record to its VCF
file, and

• Header Meta Nodes: containing meta information
from the header part of the VCF file.

The information within the Alternate Node, VCF
Record, Header and the HeaderMeta Node comes from
the VCF file, whereas the information within the rest of
the nodes comes from the FASTA file of the Reference
Genome. The edges define the relationships between two
nodes, and these relationships remain fixed.

Algorithm 2: VCF to Variation Graph Model
Input: VCF file, Reference Genome Graph Model
Output: Nodes and Edges in Graph Query
Language

foreach record m in VCF do
find chromosome c;
find position p;
modify position node p by creating an edge to
the alt node a;
add altNucleotide an to node a;
create edge from alt node a to position node
pEnd;
create edge from alt node a to vcfRecord node
v;
create edge from vcfRecord node v to header
node h;
create edge from header node h to headerMeta
node hm;

V. Modelling the different types of
variations in the graph model

VCF encodes different types of variations from Single-
Nucleotide Polymorphisms (SNPs) to structural varia-
tions. Here, we talk about the different events (types of



variations), how to identify them from the VCF record
and how to model them onto a graph.

A. Substitution
A substitution occurs when a nucleotide base is re-

placed by another. In a VCF record, this would look
like:

This VCF record shows a Single-Nucleotide Polymor-
phism (SNP) i.e. a variation in a single nucleotide at a
given position. This means that this variation leads to
two alleles. An allele can be described as a variant. In
this case, the two alleles are:

Position: P1 P2 P3 P4
Allele 1: A G C C
Allele 2: A G T C

When modelled to a graph, the path the nucleotides
are following in the reference genome (indicated by the
edges between the position nodes) is modified using
Algorithm 2. It now includes the edges to the alternate
nucleotide which is being substituted at a given position.
This can be seen in Figure 4.

Figure 4. Substitution Model of SNP with single base substitution
and two alleles.

B. Deletion
A deletion event occurs when nucleotide bases are

removed from the DNA sequence altogether. These dele-
tions could be small (usually only one to a few base pairs
being removed within the region of a single gene) or large
(deletion of an entire region, such as a gene or several
neighbouring genes). In a VCF record, a small deletion
would look like:

Here, the VCF Record shows that a deletion of two
reference bases C and G has occurred. The REF field
shows TCG and the ALT field shows T indicating that

the reference allele TCG is being replaced by just the T
(deleting CG). This deletion leads to two alleles:

Position: P1 P2 P3 P4 P5
Allele 1: A T C G A
Allele 2: A T - - A

Deletion is modelled in the graph by modifying the
edges and indicating a deletion in the Alt node using
Algorithm 2. This can be seen in Figure 5. The path
followed by Allele 1 is through Position nodes 2 → 3 →
4 → 5. Allele 2 follows the path 2 → 4. The ALT node
indicates the presence of an allele and the “-” within this
node indicates a deletion.

Figure 5. Deletion Model of two reference bases C and G.

C. Insertion
Insertion happens when extra nucleotide bases are

added at any given position. These can be few or many,
such as gene duplication, where whole genes are copied
and added at a given chromosome location.

Figure 6. Insertion Model of three bases TAG.

The following VCF record shows that in the ALT
column, three additional bases TAG have been inserted
after the reference nucleotide base C (at the REF col-
umn):

When mapped to the graph model, this VCF record
shows two alleles:



Position: P1 P2 P3 P4 P5
Allele 1: A T C - - - G A
Allele 2: A T C T A G G A

As can be seen in Figure 6, Allele 1 is represented
by the path followed by the position nodes. Allele 2
follows the path through position nodes 3 and 4, but
the additional bases TAG are inserted as ALT nodes
between position 3 and 4. Algorithm 2 modifies the edges
and adds the extra nodes in the variation to the graph
model.

VI. Implementation
Algorithms 1 and 2 were used to convert the VCF file

to graph. Python scripting was used to convert each VCF
record to nodes and edges as Cypher queries. Cypher is
a Graph Query Language used by Neo4j which allows
creation of nodes and relationships. When these queries
are pushed into Neo4j, they result in a graph.

Two text files, FASTA and VCF, were given as input.
Each nucleotide in the FASTA file was used to write a
CREATE position node query. The position number and
nucleotide were made attributes to the node. Edges be-
tween the position nodes were defined as the relationship
between two nodes. This was also written as a CREATE
relationship query in Cypher.

Figure 7. (a) A CREATE node Cypher query being pushed into
the output file. (b) Cypher queries being translated to a graph in
Neo4j.

Next, each record from the body of the VCF was
extracted. Different regular expressions were used to
find the different fields in the columns. These were used
as attributes to the nodes. Here, a new node type,
ALT (containing information about the variation), was
defined. The position node from the FASTA file was
appended to the ALT nodes by using the MODIFY
relationship command in Cypher, which allows creation

of a new relationship to an existing node. This way,
the different variations, such as insertion, deletion and
substitution were incorporated into the graph model.

The output file contained Cypher queries to create and
modify the nodes and edges. These were then pushed
into Neo4j where the graph was generated. Figure 7 (a)
shows a Cypher query being pushed into the output file
using Python. Figure 7 (b) shows the nodes and edges
in the Neo4j environment.

VII. Results
A. Data Translation and Correctness

The main goal of the Graph Model is to translate the
data from VCF into a graph. Each line in the body of
the VCF makes a single VCF record. Each record has
eight mandatory fields, and may have additional sample
fields. The graph model works around these fields and
incorporates the information within.

The VCF record below translates to the graph model
in Figure 8:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA0001
20 10696 rs6040 A G,T 67 PASS NS=2 GT:GQ:DP 1|2:21:6

The following Cypher queries were used to translate
the VCF record into a graph model with nodes and
edges:

Nodes:
CREATE (cr20:CHROM {id:20}), (p2:POSRES {p:10965,
r:‘G‘}),
(p3:POSRES {p:10966, r:‘A‘}), (p4:POSRES {p:10967, r:‘C‘})

Edges:
CREATE (cr20)-[:HAS]->(p2), (cr20)-[:HAS]->(p3),
(cr20)-[:HAS]->(p4), (p2)-[:TO]->(p3), (p3)-[:TO]->(p4)

These queries create four nodes. One of these nodes
is of type chromosome with label “CHROM” and prop-
erty “id”. The other three nodes are of type position-
reference with label “POSRES” and properties “p” and
“r” representing position and reference nucleotide. This
information was extracted from the VCF using python
scripting.

Once the graph was generated, the same Query Lan-
guage was used to update the graph by appending
nodes with variation information. The following queries
modify the graph above to include additional nodes and
relationships describing variations:

New Nodes:
CREATE (a1:ALT {a:‘G‘}), (a2:ALT {a:‘T‘})

New Edges:
MODIFY (p2)-[:ALTPATH]->(a1), (p2)-[:ALTPATH]->(a2),
(a1)-[:ALTPATH]->(p4), (a2)-[:ALTPATH]->(p4)

The Cypher queries were passed to the native graph
database Neo4j (Figure 8) which generated the graph
model.



Figure 8. Nodes and Edges in Neo4j

As shown in Figure 8., the CHROM field from the
VCF record is converted to the node type “chromosome”
with label CHROM and has node property set to the
value of the CHROM from the VCF record. The second
node type “locus” is created with two labels POSRES.
The properties of the node type “locus” are set to the
position value and the reference nucleotide from the
VCF record. The third node type “variation” is created
with the label ALT and its node property is set to the
alternative nucleotide(s) from the VCF record.

The node types “chromosome” and “locus” follow a
one-to-many relationship. This is because a chromosome
is indexed to have many nucleotide positions, whereas
any given position is only associated with one chromo-
some. On the other hand, the relationship between the
“locus” nodes is one-to-one in the forward direction,
since the locus is sequential from the start position
to the end position. The node type “locus” and node
type “variation” have a one-to-many relationship since
a particular locus can have one or more variations.

In order to check the correctness of the graph, we
checked to see if the the entire VCF Record could be
reconstructed without loss of any information by query-
ing the graph. The following Cypher query generated the
VCF Record in Figure 8 :

MATCH(p:POS{name: ‘10695’})-[:AT]-(c:CHROM{: ‘20’})
RETURN c.name AS #CHROM, p.name AS POS, rec.id AS
ID, r.name AS REF, alt.name AS ALT, rec.qual AS QUAL,
rec.filter AS FILTER, rec.info AS INFO rec.format AS FOR-
MAT, rec.sample AS NA0001

B. Performance
1) Load time: Existing tools load the VCF file be-

fore any analysis can be done. Our graph model goes
through an additional step of converting the VCF to

Cypher queries before being converted to a graph. It was,
therefore, expected that our graph model would take a
longer time to load into the environment where it would
be ready to be queried.

Our graph model took 32 hours to load a VCF file
from the 1000 Genomes Project containing 39.7 million
variants to the Neo4j Graph Database, as compared to
28 hours by GEMINI [4] which is a relational database,
as shown in Figure 9.

Figure 9. The graph showing Data Insertion Time as the number
of variants increase.

The advantage with the graph model is that load needs
to be done only once. After the graph model is loaded
to the graph database, only the nodes containing the
variations need to be modified, instead of loading new
VCF files and all the records.

2) Browsing: It takes 2ms to access a data node of our
graph model in Neo4j. This makes browsing time a lot
faster since the access time is constant for any number
of nodes present. In contrast, a text file is parsed till the
locus is reached. Depending on whether the locus is at
the beginning of the file or at the end, it can take hours
to browse the data. This is shown in Figure 10.

Figure 10. The graph showing the time it takes to browse a VCF
record and the nodes in the Graph Model.



VIII. Conclusion and future direction

All underlying approaches in Genome Analysis make
use of VCF files. Due to the iterative nature of analysis,
the VCF files need to be parsed several times to extract
the desired information. In order to improve the query
and processing times, we introduced a graph model as
an alternative data structure. The data from VCF was
converted to nodes and edges in our graph. The native
graph database, Neo4j was used to construct our graph.
This reduced our query time significantly as it takes a
constant of 2ms to reach any node, no matter how many
nodes are present.

In future, we will move the graph model to a high
performance in memory environment, which will make
the model more efficient. It will make it faster to analyse
the data, since the time to load data each time for
analysis will be reduced. New variations could be added
to the model, without inserting the graph model to the
graph database again. The use of in-memory and HPC
frameworks will make it easy to parse variations which
will in turn make analysis faster, less expensive, and
more accurate.
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