GEANT4 Muon Digitization
in the ATHENA Framework

D. Rebuzzi?, K. A. Assamagan®, A. Di Simone®,
Y. Hasegawa ¢, N. Van Eldik®

8 Dipartimento di Fisica Nucleare e Teorica Universita di Pavia
and INFN, Sezione di Pavia
via A. Bassi 6, I-27100, Pavia, Italy

> Brookhaven National Laboratory (BNL)
Department of Physics, Upton , NY 11793, USA

CCERN PH-ATC, 1211 Geneva 23, Switzerland

dDepartment of Physics, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621
Nagano, JAPAN

¢ National Institute for Nuclear Physics and High Energy Physics (NIKHEF)
Kruislaan 409, 1098 SJ Amsterdam, The Netherlands

Abstract
The aim of this note is to describe the Muon Digitization software packages, com-

pletely re-written to operate on GEANT4 hits. The Muon Digitization is independent
of the GEANT4 detector simulation, runs within the ATHENA framework.
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1 Introduction

The present note describes the Muon Digitization software, recently re-written
to run in the ATHENA framework.

ATHENA is a control framework based on the GAUDI architecture originally
developed by the LHCb experiment. This architecture has been extended
through collaboration with ATLAS, and an experiment neutral implemen-
tation, also called GAUDI, has been created. ATHENA is the result of this
kernel framework, together with ATLAS-specific enhancements, such as the
event data model and event generator framework. It is intended that almost
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all software used in physics, whether for event generation, reconstruction or
analysis, will be in the form of specializations of a few specific components,
where specialization means adding functionalities to a standard component
while keeping its interface the same. Within the application framework this
is done by deriving new classes from one of the base classes: DataObject,
Algorithm, Converter.

Anything which is essentially a procedure, i.e., a set of rules for performing
transformations on more data-like objects, or for creating new data-like ob-
jects should be designed as a class derived from the Algorithm base class. The
role of an algorithm is to take input data, manipulate it and produce new out-
put data. In general, an algorithm will be configurable: it will require certain
parameters (properties), such as cut-offs, upper limits on the number of itera-
tions, convergence criteria, etc., to be initialized before the algorithm may be
executed. These parameters may be specified at run time via job Options files.
In ATHENA, data objects produced by algorithms are saved in common area in
the transient memory from where other modules can access them and produce
new data objects. The Transient Data Store (TDS) is the mechanism to pro-
vide such a common area in the GAUDI architecture: an algorithm creates a
data object in the TDS, thus allowing other algorithms to access it. StoreGate
(SG) is the ATLAS implementation of the TDS. It manages the data objects in
transient form, as well as their transient /persistent conversion. The new Muon
Digitization consists of four algorithms, one for each muon technology ! . The
Muon Digitization provides the production of collections of simulated muon
digits out of muon hit collections from the GEANT4 simulation, where both
the input and the output objects are assumed to be in SG. In the present
architecture, muon digits are converted to Raw Data Objects (RDOs) or to
byte streams before undergoing the persistent storage?. RDOs are the output
of the readout electronic, thus are the constituents of the byte stream.

The goal of the muon digitization is to simulate the output signal of the muon
detector in ATLAS given the output of GEANT4 detector simulation. The
digitization process consists of two steps: in first, the output of the detector
simulation, henceworth refered to as GEANT4 hits, is converted to muon dig-
its. The second step, the muon digits are converted to RDO from which the
byte stream (the electronic output) is obtained. The muon digits are objects
that can be fed directly in the muon reconstruction, thus are known as Re-
construction Input Objects (RIO). The muon off-line reconstruction dataflow
starts from the raw data, the byte stream. The byte stream is read into the
TDS as transient RDO data objects. In a subsequent steps, the RDO are con-

I The code (XXX_Digitization packages, where XXX = MDT, RPC, TGC, CSC)
is in the CVS repository [1] and part of the ATHENA software since release 7.4.0.

2 The persistency of the Muon Spectrometer RDOs is in place within the ATHENA
framework since release 7.6.0.



verted into RIO (digits and or clusters), through calibration services, pedestal
and noise handling, etc. The step, RDO to RIO, is where the raw data is
“prepared” before being fed into the off-line reconstruction. It thus follows
that the muon digitization operates in the reverse steps of the off-line recon-
struction dataflow, by producing the RIO first, then the RDO (or byte stream
subsequently). In this paper, we will describe the detailed implementation of
the first step of the muon digitization, where the detector simulation output
(GEANT4 hits) are converted into the RIO (muon digits). The second step,
which convert the RIO in the RDO (byte stream) is implemented in separate
algorithms and documented elsewhere (we need to cite some paper here
for digits to RDO to byte stream). What follows describes the fundamen-
tals of the Muon Digitization algorithms. In Section 2, the global structure of
the Muon Digitization is outlined, with particular emphasis to the infrastruc-
ture to handle the muon pile-up and to Muon Hits and Muon Digit objects.
Sections from 3 to 6 describe the detail of the digitization algorithms (one for
each Muon technology) and their validation against the information from the
MCTruth.

2 Muon Digitization

The information coming from the interaction of the simulated tracks with the
sensitive part of the detector (referred to as the hit objects) is transformed by
the digitization algorithms into digit objects which are the input to the off-
line reconstruction programs. The Muon Digitization container houses also a
package, MuonDigiExample, which contains two monitoring algorithms (Read-
MuonSimHits and ReadMuonDigits, to check the correct hits/digit writing to
SG) and four digit validation algorithms (XXXDigitValidation), one for each
technology which allow to check the main digit parameters against the MC
Truth information. A Muon Digitization jobOptions fragment is included in
the global ATLAS Digitization jobOptions (AtlasDigitization.py in [6]) start-
ing from ATHENA release 7.4.0. The ATLAS Digitization reads hit files gen-
erated by the GEANT4 complete ATLAS simulation and writes an output file
with the digits objects. Muon Digitization has been designed to be indepen-
dent from the GEANT4 simulation. The Muon Digitization code relies only on
MuonGeoModel read-out geometry and the detector-specific MuonSpectrom-
eter OID scheme [11].

2.1 Muon Hits

Hit production in GEANT4 is provided by Sensitive Detectors. Muon hits are
generated by the XXXSensitiveDetector [2] (where XXX = MDT, RPC, TGC,



CSC) when charged particles cross the sensitive part of the Muon chambers.

A given volume described in the GEANT4 geometry becomes sensitive when
associated to a properly implemented Sensitive Detector, which is an instance
of a class different from the one describing the real geometry (tracking geom-
etry in the following). The clear separation between Sensitive Detectors and
Geometry classes allows to easily decouple the description of the tracking ge-
ometry from the one of the readout geometry. Each time a particle trajectory
crosses a volume which can generate hits, the kernel is responsible for calling
the corresponding Sensitive Detector, which implements the hit generation
algorithms. Hence, the Sensitive Detector generates a list of hits, which are
stored for further processing. Muon hits are defined as classes in [3].

Hits are labelled by a Simulation Identifier, SimID, a 32-bit integer in which
the geometry information about the hit position is stored. The stationName,
stationEta and stationPhi information is common to all the muon tech-
nologies, the remaining identifier fields are specific for any given precision or
trigger sensitive element.

The SimIDs are built by means of the XxxHitIdHelper classes (Xxx = Mdt,
Rpe, Tge and Csc) of the MuonSimEvent package [3]. The base class Hitld-
Helper [4] provides methods for initializing, setting and retrieving the iden-
tifier field values. The XxxIdHelper are all derived from the same base class
and have specialized methods returning indices relevant for each technology
information.

The SimIDs in principle do not coincide with the Offline Identifiers (OIDs)
associated to the digit object. The design idea is to keep the event simula-
tion disentangled from the digitization/reconstruction. Within this identifier
scheme, only the XxxHitIdHelper classes depend on GEANT4. The hit objects
are filled from data provided by the GEANT4 simulation but they do no de-
pend on it. Therefore, the event is completely decoupled from the geometry,
the only communication occuring via the identifiers.

Hits have a very ligth content. This is mainly due to the fact that all the
geometrical information is encapsuled in the SimIDs. Thanks to the retrieving
mechanism mentioned above, the SimIDs are enough to access to all the geo-
metrical information needed later on. For example, in the CSC, the chamber
dimensions and the strip pitches are needed during the digitization. They are
obtained from the muon geometry model using the chamber offline identifiers,
the latter being constructed from the hit identifiers, SimIDs. In addition to
the hit identifier, each Muon hits contains the quantity to be digitized. Table
1 list the contents of the SimIDs and of the Muon hit objects for each Muon
technology. The GEANT4 hits are collected using AthenaHitsVector contain-
ers, one for each Muon technology, where they are inserted in a random way



| w™MDT RPC TGC CsC
SimID StationName, PhiSector, ZSector
MultilLayer DoubletZ GasGap ChamberLayer
Layer DoubletR WireLayer
Tube GasGapLayer
DoubletPhi
MeasuresPhi
Muon Hit SimID SimID SimID SimID
globalTime globalTime globalTime HitStart
driftRadius localPos localPos HitEnd
localPos (trackNumber) dirCos partID
(trackNumber) (trackNumber) | (trackNumber)
Table 1

Contents of the Simulation Identifiers (SimIDs) and of the Muon hit objects for the
four Muon technologies. The first three fields of the SimID specify the name of the
station where the hit is located and its (1, ¢) position. The remaining fields give
information about the specific sensitive volume in which the hit occurred. Muon
hits contain the SimID and additional information required by the digitization and
the pile-up procedures.

(no sorting is performed at the simulation level). There are therefore four in-
dependent hit collections in the muon spectrometer, one for each technology
and each hit collection contains, for each event, all the hits in that particular
technology. The obtained XxxSimHitCollections are persistified using POOL
so that a re-digitization can be done without re-simulating the events.

2.2  Muon Digits

Muon Digits are labelled by an offline identifier (OID) which create the con-
nection to the reconstruction. This contains the digit geometry information
packed according to the classes in [7]. OIDs are initialized using the identifier
dictionary [8], an xml file which specifies the off-line identifier fields and their
allowed ranges. For the muon spectrometer, there are various identifier dictio-
naries for test beam, or for different detector layouts (P03, Q, etc). The Muon
digit classes are located on CVS under [9] The geometrical description of the
detector elements are obtained from the methods of the XxxDetectorElement,
classes of the MuonGeoModel read-out geometry ([10]). They allow to get in-
formation (like the hit distance from the RO chamber side) needed by the
Digitizers to contruct the digit parameters. In the execute() method of the
Xxx_Digitizer the XxxSimHitCollections vectors are taken and vectors of type
XxxDigitCollection are filled with XxxDigit objects.



| | wMDT RPC TGC CsC

OID stationName, stationEta, stationPhi, technology
multilayer doubletR tgcGasGap chamberLayer
tubelLayer doubletZ isStrip wireLayer

tube doubletPhi channel cscMeasuresPhi
rpcGasGap cscStrip
rpcMeasuresPhi
rpcStrip

Muon 0ID 0ID 0ID 0ID

Digit TDC count propTime charge
(ADC count) globalTime

RDO | fired tube | fired channel raw hit or 4 ADC samplings +

of CM raw coincidence strip address
Table 2

Contents of the Offline Identifiers (OIDs), of the Muon digit objects and of the Muon
RDOs for the four Muon technologies. The first four fields of the OID specify the
name of the station where the hit is located, its (n, ¢) position and the technology
type. The remaining fields give information about the specific sensitive volume in
which the digit occurred. Muon digits contain the OID and additional information
required by the reconstruction.

2.8 Infrastructure for Event Pile-Up

In addition of being capable of handling hits coming from a single bunch
crossing, the digitization, as implemented at the time of this writing, is also
be able to handle piled-up collisions. Before performing the digitization, hits
from several bunch crossings are overlaid taking into account the global time
of the hit which is defined as the GEANT4 hit time plus the bunch crossing
time with respect to the main crossing. Some tools exist to do this, namely,
the TimedHitPointer and the TimeHitPtrCollection classes of [6], which allow
one to retrieve the overlaid hits, sorted according detector element offline
identifiers. In order to do the overlay and the sorting, the hit classes implement
an ordering operator and a hit time open function to return the GEANT4 hit
time. Furthermore, some tools also exists to link the overlaid hits the correct
Monte Carlo Truth particles: this requires the merging of the Monte Carlo
collections of the input events, and subsequently updating the hit-to-particle
associations to point the merged Monte Carlo collections.

Simulated GEANT4 hits persistified using POOL can be read in together with
previously generated minimum bias events. The hit overlay and sorting ac-
cording detector elements is then carried out as described above, and the
digitization proceeds afterwards. The pile-up model can also handle the case
of the cavern background, although this has not been exercised at the time of



the current note.

2.4 Association to Monte Carlo Truth

The muon digitization produces muon digits, i.e., reconstruction input objects
needed by the muon reconstruction packages, namely MOORE [?] and Muon-
boy [?]. In a subsequent step, the muon digits are convertered to muon RDO,
the transient representation of the byte stream. The production of the RDO
constitutes the simulation of the electronic output, the raw datal. Any refer-
ence to the Monte Carlo information is lost after the digitization, that is, the
muon digits or the RDO do not carry any link (pointer, associations) to the
original simulated particles. However, such “links” are necessary to establish
the Monte Carlo truth tracks and for validation purposes. During the muon
digitization, a separate object is recorded and can be persistified, to main-
tain the link to th original simulated paricles at the digit or RDO level. The
recorded object in question is a map of muon off-line identifiers to MuonSim-
Data objects [?]. MuonSimData, originally adopted from the Inner Detector
implementation, stores the simulation information associated with a simulated
raw data object, in two data members. One is an integer, the simulation data
word, which is a packed information summarizing the digitization. Its inter-
pretation may depend on which of the four sub-detectors is concerned, but
will typically contain bit-flags for noise, lost in readout, etc. The other con-
sists of a vector of pair<link to particle, 2 floating-point values>
specifying the link to the original particle and up to two additional pieces of
information — encapsulated in the class MuonMCData — depending on the
Muon technology: deposited energy, charge, hit time, etc. The objects of type
MuonSimData are not applicable to the real production running. However,
they can be made persistent in the simulation of non pile-up situations and
are useful to carry the associations to the original particles to the tracking
stage.

3 MDT_Digitization

Simulated muons interact with materials along their path causing ionization
of the tube gas (the MDT Sensitive Detector) in the drift tube of the MDT
chambers. During the tracking, collections of MDTSimHits are recorded, each
containing the impact parameter and the hit position in the global coordi-
nate reference system, as discussed in Section 2.1. As discussed before, the
digitization procedure should convert the hit information from the GEANT4
simulation into an output which should resembles the output signal of the AT-
LAS detector. The MDT _Digitization offers the infrastructure for the MDT



Digit building out of any walid® MDTSimHit, each MDT Digit consisting
of an OID, a TDC count and, optionally, a ADC count, as in Table 2. The
MDT chambers are equipped with TDCs (Time-to-Digit Converters) which
measure the signal pulse time for each MDT passing a predefined threshold.
The pulse time is measured with respect to the global LHC clock and includes
the following contributions:

time of flight of the particle from its generation vertex to the tube;
bunch crossing offset if the particle comes from a previous/next event;
signal propagation delay along the tube;

additional delays due to cables/electronics;

the drift time.

In addition, the electronics have an on-board Wilkinson ADC which integrate
the input pulse over a predefined time window providing a measure of the
pulse height. Starting from the impact parameter, the driftRadius of Table 1,
associated to the MDTSimHit, the MDT _Digitization performs several tasks:

e conversion of the drift radius into a drift time,

e calculation of the time structure of the event,

e trigger match,

e conversion of total time into TDC counts.

For the r — ¢ conversion, two different AlgTools have been implemented
and are available in the MDT _Digitization package. Due to a modularity of
the architecture, they can be selected via jobOptions setting the property
DigitizationTool of the MDT Digitizer algorithm. The user can select a
very detailed time-consumpting r — ¢ procedure (MDT _Response_DigiTool)
or a fast drift distance to time conversion which relies on an external rt relation
(RT_Relation_DigiTool). Both provide a routine which converts the impact pa-
rameter of the track into a drift time. The first provides also a ADC count
correlated with the drift time, to evaluate the slewing corrections, while in
RT _Relation_DigiTool, the ADC count is set to fixed number for all digits.
The two tools are described in details in Sections 3.1 and 3.2 respectively. The
MDT _Digitizer, is a standard ATHENA algorithm with the following function-
alities:

e in method initialize(): StoreGate and PileUpMerge Service initializa-
tion; retrieving of the pointer to MuonGeoModelManager, by which the
MdtIdHelpers for the digit offline identifier building are initialized; initializa-
tion of the MdtDigitContainer; retrieving of the simulation identifier helper
and of the pointer to the digitization tool;

e in method execute(): record of the digits and of the SDOs containers in
StoreGate; MDTSimHit collection merging using the TimedHitPtrCollec-

3 In the sense which will be specify in Section 3.3.



tion sorted container; loop over the TimedHitPtrCollection for the given De-
tectorElement, performing the actions of the hand1eMDTSimhit () method
described below; digit creation and storing in the DigitContainer (in createDigits ()
method);

e in method finalize(): a SUCCESS StatusCode is returned if the digitiza-
tion procedure ends succesfully.

In the hand1eMDTSimhit () method, for each MDTSimHit of the time-sorted
TimedHitPtrCollection, the SimID is unfolded to get the geometrical infor-
mation about hit position and the digit identifier (Offline Identifier) is created
via the MdtIdHelper. Several checks can be performed on demand: on the hit,
to skip it if corrupted, on its associated tracking element, to check its valid-
ity, before retieving the distance to the RO chamber side. The drift radius
(together with the distance to RO) is passed as input to one or the other
MDT _Digitization tools (via the class DigiTool), which returns the correspon-
dent drift time and the ADC count.

With the digitize() method of DigiTool the tube response is simulated: on
demand, the propagation delay of the signal along the wire is calculated (using
the distance to RO information from MdtReadoutElement of MuonGeoModel)
and added to the drift time together with the time of flight and the bunch
time.

Finally the hit is inserted in a vector together with the digit OID, the drift
time and the ACD count. The createDigits() method loops on the above
sorted hit map to check if the tube where the hit occurs has already been
fired, if yes an additional check on the tube dead time is performed before
registering also the second hit (a single tube can produce more than one hit).
If the hit time (to which the tof time has been subtracted) lies within the
Matching Window or within the Mask Window, the hit time is converted into
a TDC count. A detailed discussion of the time structure of the event is given
in Section 3.3.

Using the OID, the TDC count and the ADC count, the MdtDigit object
is built and inserted into the DigitCollection. A new DigitCollection is cre-
ated for each MDT chamber. Table 3 summarizes the main MDT _Digitization
properties which can be selected via jobOption to configure the digitization
package and their deafult values.

3.1 MDT_Response_DigiTool

The MDT _Response package provides a realistic simulation of the signal for-
mation in MDT tubes. The output for a given impact parameter consists of a
drift time and a charge measurement which is correlated with the drift time,



Property H Default Value

OffsetTDC 800 ns

ns to TDC conversion 0.78125
ResolutionTDC 0.5 ns

Signal Speed 299.792458 -10%cm/s
Use Attenuation FALSE

Use Tof TRUE

Use Prop Delay TRUE

Use Time Window FALSE
Bunch Count Offset -300 ns
Matching Window 1000 ns

Mask Window 700 ns
DeadTime 700 ns

Check on MDTSimHits TRUE
Digitization Tool MDT_Response_DigiTool

Table 3
Main properties of the MDT Digitization package and their default values.

thus allowing time slewing corrections to improve the spatial resolution. The
simulation performs several subsequent steps:

generation of clusters along the trajectory of the particle;

propagation of the clusters to the wire;

convolution of the raw pulse with the amplifier response function;
determination of the time at threshold and the integration of the signal
pulse.

Figure 1 show a schematic overview of physics in the tube. First, the clusters
are generated along the trajectory. During cluster generation cluster size and
position fluctuations are taken into account. The clusters are propagated to
the wire using a single electron 7t relation. A simulation of the diffusion is
performed. The single electron rt relation was obtained from GARFIELD and
effectively contains the gas properties. The cluster arrival time spectrum is con-
voluted with the amplifier response function producing a raw signal pulse as
shown in Figure 2. The threshold passing time of the pulse is determined, sub-
sequently the pulse is integrated over a fixed integration window. The charge
integral is converted into the Wilkinson ADC output. The time at threshold
and the ADC output are returned for further use in the MDT _Digitization.
The simulation takes into account all mayor contributions to the tube reso-
lution. In addition, two other effects can be simulated (they are not switched
on by default, as but can be selected using the jobOptions file):

e The attenuation of the signal pulse while propagating to the readout can
be taken into account. In this setting the signal pulse is reduced by a factor

10
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g~ o/ latt_where d,, is the distance to the readout and I, is the attenuation
length of the tube. The attenuation of the signal has a small effect on the
tube resolution and is not completely neglectable for chambers with have
long tubes.

e The effect of the magnetic field on the drift times can be taken into ac-
count. In this case the strength of the magnetic field is retrieved from the
DetectorElement. The time shift due to drift in the magnetic field has been
parametrized as a function of the drift time and the field strength, it is
added to the drift time without magnetic field.

Figure 3 shows the spatial resolution as a function of the impact parameter. It
was obtained by fitting a Gaussian distribution to the radial residuals obtained
by subtracting the drift radius obtained by converting the measured drift
time into a radius from the input impact parameter. The values shown in the
figure are the widths of the fit which do not take into account eventual biases.
Thus the resolution as show is a lower boundary of the intrinsic resolution of
the simulation. In addition a more conservative estimate of the resolution is
given by the RMS of the residual distributions. Figure 4 shows the correlation
between the ADC counts and the drift time.

3.2  RT_Relation_DigiTool

This digitization tool relies on an external ASCII file (from Garfiled simula-
tion or from the data analized with an autocalibration program) which should

11
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tion.

have a list of r, ¢ and the correspondent resolution on ¢t. The tool operate the
drift radius to drift time conversion and applies a gaussian smearing on ¢ ac-
cording to the given ¢ resolution. Despite the very simple structure, this tool is
extremely useful when comparing to data (for the testbeam event digitization,
for instance) since the same rt relation as used on the real data can be used
to create the simulated digits.

3.3  Simulation of the Time Structure of the Event

According to the different contributions to the pulse time, the drift time should
consist of the following components:

ttot = ttof + tbunch + tp'rop + tdelay + td’rift (1)

The time of flight ¢;,; is obtained from the MDTSimHit in form of global
time. The propagation delay ?,,,, is calculated from the position of the hit
along the tube (obtained from the MuonGeoModel read-out geometry) and
the signal propagation speed. Additionally, in case of pile-up, a bunch crossing
offset tpunen is taken into account. The TDCs produce a time stamp every time
the input signal passes the threshold. To avoid not physical hit proliferation,
the TDCs have a programmable dead time which is set to the maximum drift
time of the tube [??] as shown in figure 5. The same principle is reproduced
in the digitization procedure, where:

e the MDTSimHit with the smallest drift time in the event sets the dead time
(for the given event) and is selected;
e any hit falling within the dead time window is discarded;

12
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e if a hit with a drift time larger then the dead time is present in the event,
it is selected and the dead time is reset.

The dead time is given by three components [?7]:

taead = Tfiz + tarift + tapc

Where %;; is a predefined fix dead time which can be set via the jobOptions
(default =), tgripe is the drift time and t4pc is the output of the Wilkinson
ADC. The resulting average deadtime is 1100 ns. A trigger match criterion is
applied to all the selected hits following the same procedure (as described in
[6]). First, a trigger time t4,;4 is calculated as follows:

ttrig = tdelay + tcwetof + tbunchoffset

where tgeqy is the time entering the TDC time calculation 1 and Zgpe0f is
the average time a particle at light speed need to reach the center of the
chamber. An additional offset tpynchoffset allows the windows to be positioned
with respect to the GEANT4 global time. The offset should be negative to
ensure that hits from this bunch crossing always have times larger than the
trigger time. Then, for every hit the time t7pc —t44y is matched with the time
windows:

e if the time of a hit falls within the matching window, a MDT _Digit is pro-
duced;

e a hit in the mask window produces a MDT _Digit which contains no TDC
count and is flagged as masked;

e any hit outside the windows is discarded.

Depending on the sizes of the two windows it is possible to have more that one
hit per event per tube, both will be stored. TDC counts are given by a fixed bin
size conversion (0.78125 TDC/ns) of the total time 1, smeared by a Gaussian
distribution whose resolution can be selected via jobOptions (set by deafult
to 0.5 ns). The TDC count is stored is stored into the MDT digit object. The
TDC count 1 is required to be positive, any negative time is converted into
a zero. A delay tgeqy can be added to ensure that the total time is always

13



RPCHit | RPCDigit

SimID of the gas gap | OID of the strip

Position of the hit wrt the gas gap

Hit time (time of flight of the particle) | Global time (tof + strip propagation)
Table 4
The information included in RPC hits and digits

positive. It is up to the user to set this offset correctly, in order to avoid
negative times (the default of 800 ns is recommended).

3.4 MDTD:igitValidation

4 RPC_Digitization

RPC hits are generated by the SensitiveDetector (SD) which assigns to them
a Simulation Identifier (SimID), uniquely identifying the gas gap each hit is
registered in. The position of the hit in the reference system of the gas gap is
also stored, together with the time from the beginning of the event, i.e. the
time of flight of the particle generating the hit. RPC hits are represented in
the simulation code by instances of the class RPCHit. The digitization process
takes care of adding to the hits the information necessary for further anal-
ysis (for example trigger algorithm simulation and track reconstruction). It
translates any SimID to a Standard Offline Identifier (OID), which is used by
the other ATHENA algorithms to uniquely identify RPC strips in the muon
spectrometer. Using the position information provided by the hits, the digi-
tization can properly calculate the propagation time of each electronic signal
along its strip, add it to the time of flight of the hit and assign this global
time to the digit. The information obtained is stored in a new instance of
the class RPCDigit and posted in StoreGate for further processing. The main
differences between RPC hits and digits are summarized in table 4

4.1  Cluster simulation

When a particle generates an avalanche in an RPC, charge signals are induced
(and detected) on the readout strips. A set of n adjacent strips with signals is
called a cluster of size n. In RPC operation, due to possible signal induction on
more than one strip, cluster sizes are in general greater than 1, with an average
cluster size at working point typically of 1.3. The hit production mechanism
provided by the ATLAS Geant4 simulation does not include a tool for proper

14
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simulation of clusters. Thus a particle generates hits on only one strip, except
when secondaries (for example §) are produced and detected by neighboring
strips.

The impact point along a strip is known to influence the size of the cluster the
hit will generate. Figure 4.1 shows for example the probability to observe a
cluster of size 1 as a function of the impact point of the track along the strip.
The strip pattern is also represented. The probability is normalized to the
number of clusters with sizes 1 or 2, i.e. for each bin, the complement to unity
gives the probability to have a cluster with size 2. From the plot it is clear
that, for example, a muon crossing the region between two adjacent strips will
most likely generate a cluster of size 2, whereas a track passing in the middle
of one strip would induce signals on that strip only. In a small amount of cases,
clusters with sizes greater than 2 are also observed. The digitization algorithm
reproduces the observed cluster sizes by generating, when necessary, digits on
strips adjacent to the one actually crossed by the particle. Cluster simulation
is carried on in three steps:
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(1) experimental distributions are used to decide, according to the impact
point of the particle along the strip, whether the cluster size will be 1 or
2.

(2) experimental distributions are used to decide what the final size of the
simulated cluster will be.

(3) digits are created according to the results of the above steps.

Particular attention needs to be paid to the way the additional digits are
created around the one actually crossed by the muon. Figure 4.1 shows the
cluster spread distributions. For each cluster of a given size, the plots count
which strip was actually crossed by the muon. Upon each bin, the correspond-
ing track/strip configuration is showed. These experimental distributions are
hence used to properly create the extra digits.

4.2 Class methods and properties

In initialize() method, the PileUpMerge and StoreGate services are ini-
tialized, and a pointer to an instance of the class MuonDetectorManager is
retrieved from the detector store and used to obtain an rpcIdHelper. The
ASCII file GARPC_Digitizer.txt is read and its contest are used by the algo-
rithm in order to simulate clusters.

Random numbers are obtained in the code from a dedicated stream via the
AtRndmSvc, which is also initialized in the initialize() method.

The execute() has responsibility for steering the digitization/cluster simula-
tion process. A loop over the RPCHits is performed, converting each SimID
to OID.

The method PhysicalClusterSize is hence called, which creates a cluster of
size 1 or two according to the impact point of the particle along the strip. The
final size of the cluster is decided by the method TurnOnStrips.

The last step in the creation of the digitization is the calculation of the prop-
agation time of the electrical signal along the strip length. This is done in the
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name | description default value

Parameters | the file with the experimental G4RPC_Digitizer.txt
distributions to be used for cluster

simulation

CTB2004 | true if digitizing data false
from the 2004 CTB

InputObjectName | name of the collection RPC_Hits

to be used as input

OutputObjectName | name of the output collection rpc_digits

WindowLowerOffset | lower offset of the time -70 (ns)

window to be used for PileUp

WindowUpperOffset | upper offset of the time window 70 (ns)
to be used for PileUp

DeadTime | dead time 50 (ns)

Table 5
Properties of RPC_Digitizer

PropagationTime method.

In the hit collections coming from the RPCSensitiveDetector, it sometimes
happen that many hits are produced by the same crossing particle, which are
very close both in space and time. This is related to ionization and production
of secondaries in the gas, and it is thus safe, and also recommended, to elimi-
nate these multiple hits before proceeding to reconstruction. The execute ()
method provides this functionality using a dead time: once a hit is found on a
given strip, every other hit coming from the same strip before the dead time
is ignored.

Table 5 shows the list of the properties of the RPC_Digitizer algorithm.

4.8 RPCDigitValidation

The algorithm RpcDigitValidation has been implemented in order to check
the correctness of the hit production and digitization processes. The valida-
tion has been performed generating single muon events in the barrel, with no
physics processes activated but transportation. For each event, the algorithm
execution proceeds as described in the following:

e for each muon, its direction at the generation vertex is retrieved from the
MonteCarlo information. With no physics processes activated, this direction
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Fig. 10. RPC digitization validation.

is a good approximation of the muon trajectory.

e for each RPC digit, its distance from the muon trajectory is calculated

e for each of the three RPC layers (Middle-lowPT, Middle-Pivot, Outer), the
closest digit to the muon is selected

e the fields of the OIDs of the selected digits are stored in an ntuple, together
with the direction of the muon.

The resulting ntuple can be used to validate both the RPCSensitiveDetector
and the RPCDigitization since it can easily spot any mistake in the gener-
ation of the SimID and in its translation to OID. For example the directions
of the muons not producing any digit, or which produce digits too far from
the track can be analyzed. In figure 4.3 the n and ¢ directions of muons not
producing any RPC digits are plotted. These inefficiencies of the RPC system
are concentrated, as expected, in regions not instrumented with RPCs:

the feet of the ATLAS detector

the ribs of the barrel magnet system
the central (n = 0) crack

the elevators

the endcap regions (|n| > 1)

A similar plot has been produced for the outer stations and didn’t show any
abnormal inefficient region. With the same procedure, it is possible to look for
digits which are created in the wrong place. Figure 4.3 shows for example the
results of the validation on an earlier version of the simulation code. The plot
shows the inefficiencies plus the digits with a wrong position with respect to
the muon trajectory, and it clearly spots two regions with problems. Further
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investigation allowed to find an error in the RPCSensitiveDetector which
assigned wrong SimID to the RPC hits in BMF stations.

5 TGC_Digitization

The TGC system is located at four stations (T1, T2, T3 from smaller |z| to
larger, in the middle station, T4 in the inner station) in the forward(F) and
end-cap(E) regions in A and C sides of ATLAS detector. The stations are
labeled as follows: T1F, T1E, T2F, T2E, T3F, T3E, T4F and T4E. Figure 12
shows longitudinal and R-¢ views of the TGC layout.

Two or three TGCs in the stations are assembled to make a TGC module.
The modules in T1F and T1E has three TGCs, i.e. three sensitive volumes
(called as “triplet”) and those in the other stations has two TGCs (called as
“doublet”). Each TGC can provide two dimensional coordinate measurements
in R and ¢ projections. The measurement along R direction is provided by
gangs of sensitive wires and the ¢ coordinate is measured by strips. A triplet
has thee layers of wire gang readout and two layer of strip readout* and a
doublet has two layers of wire gang readout and two layer of strip readout.

Signals by hits are read out from wire gangs for the R position determination
and from strips for ¢ positions, independently.

* There is no strip in the middle TGC of a triplet.
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There are 24 modules in ¢ in the forward region and 48 modules in the end-cap
region to make 27 coverage.

5.1 Drgitization in R Direction

Hit positions of R coordinate in TGC can be read by gangs of wires. Figure 13
(a) shows the schematic view of wire gangs in a TGC. Number of wires to
be ganged varies depending on TGC type and the position at which TGC is
located. This is because all gangs of wires in the three stations(T1, T2 and
T3) is aligned so as to point the interaction point. The detailed description of
the ganging is described in amdb_simrec data base. TGC digitizer calculates
the id number of the wire gang to which a hit belongs based on the database.

5.2 Digitization in ¢ Direction

Hit positions of ¢ coordinate in TGC can be read by strip. Figure 13 (b) shows
the schematic view of strips in two readout layers in a TGC module. Every
TGC module has two strip layers to measure ¢ coordinate. Each layer of a
module has 32 strips. Each strip has a conical shape with respect to the beam
axis. Thirty strips have the width of 1/29.5 of the ¢ coverage of a chamber
which is 27/24 and 27/48°n the forward and end-cap regions, respectively,
therefore actual width of the strips is 27/24 x 1/29.5 = 8.875 x 1073 radian
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(a) Longitudinal view of MDT and TGC, (b) R-phi view of TGC M1

Inner and Middle Station

Fig. 12. Layout of TGCs are shown: (a) longitudinal view of MDT and TGC in the
inner and middle stations and (b) R-¢ view of TGC M1 (T1F and T1E) station.
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Fig. 13. Layout of TGC readout elements is shown: (a) wire gangs in R direction
readout and (b) strips in ¢ direction readout.

for the forward chambers and 27 /48 x 1/29.5 = 4.437 x 1072 radian for the
end-cap chambers. The other two strips have half width of the other 30 strips.

In the A side, the two half-width strips are located at the edge of the smaller
and larger ¢ for TGCs at smaller and larger |z|, respectively. On the other
hand, in the C side, the two half-width strips are located at the edge of the
smaller and larger ¢ for TGCs at larger and smaller |z|, respectively. This
results in making non-mirror images between chambers in the A and C sides.

In the amdb_simrec.P.03, there is no description on strips in ¢ direction.
Therefore, the digitization scheme is implemented in the code directly. For the
amdb_simrec.Q or later, the detailed description on strips is written in amdb
and the digitization uses the description. The modification of the digitization
code is not needed when the strip configuration is changed.

5.8 Detector response

TGC digitization simulates the following detector responses:

e multi hits due to tracks passing several wire gangs or strips and induced
charge spread on cathode plane which may make signals in several strips
and

e intrinsic time response due to variation of strength of electric field in a
sensitive layer which depends on injection angle of charged tracks and signal
propagation along wires and strips,

21



e detection efficiency (sensitivity) of wire gangs and strips.

5.3.1 Multi hits by a single Charged Track

In case that charged particles pass through sensitive volumes, the particles are
assumed to go straight and ionization occurs along their tracks. In case that
the tracks spread over two wire gangs, those gangs are made to be fired. the
multi hits on the strips is made by the charge spread on the cathode plane
which is induced by the avalanche around anode wires. The size of the charge
spread is parametrized by the data from test beams and simulations.

Multi hits on wire gangs are generated when a charged track passes the bound-
ary between two wire gangs. The track path belongs to two wire gangs, the
track makes two fired wire gangs.

In addition to the track path, multi this on the cathode strips are generated
by induced charges spread over the cathode plane extending to two strips.
Figure 14 shows the charge spread on the cathode surface. The radius on
cathode surface is about a few mm for the surface resistance of ~ IMQ/D
The radius in which the strip is fired can be set so as to fire according to the
threshold value for the cathode signal. However, the default value set in the
joboption file is Ocm.
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Fig. 14. Scatter plot of ratio of signals from two neigbouring strips as a function of
positions in which avalanche is occurs. This result was gotten by a simulation. Sur-
face resistance of cathode plane is set to 1M /D “r=0mm” means the boundary

of two neighbouring strips. At the edge of the strip(r=0mm), the signals from two
strips are same. Solid curve is a theoretical expectation.

In addition, the cross talks between signal channels originating from readout
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electronics could be a source of multi hits. At the moment, this is not taken
into account.

5.3.2 Time Response

The intrinsic time response is parametrized using a standalone simulation such
as GARFIELD and the parametrization had been confirmed by test beams. The
signal propagation time, the charge distribution and the detection efficiencies
are set to the values gotten by test beams.

Figure 15 shows that an example of the distribution of time response of sig-
nals from wires. The response time depends on the incident angle of charged
particles. Long tail for the angle of 0° is due to tracks passing through week
electric fields which locates the middle points between two wires. Larger in-
sistent angle gives shorter response time, this is because the particle can have
larger possibility to pass the stronger electric field in which electrons can reach
a wire in short time.
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Fig. 15. Simulated time response distribution of TGC as a function of incident angles
of charged tracks. Larger angle gives shorter response time.

In addition, the signal propagation time along a wire is set to 3.7ns/m and
that along a strip is set to 8.5ns/m. Those values had been measured at test
beams.

Time of flight to the chamber, response time and signal propagation time are
summed up for the global time.
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5.3.8 Detection Efficiency

At the moment, the detection efficiency of chambers are averaged over their
sensitive areas. However, the efficiency map of each chamber have been mea-
sured by the test bench with cosmic rays, therefore the use of the map will be
implemented eventually for realistic simulation.

5.3.4 Conwversion of Digits to positions

The conversion of digits to global and local positions is performed by the
method

(TgcReadoutElement) in the detector description, MuonGeoModel. TgcReadoutElement
returns local position or global position when an id is given. For digits in the

R direction, there is no information on ¢ direction, therefore, the ¢ position

is represented by the centre position in ¢ of the TGC. On the contrary, for

digits in the ¢ direction, no information on R direction exists ans this results

in the R position is set to the centre position of TGC along R direction.

5.4 Classes, Methods and Properties

Two main functionalities of TGC digitizer are as follows:

e to create digits from GEANT4 hits
e to simulate detector response (timing, detection efficiency, multi signals by
a single hit)

The TGC digitizer consists of two classes: TGCDigitizer and TGC_Digitizer
because of the historical reason that the digitizer had been used in a stan-
dalone program and migrated to the Athena framework. TGCDigitizer is the
class which has the entry point of TGC digitization. All functionality of TGC
digitization is implemented to the class of TGC_Digitizer which is called by
TGCDigitizer.

e TGCDigitizer

- initialize() initializes the services, such as StoreGateSvc, PileUpMergeSvc
and sets the parameters controlling the behavior of the TGC digitizer.

- execute() reads GEANT4 hits from StoreGate in each of detector com-
ponents corresponding to TGC modules which are triplets or doublets. A
triplet has tree sensitive volumes and a double has two. This method calls
the TGC_Digitizer::executeDigi, which digitizes every hit, for every
readout element, i.e., a sensitive volume of a chamber.

- finalize () only returns StatusCode: : SUCCESS.

e TGC_Digitizer
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- initialize() initializes TgcHitIdHelper, TgcIdHelper and random num-
ber of a stream for the digitization. In this method, readFile0fTimeJitter ()
reads and sets the parameters for intrinsic time response of TGC from
share/timejitter.dat.

- executeDigi () digitizes hits. A single hit can be digitized in the two direc-
tions independently: radial and azimuthal directions. The information is
restored by MuonGeoModel and accessible from the class of TGCReadOutElement.
As described the preceding section, R direction is digitized based on the
wire ganging information in the database. Digits in ¢ direction are calcu-
lated based on the formula in which the structure of strips in TGC is well
expressed for amdb_simrec.P.03. For amdb_simrec.Q or later, ¢ direction
is digitized based on the parameter in the database as the same manner
of those in R direction.

The method determines the response time for digits which is commonly
used for signals from wire gangs and strips, and signal propagation time
along wires and strips. In case that response time is outside of the time
window to be set, that hit is removed. This method also removes some
hits based on the detection efficiency to be set.

TGC digits contains Muon ID only. The bunch crossing ID will be included
in future, too.

- readFileOfTimeJitter reads the parameters of the intrinsic time re-
sponse from the file timejitter.dat and stores them in vector.

- timeJitter calculates response time of a signal hit according to incident
angle of a charged track based on the time response parameters.

- efficiencyCheck determines if a hit is detected or not.

TGC digitizer is controlled by the following parameters in a jobOptions file:

5.5 TGCDigitValidation

TGCDigitValidation has the functionalities as follows:

e to convert hit position from digits
e to fill ntuple with the converted positions and the position in MCtruth

The ntuple contains, Muon ID, local and global positions and timing of digits,
etc., which are summarized in Table 7.

TGCDigitValidation is controlled by the parameters, shown in Table 8, in a
jobOptions file:
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Property description default value
SigmaChargeSpreadRadius | Radius of a signal spread in | 0.
cathode plane in mm.
Multihits to allow multi hits in wire | FALSE
gangs or not in case that a
track has large incident angle
to TGC plane
EfficiencyOfWireGangs Detection efficiency of wire | 0.999
gangs
Efficiency0fStrips Detection efficiency of strips | 0.999
InputObjectName Name of input collection TGC_Hits
OutputObjectName Name of output collection tge_digits
WindowLowerOffset Lower bound of time window | -75
in nsec
WindowUpperOffset Upper bound of time window | 25
in nsec
Table 6
Properties of TGCDigitizer and their default values
parameter name | description
nPar Number of muons
nHits Number of digits
stName station name of a digit
stEta station eta of a digit
stPhi station phi of a digit
isStrip type of a digit, O for a wire gang, 1 for a strip
gasGap layer number of gas gap in which a digit is found
channel channel number of a digit
tof sum of Tof, response time and propagation time for a digit
gx, gy, gz global position of a digit
1x, ly, 1z local position of a digit
Table 7

Contents of the ntuple
6 CSC_Digitization

A detailed description of the CSC detector in the ATLAS Muon Spectrometer
can be found elsewhere [?]. The digitization in the CSC is the simulation of

26



parameter name description

DoTGCTest to do TGC validation or not

DumpTrackRecord | to dump track record or not

NtupleLocID to set location and ID number of ntuple

Table 8
Parameters for control of TGCDigitValidation

the charge distribution on the CSC cathode strips given a hit in the sensitive
gas. The process also identifies the the strips numbers and their orientations.
Thus after processing all the hits in the event, the CSC digitization outputs
the list of digits into the transient event store from where they could be picked
up by other algorithms. The object referred to as a CSC digit is nothing more
than the compact identifier of a strip together with the charge on that strip.
In the digit, the charge is given in the number of equivalent electrons.

An incident particle, traversing the CSC gas, may produce primary and sec-
ondary ionisation electrons, leading the formation of an avalanche on the an-
ode wire as illustrated in Figure 16. The induced charge distribution on the

Fig. 16. Avalanche production in the CSC gas: the incident particle produces pri-
mary and secondary electrons along its path, leading to a charge multiplication and
collection at the anode wire. This induces a distribution on the cathodes, shared
equally between the two segmented cathod strips. The process of CSC digitization
consists of finding the charge distribution of the cathode strips given of the collection
of hit objects in the gas.
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segmented cathode can be written down as follows:

1 — arctan(K>\)

I'(A) =K1
(V) 1+ Ksarctan(Ks\)

where the constanst Ky and K3 are related empirically as

T (.1
K = 3 {13%5) ©)

and A\ = z/d with z being the precision coordinate and d the anode-cathode
spacing, which, in the CSC, is equal to the anode wire pitch. By requiring
that the induced charge is distributed equally on each of the two cathodes,
and using the relation 3, the charge distribution of Equation 2 reduces to a
one-parameter expression [?,7,7.7].

For a given simulated hit in the sensitive gas, the number of interactions along
the incident particle path is obtained according the Poisson distribution, with
a variable mean value determined from test beam studies. For each interaction,
the number of primary electrons is obtained according to a probability density
function also determined form test beam: this distribution closely follows the
Landau energy loss distribution in a thin absorber, with a small probability of
large tail as shown in Figure ??. Since in the CSC, the precision coordinate is
determined by a relative measurement of the induced charge on the adjacent
strips, variations of the order 20% or less in the gas gain do not affect the spa-
tial resolution. This means that the performance of the CSC is hardly affected
by temperature and pressure variations. Furthermore, CSC performance is not
affected by the drift time properties of the gas since no timing measurement in
the determination of the precision coordinate. The spatial resolution is affected
by the noise in the amplifier. The resolution on the centroid of the charge dis-
tribution depends linearly on the signal to noise ratio. Other factors, such the
electronic gain calibration, the geometrical cathode deformation, contribute
to limit the achievable precision of the position determination.

6.1 CSCD:gitValidation
7 Conclusions

Four different packages have been developed for the digitization of MDTS,
RPCs, TGCs and CSCs. These packages provide the construction of the Muon
simulated digit collection starting from the hit collections which are the output
of the simulation.

28



8 Acknowledgements

The authors would like to thank Davide Costanzo for his wise and constant
supervision and for providing the pile-up infrastructure (together with Paolo
Calafiura). A special thank goes to Alessandro De Salvo for providing the
first structure of the MDT _Digitization algorithm which uses the external
rt relation. The authors are indebted to him and to Ludovico Pontecorvo
for providing realistic rt relations, from Garfield simulation and from data
analysis.

References

[1] MuonDigitization, in the ATLAS CVS repository
(offline/MuonSpectrometer/MuonDigitization).

[2] XXXSensitiveDetector  classes, in the ATLAS CVS repository
(offline/MuonSpectrometer/MuonG4/MuonG4SD).

[3] Muon Hit and SimID Helpers classes, in the ATLAS CVS repository
(offline/MuonSpectrometer/MuonSimEvent).

[4] The HitHelper base class, in the ATLAS CVS repository
(offline/Simulation/HitManagement).

[6] The MuonSimData class for MCTruth deposit, in the ATLAS CVS repository
(offline/ MuonSpectrometer /MuonSimData).

[6) Global ATLAS Diitization, in the ATLAS CVS repository
(offline/Simulation/Digitization).

[7] Muon Offline Identifier Helpers, in the ATLAS CVS repository
(offline/MuonSpectrometer/MuonIdHelpers).

[8] Muon Offline Identifier Helpers, in the ATLAS CVS repository
(offline /DetectorDescription/IdDictParser).

[9] Muon Digit classes, in the ATLAS CVS repository
(offline/MuonSpectrometer/MuonDigitContainer).

[10] MuonGeoModel raw and read-out geometry, in the ATLAS CVS repository
(offline/MuonSpectrometer/ MuonGeoModel).

[11] A. DiCiaccio et al., “Hierarchical Software Identifier Scheme for the ATLAS
Muon Spectrometer”, ATLAS Internal Note, ATL-MUON-2000-020 (2000).

29



