
THE CLARENS GRID-ENABLED WEB SERVICES FRAMEWORK:
SERVICES AND IMPLEMENTATION

Conrad Steenberg, Julian Bunn, Iosif Legrand, Harvey Newman, Michael Thomas, Frank van Lingen
California Institute of Technology, Pasadena, CA, 91125

Ashiq Anjum, Tahir Azim,
National University of Science and Technology, Rawalpindi, Pakistan

Abstract

This paper describes progress made in the development
of the Clarens Web Services Framework, including a sec-
ond Java-based server implementation, improved perfor-
mance, a global lookup and discovery service leveraging
of the MonALISA monitoring system, and adapting the
framework to a secure message-based transport protocol.

INTRODUCTION
The Clarens Web Services Framework aims to provide

the basis for a consistent, high-performance, fault tolerant
system of distributed web services for data-intensive inter-
active and batch analysis in the CMS experiment.

By leveraging existing, widely implemented standards
and software components, including the HTTP proto-
col, SSL/TLS (RFC 2246) encryption and X509 (RFC
3280)1 certificate-based authentication, and SOAP/XML-
RPC data serialization, Clarens also aims to be easily ac-
cessible to a wide variety of client implementations with
the minimum of software dependencies. This approach
lowers the barriers of entry to participate in the service net-
work, re-use of existing developer skills, and a wide choice
of development tools and languages.

During the last 18 months development focus has shifted
from designing the basic services and security architecture
[9], to implementing a first set of services for CMS, as well
as taking a more global view of how these services would
inter-operate in large services networks. In the following
paragraphs the specific work done to achieve this goal will
be described.

JAVA-BASED CLARENS SERVER
In response to a strong preference for developing

Clarens services in the well-known Java language ex-
pressed by colleagues at NUST, a collaborative effort was
started to develop a second server implementation. The
Java language and runtime environment has several desir-
able characteristics, including implementations on several
platforms, a large developer community, and mature web
service development tools.

The resultant JClarens implementation is based on so-
called servlets implemented inside a commodity container,

1For Internet Engineering Task Force Request For Comment (RFC)
documents, see http://www.ietf.org/

in this case the open source Apache Tomcat[11] server.
Compared with the Apache/Python-based server, the

JClarens implementation shown in Figure 1 is able to lever-
age the existing file access (HTTP GET) functionality of
Tomcat, as well as being able to connect to the JINI-
based MonALISA[3] distributed monitoring system, where
it has access to a wealth of monitoring information, in-
cluding service description information published by other
Clarens servers.

JClarens provides fine-grained access control list (ACL)
secured access to all the core Clarens services[10], namely
the system administrative service, the file access ser-
vice, group VO management service, and proxy escrow
service for storing and retrieving proxy certificates. It does
not currently implement file upload or file ACL functional-
ity.

JClarens is able to host the standard Clarens browser-
based interface (web portal) unmodified, presenting a uni-
fied service interface, and more importantly, eliminating
the need to write a second browser based client interface.
This interface is implemented as a client-side Javascript ap-
plication that is loaded from the Clarens host server as with
any standard web page, and makes web service calls from
within the browser.

Figure 1: JClarens architecture.

DISCOVERY SERVICE
In a dynamic, global service environment the so-called

bootstrap problem of finding service endpoints needs to be

830



solved if such an environment is to scale to large numbers
of servers and users without incurring prohibitively large
amounts of administrative overhead.

In the next section a description is given of an attempt to
create a distributed service registry based on the so-called
web spider model, followed by a description of a more ef-
ficient implementation based on MonALISA.

Service Spider

Well known web search engines use a method known
as web crawling, with agents know as spiders to down-
load and collect as many publicly accessible web pages
as possible. This architecture was used as the basis for a
first attempt at a service discovery mechanism, where a
set of Apache/Python-based Clarens servers acted as spi-
ders to automatically access service descriptions of other
Clarens services, and make these descriptions available to
other web service clients, as shown schematically in Figure
2.

A web service API also provided methods to register and
search for service endpoints identified by a service name,
URL, server certificate distinguished name (DN) and seri-
alization protocol (currently SOAP or XML-RPC).

Additionally, all rendezvous service instances would
also register themselves to a configurable number of other
such instances that are deemed to be ‘close’, in network
access time, upon startup. In the case of the active servers
would periodically repeat this process to try and ensure that
even the passive servers contained reasonably up to date
information of nearby servers, as shown schematically in
Figure 2.

Figure 2: Discovery service implementation based on a dis-
tributed architecture of active and passive servers. The ac-
tive servers continuously update their own and others’ ser-
vice registries.

As an optimization, each active spider was limited to
making no more than a configurable maximum amount
of client connections per time unit in order to minimize
CPU and network usage overhead. Uncontactable servers
would be remove from the list of know servers, and in-
formation about these servers would not be provided to
rendezvous clients, including the service spiders in an

attempt to provide a graceful expiry of obsolete service ref-
erences.

This architecture ultimately proved to be too slow and
inefficient for several reasons: a) the overhead of manag-
ing large numbers Clarens client sessions proved difficult
to do efficiently, b) access controls implemented by servers
did not always allow the service spider to even initiate a
client session c) the information provided by any particu-
lar rendezvous service tended to be incomplete, leaving
some discovery still to be done by clients themselves and
d) obsolete service references expired from the registry too
slowly.

MonALISA Service Publication
In the process of developing services that rely on the

MonALISA monitoring framework as a data provider, it
was realized that the publish-subscribe network imple-
mented using the JINI technology also provides an ideal
mechanism for publishing service descriptions. MonAL-
ISA has proven itself as an extremely scalable global mon-
itoring system, being able to publish data from a large num-
ber of providers on short timescales.

Information provided to MonALISA is usually arranged
roughly as described by the so-called GLUE schema, as a
hierarchy of servers, farms, nodes and key/numerical value
pairs. While not the ideal for organizing service description
data, the other desirable qualities of the publish-subscribe
network were too good to ignore.

Figure 3: The MonALISA-based service discovery archi-
tecture. Clarens servers publish their service names and
version numbers to MonALISA station servers via UDP,
the latter then publish the service descriptions using the
peer-to-peer JINI network. Some JClarens servers contain
embedded JINI clients, which subscribe to the service in-
formation, and makes that available to Clarens clients via
a discovery service API.

Using this hierarchy, farm descriptions named
ClarensServers.VO are published for different
VOs by each server, with node names corresponding to the
service endpoint URL prefixed with the data serialization
protocol, e.g. soap.https://myserver.net. Key

831



names providing service meta-data are constructed at
the next lower level, e.g. service.name for different
service names, with version numbers contained in the cor-
responding value entries. Server certificate distinguished
names are published using a provider.DN notation.

Clarens servers can publish this information using the
very lightweight UDP-based ApMon mechanism to so-
called station servers that in turn republish it to the Mon-
ALISA network.

A first implementation of the above contacted a MonAL-
ISA global repository via an unauthenticated SOAP service
for every rendezvous search request. As with the spider
approach, this proved to perform very poorly, with laten-
cies of more that a few seconds seen for many queries.

A second implementation is illustrated in Figure 3 where
the JClarens server becomes a fully fledged JINI client,
gathering information in a similar way to the global repos-
itory. The server is consequently able to respond to service
searches far more rapidly by using information aggregated
in local memory.

A recent change in MonALISA to provide for non-
numerical data values to be published in the above hierar-
chy will allow richer service descriptions to be handled by
the system. Also, Clarens servers currently need to have
their URLs set manually by an administrator. A method
echo.hostname has been implemented that will enable
servers to look up their own URLs so that accurate infor-
mation can be reported to the service registry.

In future server releases the rendezvous service
would be renamed to the discover service to align the
naming more closely with that proposed by the Open Sci-
ence Grid[5] consortium for such a service.

PERFORMANCE MEASUREMENTS

Figure 4: Transaction rate summary for up to 80 concurrent
LAN-based clients

Performance is an important consideration for any server
that is aimed at interactive use by a large user community.
Poor performance would either lead to high hardware costs
for larger servers or unacceptably long response times.

A performance and scalability test was recently per-
formed using a CMS proto Tier-2 system consisting of a
dual 2.8 GHz Xeon server with 1GB of memory, accessed

using a 100 Mb/s local area network. In this test a con-
figurable number of unencrypted client connections were
opened and set to access the system.list methods
web service method as rapidly as possible. The client was
run on a 2.6 GHz Pentium 4 workstation as a single process
opening connections to the server and completing requests
asynchronously, for a total of 10,000 requests per connec-
tion. The time taken for all the requests to finish was then
used to compute a request rate number.

I.e. for one client connection a total of 10,000 requests
would be issued, 20,000 for two clients, and so forth, up to
a total of 800,000 for 80 connections. A grand total of 3.6
billion requests were successfully completed without any
client or server errors.

Each request passed through two access control checks
involving several database accesses, namely checking
whether the client credentials are associated with a current
session, and whether the client has access to the particu-
lar method being called. No caching was performed on the
server, with each request incurring a database lookup for
all registered methods in the server, and serializing the re-
sultant list of more than 30 strings as an array response in
XML-RPC. The Python client de-serialized each response
to a native list object that could be used in the rest of the
script.

In effect this test reports the overhead that the
Clarens server system imposes on service requests, with
control passing through all parts of the server used by a
typical service.

This test under-reports the actual server performance for
at least two reasons: in a more realistic environment mul-
tiple client machines would be accessing the server, and
the Apache server configuration was used unmodified on a
Linux 2.4-based kernel which is known to be a sub-optimal
setup.

A final summary of the results of this test is given in
Figure 4, showing an average of 1,450 requests per second
served.

During the test the controlling Apache server process
that is responsible for accepting new requests and opening
new connections constantly used all available CPU time on
one of the two CPUs of the test server. This is probably
due to the way that the file descriptors used for network
connections are handled by the Linux 2.4 kernel.

Future tests will be repeated using Linux 2.6 kernels
as well as more optimized Apache configurations and
SSL/TLS-encrypted network connections. Informal tests
shows the latter to reduce performance by up to 50%.

MESSAGE-ORIENTED SERVICES

During the early development of the Clarens framework,
a need was expressed by the CMS experiment for the abil-
ity to interact with Physics analysis jobs running on com-
pute nodes. These compute nodes are generally part of
private networks protected by network address translation
(NAT) firewalls. Furthermore, the HTTP protocol used for

832



the current Clarens web services implementations was de-
signed for a request response mode of operation, making it
ill-suited for the type of asynchronous bi-directional com-
munication required.

Figure 5: Architecture of the messaging service network.
Clarens clients and servers exchange messages using a se-
cure backbone consisting of servers that host messaging
client connections, as well as dedicated message routers.

Instead, an approach using the ubiquitous instant mes-
saging (IM) architecture was decided upon. This archi-
tecture, shown in Figure 5 consists of a series of high-
performance servers acting as an overlay network back-
bone, with large numbers of clients connected to each
server using persistent TCP connections. In contrast to the
HTTP (web) server model, the IM server’s functionality is
quite simple: it needs to accept and send messages to in-
dividuals of groups of clients. These clients may be con-
nected to the same server or to different servers forming
part of the same network.

Additionally, IM servers usually allow peer-to-peer file
transfer, as well as so-called presence management, where
users can be notified whether other users are connected to
the network. This has the desirable side-effect that a dis-
covery service becomes particularly simple to implement,
since presence notification is handled by the IM servers al-
ready.

The development of an IM-based Clarens service layer
currently uses the SILC[7] protocol and tools, which was
designed with security and PKI-based message encryption
in mind. The RSA public/private keys used by SILC is
not currently RFC 3258 compatible, requiring a translation
step between the two formats at authentication time. Mes-
sages sent and received using the SILC protocol are fed into
the standard Python Clarens server code and processed in
the same way as HTTP messages (requests). This allows
the server code to be re-used, and existing Clarens services
to be made available to the IM-based clients.

Since messages can be sent and received by analysis
code asynchronously, analysis jobs can be instrumented to
act as Clarens servers, or clients sending information to
monitoring systems or remote debugging tools. The most
common form of such remote debugging information is ex-
pected to be the standard output of the job. Services im-
plemented by an analysis job might include the ability to
provide histogramming of certain program parameters, job

control, and the ability to change job parameters interac-
tively.

CONCLUSION
Clarens continues to be developed as a high-

performance, standards-compliant and easy to use
framework for implementing web services and clients.
Two compatible implementations provide service writers
a choice of implementation language and computing
platforms, with a choice between the XML-RPC and more
complex SOAP serialization formats available on both
servers.

A particularly exciting development is the use of a
message-oriented protocol, made possible by the protocol-
agnostic nature of the Clarens framework.

ACKNOWLEDGMENTS
This work supported by Department of Energy contract

DE-FC02-01ER25459, as part of the Particle Physics Data-
Grid project [6]. Clarens development is hosted by Source-
Forge.net [8].

REFERENCES
[1] The Clarens Web Service Framework,

http://clarens.sourceforge.net.

[2] JINI Network Technology,
http://wwws.sun.com/software/jini/

[3] Monitoring Agents in a Large Integrated System Architec-
ture, http://monalisa.caltech.edu.

[4] LeGrand, I., Newman, H., “MonALISA: An Agent Based,
Dynamic Service System to Monitor, Control and Optimize
Grid based Applications”, Paper 89, This Volume, Comput-
ing in High Energy Physics, Interlaken, 2004.

[5] The Open Science Grid consortium,
http://www.osg.org.

[6] Particle Physics DataGrid, http://www.ppdg.net.

[7] Secure Internet Live Chat,
http://www.silcnet.org.

[8] SourceForge.net Open Source Software Development web
site, http://www.sourceforge.net.

[9] Steenberg, C.D., Aslakson E., Bunn, J.J., Newman H.B.,
Thomas, M., van Lingen, F., “The Clarens Web Services
Architecture”, Proceedings of CHEP2003, La Jolla, Paper
MONT008, 2003.

[10] Steenberg, C.D., Aslakson E., Bunn, J.J., Newman H.B.,
Thomas, M., van Lingen, F., “The Clarens Web Client and
Server Applications”, Proceedings of CHEP2003, La Jolla,
Paper TUCT005, 2003.

[11] The Tomcat Servlet Engine,
http://tomcat.apache.org.

833


