[TC-1rsT, CENTRO PER LA RICERCA SCIENTIFICA
E TECNOLOGICA

STAR project — Software Technology Advanced Research

C++ Code Analysis Tool
User Guide

Paolo Tonella Alessandra Potrich

February 7, 2002

Contents

1 Installation 3
1.1 Codeanalysis 3
1.2 Webinterface oo 3

2 Directories 5
2.1 Codeanalysis)
2.2 Webinterface oo o 6

3 Configuration 7
3.1 Codeanalysis 7

3.1.1 File config ANALYSIS 7
3.1.2 File config SUFFIXES 8
3.1.3 File config RULES 8
3.1.4 File config FILTERING 8
3.1.5 FileconfigDB 9
3.1.6 File config CONTAINER 10
3.2 Webserver 10

4 Execution 13

4.1 Codeanalysis 13
4.1.1 Rulechecker 13
4.1.2 Reverse engineering L. 14

4.2 Webserver 16

Chapter 1

Installation

1.1 Code analysis

To install the code analysis tool, open the tar file (IRSTCodeAnalysis-
Tool.tar.gz) in the installation directory (called $INSTALL_DIR in the fol-

lowing), with the command:
tar xzvf IRSTCodeAnalysisTool.tar.gz

Then, select one of the user configurations from the subdirectory user-
Config, by creating a link to it in $INSTALL_DIR. For example, people from
the ALICE experiment will run the following command:

1n -s userConfig/ALICE/ config

The tool comes with configuration directories for Alice, ATLAS and
LHCb (empty directory to be filled in) experiments. New configurations
can be created under userConfig and made active by linking them to config
in $INSTALL_DIR.

1.2 Web interface
To install the Web interface for the reverse engineering package contained
in the code analysis tool, open the tar webreveng.tar.gz in the installation

directory (called $INSTALL_DIR in the following), with the command:

3

tar xzvf webreveng.tar.gz

Chapter 2

Directories

2.1 Code analysis

The following directories under $INSTALL_DIR contain the source code of
the tool as well as the executable bytecode:

entities/
reveng/
rules/
syntax/

In particular, the directory reveng/ contains also some Java libraries for
flow analysis (flow_analysis.jar) and connection to the MySQL database
(mysql_2_uncomp. jar), and the executable of dot, a program computing the
layout of a graph given in the dot format.

Directory userConfig contains a set of predefined files for tool configu-
rations.

Directory scripts contains some utility scripts, like createViolation-
Table.sh (to be personalized), which creates an HTML page with all viola-
tions to the coding rules from a set of violation report files.

Directory patch contains the patches (Perl scripts) for the C++ features
not fully supported by the tool.

Directory dyn contains scripts for the dynamic analyses.

Directory doc contains the HTML documentation of the tool automati-
cally generated by javadoc.

Directory man contains User Guide and Developer Guide.

5

2.2 Web interface

The main directory (webreveng) contains all Perl scripts necessary for the
creation of the images of the UML diagrams to be displayed inside the re-
sulting Web pages.

Directory CGI-BIN contains the Perl script for the navigation inside the

generated diagrams.
Directory WWW contains an example of Web site providing the UML dia-

grams extracted by the tool.

Chapter 3

Configuration

3.1 Code analysis

The configuration of the tool can be modified by editing the files contained in
the directory linked to SINSTALL_DIR /config. Their format and the effects
of the possible customizations are described in the following.

All configuration files in $INSTALL_DIR/config can be overridden by
creating another file with the same name in the working directory (i.e., in
the directory where the tool is run). If present, such a file is read by the tool
instead of that under $INSTALL_DIR /config.

3.1.1 File config ANALYSIS

This file contains a list of operations that can be enabled (tag ON) or dis-
abled (tag OFF). It is possible to decide if the statements of functions and
methods have to be analyzed, so that the related expressions are determined
and made available from the entities package. This is controlled by the label
EXPRESSION_ANALYSIS; if the tag is OFF some rules can not be checked).
During reverse engineering, it is possible to decide whether to perform the
analysis of the weakly typed containers — a quite computationally expensive
analysis — to infer the type of the contained objects and improve the accuracy
of the class diagram. The related label is CONTAINER_ANALYSIS. It is also
possible to decide whether to statically extract the object diagram or not (la-
bel: OBJECT_ANALYSIS). Finally, it is possible to record into a database the
entities visited during reverse engineering, by enabling the operation named
DB_INSERTION. An example of config ANALYSIS file with expression analy-
sis enabled, and container analysis, object analysis and data base insertion

7

disabled is the following:

EXPRESSION_ANALYSIS ON
CONTAINER_ANALYSIS OFF
OBJECT_ANALYSIS OFF
DB_INSERTION OFF

3.1.2 File config SUFFIXES

This file contains the specification of the allowed extensions of the source
files. It has two entries, for the specification of the implementation file
extensions and of the header file extensions respectively. An example of
config SUFFIXES file, declaring that the known extensions are .cxx, .C,
.cpp for the implementation files and .h for the header files, is the following:

SOURCE_FILE_SUFFIX cxx C cpp
HEADER_FILE_SUFFIX h

3.1.3 File config RULES

This file contains the specification of the coding conventions to be checked,
among those available in the subpackage with the specific implementation of
RuleChecker (for example, among all Alice rules, when running ALICERule-
Checker). It contains the list of the active rules, one for line. If, for example,
only rules RC10, RC11, RC12 are to be checked, this file will contain:

RC10
RC11
RC12

As with all other configuration files, a common way to override the spec-
ifications provided in config RULES under $INSTALL_DIR/config is to cre-
ate another file config RULES in the current directory. If present, it is read
instead of that under $INSTALL_DIR /config.

3.1.4 File config FILTERING

Some of the entities present in the C++ code under analysis may be un-
interesting, for example because they are generated automatically by some
tool. It is possible to exclude them from the analysis by specifying the

8

substrings of their names that allow their recognition. This is done in the
config FILTERING file

To exclude a specific entity, it is sufficient to indicate its name after the
label corresponding to its type (e.g., if it is a class, after CLASS_NAME). The
simbols ~, $, % can be put before the specified strings to indicate that a
particular entity has to be removed only if its name respectively starts with
that string, ends with that string or contains that string.

For example, in the following case:

MODULE_NAME
GLOBAL_VARIABLE_NAME $R__ "G

CLASS_NAME “UNNAMED %R__
METHOD_NAME Class_Name
FIELD_NAME fglsA

LOCAL_VARIABLE_NAME
FRIEND_FUNCTIONS_NAME operator>>

no filtering is applied to modules and local variables. Global variables ending
with R__ or starting with G__ are filtered out. Classes starting with UNNAMED
(a default name used for the C++ construct struct) or containing R__ are
excluded. The field £gIsA as well as the friend function operator>> are also
excluded.

3.1.5 File config DB

The configuration file config DB contains all the information necessary to
connect to the data base server to store or access the entities generated by
the tool after parsing a source program. The information needed to perform
a data base connection consists of host name, data base name, user name,
and password. An example of such a file is:

Host: pcepaipl2.cern.ch
Database: IRSTCppAnalysis
User: IRSTCppAnalysis
Password: IRSTCppAnalysis

If the data base management system in use is MySQL, the following
commands have to be prompted to create data base and user:

mysql> create database IRSTCppAnalysis;

mysql> grant all privileges on IRSTCppAnalysis.* to
IRSTCppAnalysis@’%’ identified by ’IRSTCppAnalysis’;

mysql> grant all privileges on IRSTCppAnalysis.* to
IRSTCppAnalysis@<mysql-host> identified by ’IRSTCppAnalysis’;

where <mysql-host> is the name of the host where MySQL is running.
To create the necessary tables in the database, type the command:

java entities.EntityDBManager create

with $INSTALL_DIR and $INSTALL_DIR /reveng/mysql-2_-uncomp.jar in
the CLASSPATH.

3.1.6 File config CONTAINER

When the container analysis is activated, the reverse engineering module
needs some information about the weakly typed containers in use, in order
to succed determining the type of the contained objects. All insertion and
extraction methods available from the container library have to be listed.
Moreover, the source and target of such operations have to be specified. If
the operation is an insertion, the source is the object to be inserted, while
the target is the container. Vice versa for an extraction the source is the
container while the target is an object (typically, reference or pointer).

When the source/target of an operation is the object on which the oper-
ation is invoked, it will be indicated as this in the configuration file. When
it is a parameter, the convention is to indicate param- followed by an index
(starting from O for the first parameter and incremented for the next ones).
Finally, if the extracted object is returned, the keyword return is used as
target.

For example, the following configuration file:

// <class> <method> <source> <target> <type>
TList Add param-0 this insertion
TList At this return extraction

specifies that method Add of class TList is an insertion method, which
puts its first parameter into the container on which the method is invoked.
Method At of the same class returns the object extracted from the container
on which the invocation is made.

10

3.2 Web server

In order to set up a Web server that provides access to and navigation inside
the UML diagrams extracted from the code, it is necessary to follow these
steps:

1. Preparation of the static data (diagrams, static pages, etc.).

2. Set up of the server programs for the dynamic access.

To prepare the static data, it is possible to copy the home page of the
site WWW/HomePage . html from webreveng into the proper directory (reveng
in the following) and rename it, so as to make it accessible as the initial page
of the Web site.

The following line should be edited:
<BASE HREF="http://zeus.itc.it:4444/">
so as to refer to the base URL of the site;

A directory for each subsystem should be created, starting from the ini-
tial directory (e.g., reveng/STEER for the detector! STEER, etc.). The page
WWW/STEER/HomePage . html should be copied into every subsystem’s direc-

tory, and edited so as to contain the proper subsystem name and location.
The following lines should be edited:

<BASE HREF="http://zeus.itc.it:4444/">
so as to include the base URL for the site;

s0 as to refer to the actual CGI-BIN directory containing the script focus.prl
(relative to the base URL, see below). The detector name is an additional
parameter, still to be edited

Tn the following, detector and subsystem will be used interchangeably.

11

so as to refer to the directory containing all reverse engineered information
for a given detector (subsystem).

A directory comp should be created to store the component diagram.
The file WWW/comp/HomePage .html should be copied into this directory and
edited as described above for normal detectors (BASE URL and reveng
directory).

Finally, the page WWW/index .html (the index displayed in the left frame)
should be copied into the initial directory (reveng) and edited so as to reflect
the current installation (actual name of reveng directory and BASE URL).
The list of detectors may also be edited to add/remove detectors. The initial
page in WWW/HomePage .html and the first index item in WWW/index.html is
the component diagram. On Web servers which force the initial page to
be named index.html (instead of HomePage .html), it may be necessary to
rename index.html so that it does not conflict with it.

Finally, the server program for the dynamic interaction with the UML
diagrams can be set up.

The script CGI-BIN/focus.prl should be copied into the proper direc-
tory (cgi-bin/reveng above) under the CGI-BIN directory of the server
(i.e., the directory from which the Web server retrieves its scripts).

The following line should be edited:

$www_dir = "/ssiO/ssi/revenge/WWW/reveng/";

so as to refer to the directory containing the initial page (HomePage.html).

12

Chapter 4

Execution

4.1 Code analysis

4.1.1 Rule checker

To execute Rule checker on a single source file, add the directory $IN-
STALL_DIR/ to the environment variable CLASSPATH. Then type the com-
mands:

gt+ -E -I... -D... -0 A.i A.cxx
java rules.ALICE.ALICERuleChecker A.i [pathl]

to execute the Rule checker of the Alice experiment. Similar command lines
work for the other experiments.

If necessary, the preprocessor has to be invoked with one or more -I
and/or -D directives, specifying the location of the include files that are
needed and providing macro definitions for the compiler.

When path is not specified, the tool assumes that A.cxx and A.h are in
the current directory. Otherwise, they are assumed to both reside in path.

To execute the tool on a list of files, it is necessary to indicate them
in a text file conventionally named config FILES_TO_ANALYZE, which can
be created either in the current directory or in the general config direc-
tory (typically, the former case is more practical since several such files are
expected to be created by different users and for different subsystems).

Then, the tool is executed without parameters:

java rules.ALICE.ALICERuleChecker

13

In order for the execution to succeed, it is also required that a file named
quickExecution exists in the current directory (it can be created by prompt-
ing the UNIX command: touch quickExecution). The effect of this file on
the execution is explained below.

The file config FILES_TO_ANALYZE respects the following format: each
line of text corresponds to one file to analyze. The first two strings in
each line are mandatory, and give respectively the name of the preprocessed
file A.i and the name of the implementation file A.cxx. Then, the list of
necessary header files follow (e.g., A.h). Typically, this is expected to be one
file. The name of the violation report file can be specified within asterisks
(e.g., *A.violx); if a file is not specified the violations are reported on the
standard output. Finally, if any header file name is ambiguous, because
different subsystems contain a header file with the same name, it is possible
to indicate the specific subsystem within square brackets.

Example:

A.i A.cxx [bl/b2] A.h *A.violx
B.i B.cxx B.h *B.viol*

In this case, two files are analyzed (A.cxx and B.cxx). The output is
printed to A.viol and B.viol respectively. To disambiguate the name of
the first header file (A.h), the subsystem b1/b2 is indicated.

In case the header file associated to a given implementation file (say,
A.cxx) is unique and its name is obtained by changing the extension of the
implementation file (A.h), it is possible to run the tool in a quick ezecution
mode, skipping an initial preprocessing in which the tool determines the
header files associated to a given implementation file. Execution times are
thus shortened. To achieve this, it is sufficient to create an empty file named
quickExecution in the current directory (touch quickExecution). Since
knowledge of the user defined implementation and header files is granted also
when config FILES_TO_ANALYZE is used, execution on a list of files requires
the quick execution mode.

4.1.2 Reverse engineering

To execute the reverse engineering module, add the directory $INSTALL_DIR/
to the environment variable CLASSPATH. Moreover, the Java archive flow_analy-
sis.jar from directory reveng has to be added if the container analysis is going

14

to be executed, and the Java archive mysql_2_uncomp.jar from directory re-
veng has to be added if data base insertion is active. A typical command
which achieves all of this is:

setenv CLASSPATH ${CLASSPATH}:${INSTALL_DIR}:
${INSTALL_DIR}/reveng/flow_analysis.jar:
${INSTALL_DIR}/reveng/mysql_2_uncomp. jar

Then the following command can be typed:
java reveng.ReverseEngineering Al.i A2.1i A3.1

to execute Reverse engineering on the three preprocessed files A1.i, A2.1,
and A3.1i. Typically, Reverse engineering is executed on an entire subsystem.
This is achieved by typing the command:

java reveng.ReverseEngineering subsys/*.i

for the subsystem subsys.

The result of the execution is the dot file classDiagram.dot in the cur-
rent directory. If data base insertion is active, the data base will be populated
with the entities processed during parsing. If object analysis is active, the
object diagram is produced by a static analysis of the source code and is
stored in the dot file objectDiagram.dot. Dynamic extraction of the object
diagram is described below.

Once the data base is populated with entities associated to the source
files in the system, it is possible to extract class diagram and component
diagram from the data base, respectively by typing the commands:

java reveng.ClassDiagramFromDB filel.h ... fileN.h
and
java reveng.ComponentDiagramFromDB dirl/filel.h ... dirN/fileN.h

In the first case, the name of the directory containing the header files with
the declarations of the classes to be analyzed is not important, while in the
second case it identifies the subsystem, which is the basic element of the
component diagram. Therefore, the indication of the enclosing directories is
mandatory in the second case.

15

Execution of these two commands leads to the generation of the files
classDiagram.dot and componentDiagram.dot respectively. They can be
visualized by means of the public domain tool Graphviz by AT&T or by
exploiting the Web server webreveng, distributed separately.

Dynamic extraction of the object diagram can be achieved by executing
the following steps:

1. Edit $INSTALL DIR/dyn/gdb.cmd and add the breakpoints of interest.
Objects will be dumped at these points.

2. Run:
gdb -x $INSTALL DIR/dyn/gdb.cmd program > trace.txt. Termi-
nate execution by pressing <CTRL> D.

3. Run:
$INSTALL DIR/dyn/generateObjectDiagramFromTrace.prl
trace.txt > dynamicObjectDiagram.dot.

4. Visualize the graph by means of Graphviz:
dotty dynamicObjectDiagram.dot.

4.2 Web server

All files classDiagram.dot should be copied into the subdirectories associ-
ated with each subsystem (e.g., reveng/STEER), together with the initial
HTML pages (copy and modify HomePage . html from webreveng/WWwW/STEER/).
The file componentDiagram.dot should be copied into the subdirectory
comp.

The shell script create-class-diagram-pages.sh automates HTML
page creation for each subsystem, while create-component-diagram-pa-
ges.sh automates the creation of the pages for the component diagram.

These two scripts assume that the starting information (file classDia-
gram.dot for each subsystem and file componentDiagram.dot for the com-
ponent diagram) is available. For convenience, they include as commented
lines the commands to be issued to produce them.

Now, if the Web server (e.g.Apache) is on, the reverse engineering infor-
mation can be accessed and navigated.

16

