
Traffic Monitoring Using Video Analytics in Clouds

Tariq Abdullah1,2, Ashiq Anjum1, M Fahim Tariq2, Yusuf Baltaci 2, Nikos Antonopoulos1

1College of Engineering and Computing,

University of Derby, United Kingdom
2XAD Communications, Bristol, United Kingdom

1{t.abdullah, a.anjum, n.antonopoulos}@derby.ac.uk,
2{m.f.tariq, yusuf.baltaci}@xadco.com

Abstract—Traffic monitoring is a challenging task on crowded
roads. Traditional traffic monitoring procedures are manual,
expensive, time consuming and involve human operators. They
are subjective due to the very involvement of human factor
and sometimes provide inaccurate/incomplete monitoring results.
Large scale storage and analysis of video streams were not
possible due to limited availability of storage and compute
resources in the past. Recent advances in data storage, processing
and communications have made it possible to store and process
huge volumes of video data and develop applications that are
neither subjective nor limited in feature sets. It is now possible to
implement object detection and tracking, behavioural analysis of
traffic patterns, number plate recognition and automate security
and surveillance on video streams produced by traffic monitoring
and surveillance cameras.
In this paper, we present a video stream acquisition, processing

and analytics framework in the clouds to address some of the
traffic monitoring challenges mentioned above. This framework
provides an end-to-end solution for video stream capture, storage
and analysis using a cloud based GPU cluster. The framework
empowers traffic control room operators by automating the
process of vehicle identification and finding events of interest
from the recorded video streams. An operator only specifies the
analysis criteria and the duration of video streams to analyse.
The video streams are then automatically fetched from the cloud
storage, decoded and analysed on a Hadoop based GPU cluster
without operator intervention in our framework. It reduces
the latencies in video analysis process by porting its compute
intensive parts to the GPU cluster. The framework is evaluated
with one month of recorded video streams data on a cloud based
GPU cluster. The results show a speedup of 14 times on a GPU
and 4 times on a CPU when compared with one human operator
analysing the same amount of video streams data.

I. INTRODUCTION

Traffic monitoring in crowded traffic areas and on motor-

ways is a challenging task. Manual registration of vehicles,

counting vehicles using magnetic loops, and roadside traffic

cameras are most commonly employed methods used by

traffic police and transportation planning authorities. These

approaches are subjective, inaccurate and at times may provide

incomplete monitoring results. There is also a lack of classifi-

cation and tracking of moving vehicles. These approaches do

not automatically produce color, size and vehicle type informa-

tion which are the key questions asked by law enforcement and

emergency services while dealing with an incident. Moreover,

these approaches are costly and time consuming to such an

extent that their usefulness is sometimes questionable.

There are approximately 4 million to 5.9 million cameras

in UK [1]. Camera based traffic monitoring and enforcement

of speed restrictions have increased from just over 300,000

in 1996 to over 2 million in 2004 [2]. In the traditional

traffic monitoring approaches, a video stream coming traffic

monitoring cameras is viewed live in traffic control rooms or

is recorded on a bank of DVRs or computer HDD for later

processing. Depending upon the needs, the recorded video is

retrospectively analyzed by police or other legal authorities.

Manual analysis of video footage is an expensive undertaking.

It is not only time consuming, but also requires a large number

of staff, office work place and resources. A human operator

loses concentration from video monitors only after 20 minutes;

making it impractical to go through recorded videos in a time

constrained scenario. In an under staffed control room, an

operator has to juggle between viewing live and recorded video

contents while searching for an object of interest making the

situation a lot worse [3].

The purpose of this research is to build a robust and

high throughput cloud computing based solution for automatic

analysis of video streams coming from traffic monitoring

cameras and recorded in a cloud based storage. The term video

analytics refers to the processing and analysis of video streams

using computing resources. An operator, sitting in a traffic

control room, only specifies the analysis criteria (explained

in Section III) and the duration of video streams to analyse

in the presented framework. The recorded video streams are

then automatically fetched from the cloud storage, decoded

and analysed on a Hadoop based GPU cluster without operator

intervention. The operator is notified after completion of the

analysis process and can access the analysis results from

the cloud storage. The framework reduces latencies in video

analysis process by using Nvidia GPUs. The cloud based

solution offers the capability to analyse video streams for on-

demand and on-the-fly monitoring and analysis of events.

The rest of the paper is organized as follow: The related

work and state of the art is described in Section II. The

presented video analytics framework is explained in Section

III. This section also explains different components of our

framework and their interaction. The algorithm used for de-

tecting vehicles from the recorded video streams is explained

in Section IV. Section V explains the experimental setup and

discusses the results in great detail. Whereas, the paper is

concluded in Section VI with some future research directions.

2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing

978-1-4799-7881-6/14 $31.00 © 2014 IEEE

DOI

39

II. RELATED WORK

Quite a large number of works have already been completed

in this field. In this section, we will be discussing some of the

recent studies defining the approaches for video analysis as

well as available algorithms and tools for cloud based video

analytics. We will conclude this section with salient features

of our presented framework that are likely to bridge the gaps

in existing research.

Object Detection Approaches
Automatic detection of objects in images/video streams

has been performed in many different ways. Most commonly

used algorithms include template matching [4], background

separation using Gaussian Mixture Models (GMM) [5], [6], [7]

and cascade classifiers [8]. Template matching techniques find

a small part of an image that matches with a template image.

A template image is a small image that may match to a part

of a large image by correlating it to the large image. Template

matching is not suitable in our case as object detection is done

only for pre-defined object features or templates.

Background separation approaches separate foreground and

background pixels in a video stream by using GMM [5], [6].

A real time approximation method that slowly adapts to the

values from the Gaussians and also deals with the multi-

model distributions caused by several issues during analytics

is proposed in [6]. Background frame differencing [9] is a

variation of background separation approaches and identifies

moving objects from their background in a video stream. It

uses averaging and selective update methods [9] for updat-

ing the background in response to environmental changes.

Background separation and frame differencing methods are not

suitable in our case as these are computationally expensive.

A cascade of classifiers (termed as HaarCascade Classifier)

[8] is an object detection approach and uses real AdaBoost

[10] algorithm to create a strong classifier from a collection

of weak classifiers. Building a cascade of classifiers is a

time and resource consuming process. However, it increases

detection performance and reduces the computation power

needed during the object detection process. We used cascade

of classifiers for detecting vehicles in video streams for the

results reported in Section V. The implementation details of

this algorithm and steps of creating a cascade classifier for

detecting vehicles is provided in Section IV.

Video Analytics in the Clouds
Large systems usually consist of hundreds or even thousands

number of cameras covering over a wide area, streams are

captured, processed at the local processing server and are

later transferred to a cloud based storage infrastructure for a

wide scale analysis. Since, enormous amount of computation

is required to process and analyze the video streams, high

performance computational approaches can be a good choice

for obtaining processing throughput. Hence, video stream

processing in the clouds has recently become an active area

of research to provide high computation, precision and effi-

ciency to real time implementation of video traffic monitoring.

However, major research focus has been on efficient video

content retrieval using Hadoop [11], encoding/decoding [12],

distribution of video streams [13] and on load balancing of

computing resources for on-demand video streaming systems

using cloud computing platforms [13], [14].

Video analytics have mainly been the focus of commercial

vendors. Vi-System [15] offers an intelligent surveillance

system with real time monitoring, tracking of an object within

a crowd using analytical rules and provides alerts for different

users on defined parameters. Vi-System does not work for

recorded videos, analytic rules are limited and need to be

defined in advance. SmartCCTV [16] provides optical based

survey solutions, video incident detection systems, high end

digital CCTV and is mainly used in UK transportation system.

Project BESAFE [17] aimed for automatic surveillance of

people, tracking their abnormal behaviour and detection of

their activities using trajectories approach for distinguishing

state of the objects. The main limitation of SmartCCTV and

Project BESAFE is lack of scalability to a large number of

streams and a requirement of high bandwidth for video stream

transmission.

IVA 5.60 [18] is an embedded video analysis system and is

capable of detecting, tracking and analyzing moving objects

in a video stream. It can detect idle and removed objects as

well as loitering, multiple line crossing, and trajectories of

an object. EptaCloud [19] extends the functionality provided

by IVA 5.60 and implements the system in a scalable environ-

ment. Intelligent Vision [20] is a tool for performing intelligent

video analysis and for fully automated video monitoring of a

premises with a rich set of features. IVA 5.60 and Intelligent

Vision are not scalable and do not serve our requirements.

Because of abundant computational power and extensive

support on multi-threading, GPUs have become an active

research area to improve performance of video processing

algorithms. For example, Lui et. al. [21] proposed a hybrid

parallel computing framework based on MapReduce program-

ming model which supports multi-core and GPU architecture

and the results suggest that such a model will be hugely

beneficial for video processing and real time surveillance

systems. We aim to use a similar approach in this research.

Existing cloud based video analytics approaches do not

support recorded video streams [15], lack scalability [16],

[17], and multi-core with GPU based approaches are still

experimental [21]. IVA 5.60 [18] and Intelligent Vision [20]

are not scalable, otherwise their approaches are close to the

approach presented in this research.

The presented framework uses a cloud based storage to

capture and record video streams and a GPU cluster to analyse

the recorded video streams using cascade classifier object

detection algorithm. This framework is explained in Section

III and the video analysis algorithm used for detecting vehicles

from the recorded video streams is detailed in Section IV.

III. VIDEO ANALYTICS FRAMEWORK

The presented video analytics framework provides an end-

to-end solution for video stream capture, storage, retrieval and

40

�������	

��
��	��

�������	
��
��	��

�����������	����	�

�	������
�����

�����������	����	�

������
�����	

��������
����!� 	

���"��	
���	�#

���"��	
���	�$

���"��	
���	��%#

���"��	
���	��

&�'#

&�'$

&�'��%#

&�'��

����	 ����
	�(�
��
�
	�(�

����	��������� ���	�����������	�)*�����	��

+�,��	���	� ���	���&'
 -��	������	�

��
����	��

�����	�
	�(�

��	�����.�� �����

/
"	

��
-�
0�
+
��

��
�

1
��

��
"�
�
��
 �
	�

Figure 1: System Architecture of the Stream Cloud

processing. This framework makes the video stream analysis

process efficient and reduces the processing latencies by port-

ing its compute intensive parts to Nvidia GPUs. It empowers
traffic control room operators by automating the process of

identifying vehicles and finding events of interest.

This section outlines the presented framework, its differ-

ent components and the interaction between them (Figure

1). The framework integrates both proprietary solutions for

video storage and retrieval and the non-proprietary file servers

(containing video streams) for video analytics. Video streams

are captured and stored in a local cloud based storage from

cameras installed on roads/motorways for traffic monitoring.

The analysis of these video streams is initiated on user’s

request (from the APS Client component as shown in Figure

1). A user defines region of interest in a video stream for

analysis and selects an analysis criteria. The analysis criteria

defines parameters for identification of different types of

vehicles (car, van or truck) and color based classification of

the identified vehicles. A user can specify the time interval

for analysis from the recorded video streams as the analysis

of all the video streams might not be required by a user. A

defined region of interest, an analysis criteria and the analysis

time interval are referred to as an Analysis Request in the rest

of the paper.

An analysis request is sent to the Hadoop based GPU

compute cluster for analysis. The compute cluster downloads

the video stream, specified in the analysis request, from the

cloud storage and performs analysis on the video stream.

Analysis results are stored in a MySQL database and the user

is notified of the completion of the analysis process. The user

can then access the analysis results from the database.

Our framework employs a modular approach in its design.

At the top level, it is divided into client and server compo-

nents. The server component runs as a daemon on the server

machines and performs the main task of video stream anal-

ysis using compute resources from the GPU compute cluster

established locally. Whereas, the client component supports

multi-user environment and runs on the client machines (traffic

control rooms in our case). The control/data flow in the

framework is divided into the following three stages:

• Video stream acquisition and storage

• Video stream processing for analysis

• Storing analysis results and informing end-users

The deployment of the client and server components is as

follows: The Stream Acquisition is deployed at the video

stream sources and is connected to the Storage Server through

1/10 Gbps LAN connection. The cloud based Storage Server

and the Processing Server are deployed collectively in a

Hadoop based GPU cluster and all these components run as

the Stream Cloud. The APS Client is deployed at the end-

user sites. We explain the components of our framework in

the remainder of this section.

A. Stream Acquisition
The Stream Acquisition component captures video streams

from the traffic monitoring cameras and transmits to the

requesting clients for relaying in traffic control room and/or

for storing these video streams. The captured streams are

encoded using H.264 encoder. Encoded video streams are

transmitted using RTSP protocol [22] in conjunction with

41

Video Format
Frame
Rate

Pixels per
Frame

Video
Resolution

Average Recorded
Video Size

CIF (Common Intermediate Format) 29.97 99.0k 352 X 288 7.50MB

QCIF (Quarter CIF) 29.97 24.8k 176 X 144 2.95MB

4CIF 29.97 396k 704 X 576 8.30MB

Full HD (Full High Definition) 29.97 1.98M 1920 X 1080 9.35MB

Table I: Supported Video Recording Formats

RTP/RTCP protocols [23]. Transmission of video streams is

initiated on a user’s request. A user connects to the stream

acquisition component by establishing an RTSP session. The

user is authenticated using CHAP protocol before establish-

ing a connection for stream transmission. The video stream

delivery starts immediately after a client is authenticated and

a session is established. Administrators in the framework are

authorized to change quality of the captured video streams.

Video streams are captured at 25 fps in the experimental results

reported in this paper. An explanation of important H.264

encoder parameters, selected values of these parameters, and

the supported video formats used in the stream acquisition is

provided below.

H.264 Encoder Parameters: H.264 is a block-oriented,
motion compensation based video encoding format with lossy

compression for the recording, compression, and distribu-

tion of video content from video stream sources [24]. The

resolution mode of the encoder is set for constant quality

with a constant bit rate of 200 kbps. Inter frame prediction

modes point to the position of matching macroblocks in a

reference frame and help in computing the motion vectors

from encoded frames. The encoder supports 16x16, 8x16, 16x8

and 8x8 macroblocks for inter frame prediction modes. The

intra prediction mode is set to 16x16 for less distortion in

a video frame and for smoother encoding of a video frame.

The encoder supports DC intra prediction mode only which

is a mean of the upper and left-hand samples. The constant

quantizer or QPmode is set to 10 for less toleration to the data

loss during encoding of a video frame. The motion estimation

resolution of the encoder is set to the integer pixel for reducing

duplication (redundant data) among the adjacent frames. The

search range of motion estimation is set to 32 for faster search

and its search method is selected as the diamond search (DAI)

for higher encoding speed. The intra blocks in P-frames is set

to check high average boundary error (ABE) and applies an

intra refresh rate of 300. The motion vectors are calculated

for each video frame and are recorded in MP4 files (Section

III-B).

Supported Video Formats: CIF, QCIF, 4CIF and Full HD
video formats are supported for video stream recording in the

Duration Minimum Size Maximum Size

2 Minutes (120 Seconds) 3 MB 120 MB

1 Hours (60 Minutes) 90 MB 3.6 GB

1 Day (24 Hours) 2.11 GB 86.4 GB

1 Week (168 Hours) 14.77 GB 604.8 GB

4 Weeks (672 Hours) 59.06 GB 2.419 TB

Table II: Average Disk Space Requirements for One Month of the
Recorded Video Streams

presented framework. The resolution (number of pixels present

in one frame) of a video stream in CIF format is 352x288 and

each video frame has 99k pixels approximately. QCIF (Quarter

CIF) is a low resolution video format and is used in setups

with limited network bandwidth. Video stream resolution in

QCIF format is 176x144 and each video frame has 24.8k

pixels approximately. 4CIF video format has 4 times higher

resolution (704x576) than that of CIF format and captures

more details in each video frame. CIF and 4CIF formats are

mostly used for acquiring video streams from the camera

sources for traffic monitoring in our framework. Full HD (Full

High Definition) video format captures video streams with

1920x1080 resolution and contains 24 times more details in a

video stream than CIF format. It is used for high resolution

video recording with availability of abundant disk storage and

high speed internet connection such as fibre optic connection.

A higher resolution video stream presents a clearer image of

the scene and captures more details. However, it also requires

more network bandwidth to transmit the video stream and

occupies more disk storage.

Other factors that may affect the video stream quality are

video bit rate and frames per second (fps). Video bitrate
represents the number of bits transmitted from a video stream

source to the destination over a set period of time and is a

combination of the video stream itself and mate-data about

the video stream. Frames per second represents the number

of video frames stuffed in a video stream in one second

and determines the smoothness of a video stream. The video

streams are captured with a constant bitrate of 200kbps and at

25 fps in the results reported in this paper. Table I summarizes

different aspects such as frame rate, pixels per frame, video

resolution and average recorded video size of the supported

video formats.

B. Storage Server
H.264 encoded video streams received from the video

sources, via stream acquisition, are recorded as MP4 files on

the Storage Server. The storage server has proprietary XAD

RL300 recorders. It stores video streams on disk drives and

meta-data about the video streams is recorded in a database

(see Figure 1). The acquired video streams are stored as 120

seconds long video files. This length is decided considering

network bandwidth, performance and fault tolerance consider-

ations in the presented framework. The average size of each

file for the supported video formats is given in Table I. The

motion vectors for each frame are recorded in a separate

container of the MP4 file at the storage time.

The average minimum and maximum size of a 120 seconds

long video stream, from one traffic monitoring camera, is 3MB

42

������
�����	

��������
����!� 	

��
�
	�(�

��
����	��

�����	�
	�(�

��	�����.�� �����

+������'�*��	��

-��	��
��	���$

-��	��
��	���#

�������	

��

�
������������

������
����������

�������
����������

������
����������

������
����������

 ��	����	

��

��������

��������

��������

�
�����!��"	�������

Figure 2: Stream Processing in a Compute Node

and 180MB respectively. One month of continuous recording

from one camera requires 59.06GB and 2.419TB of minimum

and maximum disk storage respectively. The storage capacity

required for storing these video streams from one camera is

summarized in Table II. The scale and management of the data

coming from hundreds or thousands of cameras is in Exabytes,

let alone all of the more than 4 million cameras in UK.

C. APS Server
The APS server sits at the core of our framework and per-

forms the video stream analysis. It consists of a cloud storage

for storing the recorded video streams, a processing server

having compute nodes with Nvidia GPUs in a Hadoop cluster

and the Cloud Storage (as shown in Figure 1). The analysis of

the recorded video streams is performed on the compute nodes

by applying the cascade classifier algorithm (see Section IV

for details). Selection of an algorithm varies according to the

intended purpose of the analysis. The analytics results and

meta-data about the video streams is stored in the Analytics

Database.

The processing server starts analysing the video streams on

receiving the analysis request from an end-user. It downloads

the recorded video streams from the cloud storage. The H.264

encoded video streams are decoded using the FFmpeg library

and individual video frames are extracted. The analysis process

is started on these frames by selecting features in an individual

frame and matching these features with the features stored

in the cascade classifier (Section IV). The information about

detected vehicles is stored in the analytics database. The user

is notified after completion of the analysis process. Overall

working of a compute node, for processing a video stream, in

the processing server is depicted in Figure 2.

D. APS Client
The APS Client is responsible for the end-user interaction

with the APS Server for traffic monitoring and supports

multi-user interaction. Different users may initiate the analysis

process for their specific requirements, such as vehicle identifi-

cation, vehicle classification, or the region of interest analysis.

These users can select the duration of recorded video streams

for analysis and can specify the analysis parameters (vehicle

identification, tracking etc). The analysis results are presented

to the end-users after an analysis is completed. The analysed

video streams along with the analysis results are accessible to

the end-users over 1/10 Gbps LAN connection from the cloud

storage.

IV. VIDEO ANALYSIS ALGORITHM

We used real AdaBoost based cascade classifier [8] al-

gorithm for detecting vehicles from the video streams. This

algorithm is applied in two stages. First, a cascade classifier is

trained from the training image data set. The trained classifier

is then used for detecting vehicles from the recorded video

streams.

Creating a Cascade Classifier: A cascade classifier com-
bining a set of weak classifiers using real AdaBoost [10]

algorithm is trained in multiple boosting stages. In the training

process, a weak classifier learns about the vehicles by selecting

a subset of rectangular features that efficiently distinguish both

classes of the positive and negative images from the training

data. This classifier is the first level of cascade classifier.

Initially equal weights are attached to each training example.

The weights are raised for the training examples misclassified

by the current weak classifier in each boosting stage. All

of these weak classifiers determine the optimal threshold

function such that mis-classification is minimized. The optimal

threshold function is mathematically represented as follow:

hj(x) =

{
1 if pjfj(x) < pjθj

0 otherwise

43

where x is the window, ft is value of the rectangle feature, pj
is parity and θt is the threshold. A weak classifier with lowest

weighted training error, on the training examples, is selected

in each boosting stage. The final strong classifier is a linear

combination of all the weak classifier and has gone through

all the boosting stages. The weight of each classifier in the

final classifier is directly proportional to its accuracy.

Building a cascade of classifiers increases detection perfor-

mance and reduces computation power during the detection

process. The cascade training process aims to build a cascade

classifier with more features for achieving higher detection

rate and a lower false positive rate. However, a cascade

classifier with more features will require more computational

power. The objective of the cascade classifier training process

is to train a classifier with minimum number of features

for achieving the expected detection rate and false positive

rate. Furthermore, these features can encode ad hoc domain

knowledge that is difficult to learn using finite quantity of the

training data.

We used a utility provided with OpenCV [25] to train the

cascade classifier for detecting vehicles from the recorded

video streams. The parameters used in the cascade classifier

training process and its performance results are detailed in

Section V.

Detecting vehicles from video streams using cascade clas-
sifier: The algorithm [8] starts scanning an individual video
frame for identifying rectangular features from the top-left

corner and finishes at the bottom-right corner. All the iden-

tified rectangular features are evaluated against the cascade

classifier in the detection process. We are not interested in

the smaller rectangular features while detecting vehicles from

video streams and discarded all the rectangular features that

are less than 20x20 pixels.

Instead of evaluating all the pixels of a rectangular regions,

the algorithm applies an integral image approach and calcu-

lates a pixel sum of all the pixels inside a rectangular feature

by using only 4 corner values of the integral image as depicted

in Figure 3. The integral image results in faster feature

evaluation than the pixel based systems. Scanning a video

frame and constructing an integral image are computationally

expensive tasks and can be further optimized as explained in

SectionV-B.

The identified features consist of small rectangular regions

of white and shaded areas and are evaluated against all the

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

�

�

�� �� �� ��

�� �� �� ���

�� ��� ��� ���

	� ��� �
� ���

�

�

��������	
����
�
�����	
����

Figure 3: Integral Image Representation

stages of the cascade classifier created above. The value of

any given feature is always the sum of the pixels within clear

rectangles subtracted from the sum of the pixels within shaded

rectangles. The evaluated image regions are sorted out between

positive and negative images (i.e. vehicles and non-vehicles).

An attentional cascade is applied for reducing the detection

time. In the attentional cascade, simple classifiers are applied

earlier in the detection process and a candidate rectangular

feature is rejected at any stage for a negative response from

the classifier. The strong classifiers are applied later in the

detection stages to reduce false positive detections. A positive

rectangular features from a simple classifier is further evalu-

ated by a second complex classifier from the cascade classifier.

The detection process rejects many of the negative rectangular

features and detects all of the positive rectangular features.

This process continues for all the classifiers in the cascade

classifier. This evaluation is time and resource consuming task

and needed further optimization (Section V-B).

V. EXPERIMENTAL SETUP & RESULTS

This section explains the experimental setup used for gen-

erating the reported results and provides a detailed discussion

of these results.

Video streams are acquired from the traffic monitoring

cameras installed on roads/motorways using the Stream Ac-

quisition component and are stored in the Storage Server. The

processing server is deployed on compute nodes. The compute

nodes have Intel Core i7 processor with 12 GB of RAM. The

Storage Server and the APS server are connected through 1/10

Gbps LAN connection. The results from CPU compute node

are compared with the results obtained from the GPU cluster

(Section V-A).

We used OpenCV [25], image/video processing library, with

C/C++ interface and its GPU component for implementing the

analysis algorithms explained in Section IV. Some primitive

image operations like converting image color space, image

thresholding and image masking are used from OpenCV li-

brary in addition to HaarCascade Classifier algorithm (Section

IV).

A. GPU Cluster
We explain the structure of our GPU cluster and different

challenges faced while porting algorithms from CPU to GPU.

A GPU cluster contains a host CPU node, a number of

homogeneous/heterogeneous GPUs on PCI-Express interface.

The compute nodes used in these experiments has Nvidia

Tesla K20C and Nvidia Quadro 600 GPUs. Nvidia Tesla K20

has 5 GB DDR5 RAM, 208 GBytes/sec data transfer rate,

13 multiprocessor units and 2496 processing cores. Nvidia

Quadro 600 has 1 GB DDR3 RAM, 25.6 GBytes/sec data

transfer rate, 2 multiprocessor units and 96 processing cores.

CUDA is used for implementing and executing the compute

intensive parts of the vehicle detection algorithm on a GPU.

It is an SDK, a software stack, uses SIMD (Single Instruction

Multiple Data) parallel programming model, provides fine-

grained data parallelism and thread parallelism nested within

44

Video
Format

Video Stream
Resolution

CPU Frame
Buffer Time

Frame Transfer
Time (CPU-GPU)

Single Frame Process Time Total Video Stream Analysis Time

CPU GPU CPU GPU

QCIF 177 X 144 0.11 msec 0.02 msec 3.03 msec 1.09 msec 9.39 sec 3.65 sec

CIF 352 X 288 0.28 msec 0.12 msec 9.49 msec 4.17 msec 29.31 sec 13.71 sec

4CIF 704 X 576 0.62 msec 0.59 msec 34.28 msec 10.17 msec 104.69 sec 34.13 sec

Full HD 1920 X 1080 2.78 msec 0.89 msec 44.79 msec 30.38 msec 142.71 sec 105.14 sec

Table III: Single Video Stream Processing Time on CPU & GPU for the Supported Video Formats

coarse-grained data and task parallelism [26]. A CUDA pro-

gram starts its execution on CPU (called host), processes

the data with CUDA kernels on a GPU (called device) and

transfers the results back to the host [27].

Challenges in porting CPU application to GPU cluster
Main challenge in porting a host application (CPU based

application) to a CUDA program is in identifying parts of the

host application that can be executed in parallel and isolating

data to be used by the parallel parts of the application. After

porting the parallel parts of the host application to CUDA

kernels, the program and data are transferred to the GPU

memory and the processing results are transferred back to the

host with the CUDA API function calls.

Second challenge is faced while transferring the program

data for kernel execution from CPU to GPU. This transfer is

usually limited by the data transfer rates between CPU-GPU

and the amount of available GPU memory.

Third challenge relates to the global memory access in a

CUDA application. The global memory access on a GPU

takes between 400 and 600 clock cycles as compared to 2

clock cycles of the GPU register memory access. The speed

of memory access is also affected by the thread memory

access pattern. The execution speed of a CUDA kernel will

be considerably higher for coalesced memory access (all the

threads in same multiprocessor access consecutive memory

locations) than that of non-coalesced memory access.

The above challenges are taken into account while porting

our CPU application to the GPU cluster. The way, we tackled

these challenges is detailed in Section V-B.

B. What is ported on GPU in our implementation and Why
A video stream consists of individual video frames. All of

these video frames are independent of each other from vehicle

detection perspective and can be processed in parallel. The

Nvidia GPUs use SIMD model for executing CUDA kernels.

Hence, video stream processing becomes an ideal application

for porting to GPUs as the same processing logic is executed

on every video frame.

We profiled the CPU execution of HaarCascade Classifier

algorithm, for detecting vehicles from the video streams, and

identified the compute intensive parts in it. Scanning a video

frame, constructing an integral image, and deciding the feature

detection are the compute intensive tasks in HaarCascade

Classifier algorithm and consumed most of the processing

of
Cars

Hit Rate
Miss
Rate

Boosting
Stages

Single-Scale Cars 200 88% 12% 12

Multi-Scale Cars 139 56% 44% 12

Table IV: Classifier Performance

resources and time. These functions are ported to GPU by

writing CUDA kernels in our GPU implementation.

The vehicle detection process executes partially on CPU

and partially on GPU. In our case, the CPU decodes a video

stream and extracts video frames from it. These video frames

and cascade classifier data are ported to a GPU for vehicle

detection. The CUDA kernels process a video frame and the

vehicle detection results are transferred back to the CPU.

C. Experimental Results
We first present a performance evaluation of the trained cas-

cade classifier obtained by following the process for creating

a cascade classifier detailed in Section IV. The remainder of

this section presents video stream analysis results.

Cascade Classifiers Performance
The UIUC image database [28] is used for creating the

cascade classifier. We used a utility provided with OpenCV

[25] for training the cascade classifier.

The images in this database are grey scaled and contain

front, side and rear views of the cars. There are 550 single-

scale car images and 500 non-car images in the training

database. The training database contains two test image data

sets. First test set of 170 single-scale test images contains

200 cars at roughly the same scale as of the training images.

Whereas, the second test set has 108 multi-scale test images

containing 139 cars at various scales. Minimum detection rate

was set to 0.999 and 0.5 was set as maximum false positive

rate. Test images data set varied in lightening conditions and

in background scheme.

Performance of the trained classifier is 88% for the single-

scale car images data set. Performance of the trained classifier

was 56% for the mixed-scale car images data set. Since the

classifier was trained with single-scale car images data set, less

performance of the classifier with multi-scale car images was

expected. Best detection results were found with 12 boosting

stages of the classifier. The performance results of cascade

classifier training are summarized in Table IV.

Video Stream Analysis
The presented framework is tested for analyzing the video

streams for detecting vehicles. By analysis of a video stream,

we mean decoding the video stream and detecting vehicles

from it. The results presented in this paper focus on the

processing time required for analyzing video streams. The

analysis time of the recorded video streams using a CPU

(Intel Core i7, 12GB RAM) is compared with the performance

gains on a GPU cluster having Nvidia Tesla K20C and Nvidia

Quadro 600 GPUs. The analysis of a video stream can be

broken down into the following four steps:

45

Video Stream CPU Analysis Time GPU Analysis Time
Length Days Hours Seconds Days Hours Seconds

2 Minutes 0.00 0.00 104.69 0.00 0.00 34.13

1 Hour 0.01 0.29 1046.9 0.00 0.03 255.96

1 Day 0.29 6.98 25125.6 0.03 0.64 6143.4

1 Week 2.04 48.86 175879.2 0.19 4.48 43003.8

1 Month 8.72 209.38 753768 2.13 51.2 184302

Table V: Time for Analyzing Video Streams of Different Duration in 4CIF Video Format

1) Decoding a video stream

2) Transferring a video frame and the classifier from CPU

memory to the GPU memory

3) Processing a video frame data on a GPU/CPU

4) Downloading the results from GPU to CPU

It is important to note that no transfer of data is required

in the CPU implementation as the video frame data is being

processed by the same CPU. The total video stream analysis

time on a CPU includes video stream decoding time and

video stream processing time. Whereas, the total video stream

analysis time on a GPU includes video stream decoding time,

the data transfer from CPU to GPU, the processing time on

GPU, and the results transfer time from GPU to CPU. The

time taken on all the steps for CPU and GPU execution is

explained in the rest of this section.

Decoding a Video Stream
Video stream analysis is started by decoding a video stream

using FFmpeg library. It involves reading a video file from

the hard disk and extracting video frames from it. It is

an I/O bound process and can potentially make the whole

video stream analysis very slow, if not handled properly. We

performed a buffered video stream decoding to avoid any

delays caused by the I/O process. The complete video stream

is read into buffers for further processing. The buffered video

stream decoding is also dependent on available amount of

RAM on a compute node. The amount of memory used for

buffered reading is a configurable parameter in our framework.

Video stream decoding took between 0.11 to 2.78 millisec-

onds for decoding an individual video frame from a video

stream. The total time for decoding a video stream varied

between 330 milliseconds to 8.34 seconds for the supported

video formats. It can be observed from Figure 4a that less

time is taken to decode a lower resolution video format and

more time to decode higher resolution video formats. The

video stream decoding time is same for both CPU and GPU

implementations as the video stream decoding is only done on

CPU.

Transfer Video Frame and Classifier Data from CPU to GPU
A video frame processing on GPU requires transfer of the

video frame and other required data from CPU memory to the

GPU memory. This transfer is limited by the data transfer rates

between CPU and GPU and the amount of available memory

on the GPU. The high end GPUs such as Nvidia Tesla and

Nvidia Quadro provide better data transfer rates and have more

available memory. Nvidia Tesla K20 has 5GB DDR5 RAM

and 208 GBytes/sec data transfer rate and Quadro 600 has

1GB DDR3 RAM and a data transfer rate of 25.6 GBytes/sec.

Whereas, lower end consumer GPUs have limited on-board

memory and are not suitable for the video analytics.

The data transfer from CPU memory to the GPU memory

took between 0.02 to 0.89 milliseconds for an individual video

frame. The total time transfer from CPU to GPU, for a QCIF

video stream took only 60 milliseconds and 2.67 seconds for

a Full HD video stream. Transferring processed data back to

CPU memory from GPU memory took almost the same time.

Time taken to transfer a video frame and required data, for the

supported formats, from CPU to GPU is summarized in Table

III. No data transfer is required for the CPU implementation as

CPU processes a video frame directly from the CPU memory.

Processing Video Frame Data on GPU/CPU
The processing of data for vehicle detection on a GPU is

started after all the required data is transferred from CPU to

GPU. The data processing on a GPU is dependent on the

available CUDA processing cores and the number of simulta-

neous processing threads supported by a GPU. Processing of

an individual video frame means processing all of its pixels

for detecting vehicles from it using the cascade classifier

algorithm as detailed in Section IV. The processing time for an

individual video frame of the supported video formats varied

between 1.09 milliseconds to 30.38 milliseconds. The total

processing time of a video stream on a GPU varied between

3.27 seconds to 91.14 seconds.

The processing of a video frame on a CPU does not involve

any data transfer and is quite straightforward. The video frame

data is already available in the CPU memory. The CPU reads

the individual frame data and applies the algorithm on it.

While processing a video frame, the CPU is also busy in

executing crucial OS level processes and takes more time to

process an individual video frame than on a GPU. It took 3.03

milliseconds for processing a QCIF video frame and 44.79

milliseconds for processing a Full HD video frame. The total

processing time of a video stream for the supported video

formats varied between 9.09 seconds to 134.37 seconds. Table

III summarizes the individual video frame processing time for

the supported video formats on the CPU and on the GPU. An

individual video frame reading time, the transfer time from

CPU-GPU and the processing time on the CPU and on the

GPU is graphically depicted in Figure 4a.

Single Video Stream Analysis Time
The total video stream analysis time on a GPU includes

video stream decoding time, the data transfer time from CPU

to GPU, the video stream processing time, and transferring

the processed data back to the CPU memory from the GPU

memory. The analysis time for a QCIF video stream, of 120

seconds duration, is 3.65 seconds and the analysis time for a

46

0

5

10

15

20

25

30

35

40

45

50

QCIF CIF 4CIF Full HD

Tim
e (

 M
illi

se
co

nd
s)

Supported Video Formats

Individual Video Frame Processing Times on CPU & GPU

Frame Buffer Time
Frame Transfer Time (CPU-GPU)
CPU Process Time
GPU Process Time

(a)

0

20

40

60

80

100

120

140

160

QCIF CIF 4CIF Full HD

An
aly

sis
 Ti

me
 (m

illi
se

co
nd

s)

Supported Video Formats

Single Video Stream Analysis Time on CPU & GPU

CPU Analysis Time
GPU Analysis Time

(b)
Figure 4: (a) Frame Buffer, Transfer and Process Times for the Supported Video Formats, (b) Total Analysis Time of One Video Stream for
the Supported Video Formats on CPU & GPU

Full HD video stream of the same duration is 105.14 seconds.

We observe a speed up between 1.35 times to 3.07 times

for the supported video formats as compared to our CPU

implementation.

The total video stream analysis time on CPU includes the

video stream decoding time and the video stream processing

time. The total analysis time for a QCIF video stream is

9.39 seconds and the total analysis time for a Full HD video

stream of 120 seconds duration is 142.71 seconds. It is obvious

that the processing of Full HD video streams on the CPU is

slower and is taking more time than the length of a Full HD

video stream. The video stream processing is a compute and

data intensive task. Each video stream took 25% of the CPU

processing power. We were limited to analyse only three video

streams in parallel on one CPU. The system was crashing with

simultaneous analysis of more than three video streams.

In the GPU execution, we observe less speed up for QCIF

and CIF video formats as compared to 4CIF video format.

QCIF and CIF are low resolution video formats and a part

of the processing speed up gain is over-shadowed by the data

transfer overhead from CPU memory to the GPU memory.

The highest speed up of 3.07 times is observed for 4CIF video

format and is least affected by the data transfer overhead, as

can be observed in Figure 4. The analysis time of 4CIF video

streams from 2 minutes (minimum video file duration in our

framework) to one month duration on a CPU and a GPU is

summarized in Table V. Full HD video format has highest

resolution and took more time to transfer video frame data

from a CPU to the GPU and to process it. It showed least

speed up as compared to our CPU implementation. Table III

summarizes video stream processing time for the supported

video formats.

QCIF CIF 4CIF Full HD

GPU
Hours 5.47 20.57 51.2 15771.3
Days 0.23 0.86 2.13 6.57

CPU
Hours 18.78 58.63 209.39 285.41
Days 0.78 2.44 8.72 11.89

Table VI: Time for Analyzing One Month of Recorded Video Streams
data for the Supported Video Formats

Parallel Analysis of Video Streams
We can analyse more video streams by processing them in

parallel. As mentioned above, we could only analyse 3 video

streams in parallel on a single CPU and were constrained

by the availability of CPU processing power. We spawned

multiple video streams processing threads from CPU to GPU.

In this way, multiple video streams are processed in parallel on

a GPU. The video frames of each video stream were processed

sequentially in its own thread. We analyzed four parallel video

streams on the GPU cluster having Tesla K20 and Quadro 600

GPUs, each analyzing 2 video streams in parallel. The time

taken to analyse one month of recorded video stream data

of the supported video formats on CPU and GPU is shown

in Figure 5. Speed up gain for the supported video formats

varied according to the data transfer overheads. However,

maximum speed up is observed for 4CIF video format. CIF

and 4CIF video formats are mostly used for recording traffic

video streams. The processing times for one month of recorded

video stream data on a CPU and a GPU for the supported video

formats is summarized in Table VI.

A human operator working continuously for 8 hours/day,

without any breaks, would require three months to analyze

one month of recorded video streams as compared to 6.57

days or 157.71 hours for Full HD video format on our GPU

cluster. Analysis of the same data on a CPU requires 285.41

hours or 11.89 days for Full HD video format.

As mentioned earlier, the video streams from traffic mon-

itoring cameras are usually recorded in CIF/4CIF formats.

Analysis of one month of the recorded video streams in 4CIF

format requires 51.20 hours (just over two days) on a GPU.

This is a huge performance gain when compared with CPU

execution that took about 162.40 hours. This speed up is

14 times faster than a human operator and 4 times faster

than the CPU execution on one compute node. We expect

more performance gain when analysis is performed in a cloud

deployment with unlimited compute resources or on a GPU

cluster in a cloud deployment. A comparison of CPU and GPU

analysis times of one month of recorded video streams for the

supported video formats is summarized in Table VI and is

47

0

50

100

150

200

250

300

QCIF CIF 4CIF Full HD

��������	
���	
��	���	�����	��������	�����	�������	����

CPU Analysis Time
GPU Analysis Time

An
aly

sis
 Ti

me
 (I

n H
ou

rs
)

Supported Video Formats

Figure 5: Analysis Time of One Month of Video Streams Data on
CPU & GPU for the Supported Video Formats

graphically depicted in Figure 5.

VI. CONCLUSIONS & FUTURE RESEARCH DIRECTIONS

We have presented a framework for stream processing

in clouds capable of detecting vehicles from the recorded

video streams. The results of our implementation on a GPU

cluster with two GPUs showed performance gain of 14 times

when compared with one human operator doing the same

analysis. CPU implementation yielded 4 times of analysis time

improvement. We expect the video stream processing time

to reduce further when the framework is ported onto a GPU

cluster in a cloud.

It is important to mention that we are unable to use all the

GPU resources in the above reported results, while executing

multiple analytics processing threads on a single GPU. We

are only using 15-20% of the GPU compute resources and

500 MB of the available GPU memory (5GB on Tesla K20).

One possible reason for the less GPU load can be our way

of spanning multiple threads from CPU to GPU and thread

handling inside the GPU.

In future, we intend to address the software implementation

bottlenecks for utilizing the maximum available resources

of a GPU and will deploy the framework to a production

cloud infrastructure. We will employ a feedback loop for the

feature selection process in combination with artificial neural

networks or semi supervised machine learning approaches for

improving vehicle detection.

We would also extend our framework by making it more
subjective. It will enable us to perform logical queries like,

“How many cars of a specific color passed yesterday” from

video streams. More sophisticated queries like, “How many

cars of a specific color entered into the parking lot between 9

AM to 5 PM on a specific date” will also be included.

VII. ACKNOWLEDGMENTS

This research is jointly supported by Technology Support

Board, UK and XAD Communications, Bristol under Knowl-

edge Transfer Partnership grant number KTP008832. The

authors would like to say thanks to Gokhan Koch and Tulasi

Vamshi Mohan from the video group of XAD Communica-

tions for their support in developing the software platform

used in this research. We would also like to thank Erol

Kantardzhiev and Dr. Ahsan Ikram from the data group of

XAD Communications for their support in developing the file

client library. We are specially thankful to Erol for his expert

opinion and continued support in resolving all the network

related issues.

REFERENCES

[1] “The picture in not clear: How many survelliance cameras are there in
the UK?” Research Report, July 2013.

[2] K. Ball, D. Lyon, D. M. Wood, C. Norris, and C. Raab, “A report on
the surveillance society,” Report, September 2006.

[3] M. Gill and A. Spriggs, “Assessing the impact of CCTV,” London Home
Office Research, Development and Statistics Directorate, February 2005.

[4] J. S. Bae and T. L. Song, “Image tracking algorithm using template
matching and PSNF-m,” International Journal of Control, Automation,
and Systems, vol. 6, no. 3, pp. 413–423, June 2008.

[5] K. F. MacDorman, H. Nobuta, S. Koizumi, and H. Ishiguro, “Memory-
based attention control for activity recognition at a subway station,”
IEEE MultiMedia, vol. 14, no. 2, pp. 38–49, April 2007.

[6] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using
real-time tracking,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 747–757, August 2000.

[7] C. Stauffer and W. Grimson, “Adaptive background mixture models for
real-time tracking,” in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 1999, pp. 246–252.

[8] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2001, pp. 511–518.

[9] S. Mantri and D. Bullock, “Analysis of feedforward-back propagation
neural networks used in vehicle detection,” Transportation Research Part
C– Emerging Technologies, vol. 3, no. 3, pp. 161–174, June 1995.

[10] R. E. Schapire and Y. Singer, “Improved boosting algorithms using
confidence-rated predictions,” Machine Learning, vol. 37, no. 3, pp. 297
– 336, December 1999.

[11] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 26th IEEE Symposium on Mass Storage
Systems and Technologies (MSST), 2010.

[12] A. Ishii and T. Suzumura, “Elastic stream computing with clouds,” in
4th IEEE Intl. Conference on Cloud Computing, 2011, pp. 195–202.

[13] Y. Wu, C. Wu, B. Li, X. Qiu, and F. Lau, “CloudMedia: When cloud
on demand meets video on demand,” in 31st International Conference
on Distributed Computing Systems, 2011, pp. 268–277.

[14] J. Feng, P. Wen, J. Liu, and H. Li, “Elastic Stream Cloud (ESC): A
stream-oriented cloud computing platform for rich internet application,”
in Intl. Conf. on High Performance Computing and Simulation, 2010.

[15] “Vi-system,” http://www.agentvi.com/.
[16] “Smartcctv,” http://www.smartcctvltd.com/.
[17] “Project BESAFE,” http://imagelab.ing.unimore.it/besafe/.
[18] B. S. System, “IVA 5.60 intelligent video analysis,” Bosh Security

System, Tech. Rep., 2014.
[19] “EPTACloud,” http://www.eptascape.com/products/eptaCloud.html
[20] “Inteligent vision,” http://www.intelli-vision.com/products/intelligent-

video-analytics.
[21] K. yan Liu, T. Zhang, and L. Wang, “A new parallel video understanding

and retrieval system,” in IEEE Intlernational Conference on Multimedia
and Expo (ICME), July 2010, pp. 679–684.

[22] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol
(RTSP),” Internet RFC 2326, April 1996.

[23] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” Internet RFC 3550, 2203.

[24] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[25] “Opencv,” http://opencv.org/ .
[26] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel

programming with CUDA,” Queue-GPU Computing, vol. 16, no. 2, pp.
40–53, April 2008.

[27] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming, 1st ed. Addison-Wesley Pro-
fessional, 2010.

[28] http://cogcomp.cs.illinois.edu/Data/Car/.

48

