ATLAS Units

Dario Barberis CERN & Genoa University/INFN

17 October 2003

- Rule 1: No numbers dispersed in the code
 - All values of constants, dimensions, defaults, cuts, etc. must be grouped in well-identified places:
 - the geometry, calibration and alignment constants must be in the geometry/conditions data base;
 - all numbers relative to a single algorithm must be in a single (header?) file and assigned to variables with appropriate, meaningful names.
- Rule 2: Adopt the CLHEP SystemOfUnits header file
 - The SystemOfUnits.h header, with the unit definitions, must be included in all places where there is any number.
 - o Only two basic units differ from current (Geant3 inherited) practice:
 - millimeters for length
 - MeV for energy
 - o These units will also be used for the persistent representation of all ATLAS data.
- Rule 3: All numbers come with units
 - All numbers come with the units in which they are specified.
 - o Examples:
 - double pixelLength = 400 * micrometer;
 - double pT_Cut = 1.0 * GeV;
 - double coolingFluidPressure = 2 * bar;
- Rule 4: Interfaces with external packages
 - Some external packages are beyond our control and use their own systems of units, no way to change that. Wherever this happens, a well-defined interface to the rest of our code must be defined.
- Rule 5: Reference frame
 - The ATLAS reference frames are defined in the TC document <u>http://edmsoraweb.cern.ch:8001/cedar/doc.info?document_id=ATL-GE-QA-2041</u>
- Rule 6: Range of φ
 - For most applications, it is irrelevant to specify the range of φ : $(-\pi,+\pi]$ or $[0,2^*\pi)$.
 - In practice, φ is calculated mostly through the arc tangent function, which returns angles in the range (- π ,+ π] both in Fortran and in C/C++ (CLHEP methods in particular returns phi() in this range).
 - We therefore choose the φ range as $(-\pi,+\pi]$. Care has to be taken when filling histograms or calculating $\Delta \varphi$.